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Generation of non-isotropic unstructured grids
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SUMMARY

A procedure for the generation of highly stretched grids suitable for Reynolds-averaged Navier–Stokes
(RANS) calculations is presented. In a �rst stage, an isotropic (Euler) mesh is generated. In a second stage,
this grid is successively enriched with points in order to achieve highly stretched elements. The element
reconnection is carried out using a constrained Delaunay approach. Points are introduced from the regions of
lowest stretching towards the regions of highest stretching. The procedure has the advantages of not requir-
ing any type of surface recovery, not requiring extra passes or work to mesh concave ridges=corners, and
guarantees a �nal mesh, an essential requirement for industrial environments. Given that point placement and
element quality are highly dependent for the Delaunay procedure, special procedures were developed in order
to obtain optimal point placement. Copyright ? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many problems of computational mechanics are characterized by a very strong anisotropy in the
spatial variation of the �elds of interest. A typical example in 
uid mechanics is a boundary
layer. For laminar 
ow, the variations in the streamwise direction will be 3–5 orders of magnitude
less than normal to it. The same applies to turbulent 
ows simulated using the Reynolds-averaged
Navier–Stokes (RANS) equations with suitable turbulence models. The reliable generation of high-
quality grids for RANS simulations has been attempted with varying degrees of success by several
authors during the last decade [1–8]. Given that general purpose generation of highly stretched
grids has proven di�cult, and that computing power is increasing steadily, the immediate question
that comes to mind is when RANS simulations will be replaced by large-eddy simulations (LES) or
even direct Navier–Stokes (DNS) simulations. Let us assume an optimal mesh for LES simulations.
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This could be an adaptive Cartesian grid that consists of typical (large) Euler cells in the �eld
and very small cells in the boundary layers in order to capture all relevant scales.
Clearly, most points=cells will be located in the boundary layer regions. Denoting by Np the

number of points and by h the characteristic cell size, we have

Np≈ BLVolume
h3

If we assume, conservatively, a laminar B-747 wing with a chord Reynolds-nr. Of Rem=106, and
furthermore assume that the boundary layer obeys the 
at plate formula

�lam
x
=

5:5√
Rex

the boundary layer thickness will be approximately �≈ 5× 10−3 m, implying an (isotropic) element
size of at most h≈ 5× 10−4 m. The resulting number of grid-points is then

Np =
N� Awing
h2

=
10× 250m2
(5× 10−4 m)2 = 10

10

Current RANS production runs operate with Np = 107. From Moore’s Law (the doubling of com-
puting power every 18 months), we can foresee LES grids in 15 years. As far as CPU is concerned,
the number of timesteps Nt required to advect a particle accurately across the wing is proportional
to the number of cells, i.e.

Nt =
5m

5× 10−4 m =O(10
4)

Assuming the number of 
oating point operations per point per timestep to be Nfpp =O(103), this
would result in an operation count of

Nops =O(1010)O(104)O(103)=O(1017)

Given that the limit of human patience lies somewhere around O(103) s, the operation count
obtained above implies a CPU performance requirement of O(1015) FLOPS. Current production
runs can operate at Np = 1011 (100 GFLOPS). Invoking once more Moore’s Law, we can foresee
LES runs in 15 years. If we perform a sensitivity analysis, we note that the only linear component
in these numbers was that of human patience (e.g. 1 h to 1 day). As soon as we increase grid
resolution by a factor of 10, we increase the number of points by 103, the number of timesteps
by 10, and the total e�ort by 104, i.e. we have to wait yet another 20 years before we can carry
out such a simulation. To make matters worse, the numbers cited above were obtained using the
assumption of a laminar boundary layer. Due to the need to capture the laminar sublayer and
the higher gradients encountered, fully resolved turbulent 
ows typically require �ner grids than
laminar 
ows. This implies that the numbers cited above should be assumed as very optimistic.
Faced with the pressing and immediate need to compute 
ows where Reynolds-number e�ects are
important, we see that the optimal RANS gridding of geometrically complex domains will remain
an important topic of research for the foreseeable future.
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Figure 1. Singular points for generic con�guration. Figure 2. Gridding of convex corners.

2. THE RANS GRIDDING TECHNIQUE

The generation of isotropic unstructured grids has reached a fairly mature state, as evidenced by
the many publications that have appeared over the last decade on this subject [9–23] and the
widespread use of unstructured grids in industry. The two most widely used techniques are
the advancing front technique [10; 11; 16; 19; 22; 23] and the Delaunay triangulation
[9; 14; 15; 17; 20; 21; 24]. Hybrid schemes that combine an advancing front point placement with
the Delaunay reconnection have also been used successfully [18; 25; 26]. These isotropic mesh
generation techniques have been used to generate grids with mildly stretched elements within the
context of adaptive remeshing [27–30]. However, they fail when attempting to generate highly
stretched elements, a key requirement for Reynolds-averaged Navier–Stokes (RANS) calculations
with turbulence models that reach into the sublayer.
A number of specialized schemes have been proposed to remedy this situation [1–7]. The domain

to be gridded was divided into isotropic and stretched element regions. In addition, a blending
procedure to transition smoothly between these zones was provided. Typically, the stretched mesh
region was generated �rst [2–6]. Although we have used such a scheme [3] for a number of years,
we have found several situations in which the requirement of a semi-structured element or point
placement close to wetted surfaces is impossible to achieve. Figure 1 shows several such points
in the back section of a generic hypersonic 
yer. Note in particular that point B is surrounded by
at least four di�erent normals, two of which are exactly 180◦ opposite to each other. Trying to
grow a semi-structured mesh with a single normal from this point without producing elements with
negative volumes is impossible. Similar problems occur at points A, F and G. These cases clearly
point to the requirement of a more general technique, in particular one that allows an arbitrary
element connectivity, or number of normals emanating from a point.
A second disadvantage of these ‘advancing layers’ techniques is the fact that in order to preserve

the original surface mesh topology as much as possible, corner regions are seldomly gridded
optimally. Figure 2 compares the grids produced at a concave corner for an advancing layers
procedure and the optimal grid required to capture the spanwise vortices that typically appear
there. This observation again points to the requirement of a more general technique, in particular
one that allows for the introduction of new surface points while gridding the volume.
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Figure 3. Introduction of points at corners.

The new procedure may be summarized as follows:

1. Generate an isotropic mesh; this can be done with any unstructured grid generator.
2. Remove all points in regions where stretched elements are to be generated.
3. Using a constrained Delaunay technique, introduce points in order to generate highly stretched
elements.

4. Introduce the points in ascending levels of stretching, i.e. from the domain interior to the
boundary or wake regions.

This procedure has the following advantages:

(a) Because the procedure already starts with a valid, surface conforming mesh, no surface
recovery is required for the Delaunay reconnection, eliminating the most problematic part
of this technique.

(b) Proper meshing of concave ridges=corners is obtained.
(c) The meshing of concave ridges=corners requires no extra work; this important advantage,

which is gained by introducing the points from the domain interior to the boundary or wake
regions, is shown in Figure 3.

(d) Meshing problems due to surface curvature are minimized (this advantage is also gained
by introducing the points in ascending levels of stretching).

(e) A �nal mesh is guaranteed, an essential requirement for automation.

The disadvantages are the following:

(i) As with any Delaunay technique, the mesh quality is extremely sensitive to point placement.

The assertion that a valid mesh is always obtained can be made due to the way the algorithm works:
at every stage of the point introduction process, the validity of the mesh (neighbour information,
topology, element volume, etc.) can be checked. If the introduction of a new point leads to a
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Figure 4. Introduction of �eld points.

Figure 5. Introduction of surface points: (a) Original surface triangulation; (b) insert point as is and
(c) reconnect boundary faces.

non-valid mesh, the point is skipped and stored in a list for later introduction. For the cases
shown below, the number of points that could not be introduced was less than 0.001 per cent.

3. INSERTION OF POINTS

The insertion of points is carried out using the constrained Delaunay procedure [31] which may
be summarized as follows. Given a new point i at location xi:

(a) �nd the element(s) xi falls into,
(b) obtain all elements whose circumsphere encompasses xi,
(c) remove from this list of elements all those that would not form a proper element (based

on volume and angles) with xi; this results in a properly constrained convex hull,
(d) reconnect the outer faces of the convex hull with xi to form new elements.

The procedure has been sketched in Figure 4.
For boundary points some additional steps are required. Given a new boundary point i at loca-

tion xi:

(a) determine if the point is on a boundary edge or face,
(b) reconnect these elements without regard to the Delaunay criterion,
(c) �nd the element(s) xi falls into,
(d) obtain all elements whose circumsphere encompasses xi,
(e) remove from this list of elements all those that would not form a proper element (volume,

angles) with xi, this results in a properly constrained convex hull,
(f) reconnect the boundary faces (see Figure 5),
(g) reconnect the outer faces of the convex hull with xi to form new elements.
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Figure 6. Addition of points along a ridge.

The reconnection of boundary faces is carried out by diagonal swapping. For curved surfaces, it
is necessary to apply angle constrains in order not to lose surface resolution=de�nition or surface
patch integrity.
The points are inserted according to layers following the normals emanating from ‘wetted’

surface points, starting from the outermost layer, and moving towards the boundaries or wake
centerlines. Points are only introduced if the spacing normal to the wall is below a fraction of the
isotropic element size speci�ed by the user at the particular location. This is important for grids
with a large variation of element size, and produces a smooth transition from the Euler region into
the RANS region.

4. ADDITION OF EXTRA SURFACE POINTS

For complex geometries with narrow surface strips close to concave edges, it is not possible to
obtain a good surface mesh unless one introduces further points in these regions. A typical situation
is shown in Figure 6.
Additional points are introduced by identifying the corners where potential problems can appear.

These corners are typically concave, and are characterized by normals that would introduce points
close to another edge. Subsequent reconnection using the constrained Delauney technique would
yield elements with very large angles. In order to avoid this, additional points are introduced along
the concave edge to mitigate this topological e�ect.

5. CONSTRUCTION OF NORMALS

The insertion of points to construct highly stretched elements is carried out along normals that
may start either on the boundary (boundary layers) or in the �eld (wakes). The number of normals
emanating from a surface point can vary, depending on whether we have a convex or concave
surface. Figure 7 shows just a few of a large class of cases that have to be considered.
The point-normals are obtained by comparing the face-normals of the faces surrounding each

point. Starting from an arbitrary face surrounding a point, all other face-normals are considered in
turn. If the di�erence of normals, as measured by the scalar product, exceeds a preset tolerance
(e.g. 30◦), a new point-normal is introduced. In this way, multiple normals emanating from a
single point are obtained. For concave ridges or corners (which can be identi�ed by having very
large angles between 2 and 3 point-normals and pointing away from the surface) further normals
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Figure 7. Some possible cases for surface normals.

are introduced with a prescribed angle opening between them. In the examples shown below, this
angle opening was set to 30◦.

6. REMOVAL OF POINTS BEFORE RANS GRIDDING

Since the quality of grids generated using the Delaunay technique is very sensitive to point
placement, it is advisable to remove any (isotropic) points that may interfere with the semi-
structured points in the highly stretched regions. The regions where this could happen are iden-
ti�ed before starting the RANS meshing. Given the surface and wake patches marked for nor-
mal construction and point-introduction, the adjacent elements are marked with an advancing
layers procedure, until the distance to the surface or wake center exceeds the distance of the
region where stretched elements are required. In most cases, only 2–3 layers of elements are
marked for removal. The point removal algorithm may be summarized as
follows:

(1) For each point marked for removal:

(a) Obtain all edges touching this point, and the corresponding neighbouring points.
(b) Remove the edges that cannot be collapsed due to topological considerations (end-,

line-, surface- or volume points).
(c) Remove the edges that, if collapsed, would lead to small or negative elements.
(d) Remove the edges that, if collapsed, would lead to very small or very large angles.
(e) Order the remaining edges according to their length.
(f) Remove the marked edges, renumbering the elements.

(2) Compress and renumber the element and point lists.

The e�ectiveness of this point removal algorithm may be enhanced by combining it with edge and
face swapping and point movement. The �nal point removal algorithm then takes the form of the
following loop:

(1) DO: For a maximum number of passes:
(2) Remove marked points by edge-collapse;
(3) IF: Points could be removed:

(a) Perform edge and face swapping;
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Figure 8. Movement and removal of points.

Figure 9. Gridding of gaps.

(4) ELSE

(i) Move points that could not be removed;
(ii) Perform edge and face swapping;

(5) ENDIF
(6) ENDDO

The advantage of moving points can be seen from the small example shown in Figure 8. Any edge
collapse for the point in the center of the domain would lead to elements with vanishing volumes.
Mesh movement in combination with diagonal swapping removes this quandary. This combination
of point movement and edge swapping is very e�cient, typically leaving only 0.1 per cent of the
points marked for removal in the mesh.

7. POINT INTRODUCTION FOR GAPS

In narrow gaps, the introduction of points from two close surfaces covered with RANS grids can
lead to very poor mesh quality. Figure 9 shows an example where the resulting mesh is clearly
inappropriate for RANS calculations. In order to avoid the introduction of points in such regions,
the host element into which the new point falls is checked for proximity to another surface. If
any of the points of this element are on the surface and are too close to the new point, the new
point is rejected. We remark that the Delauney reconnection procedure requires the determination
of the host element, so that this check incurs only a modest amount of CPU.

8. EXAMPLES

The described RANS gridding procedure has been operational for approximately a year, and was
used to mesh a series of test cases. Five of these are included here. The isotropic grids required
before directional enrichment begins are generated using the advancing front technique [23].

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:219–232



GENERATION OF GRIDS VIA DIRECTIONAL ENRICHMENT 227

Figure 10. Surface of: (a) isotropic mesh; (b) after element removal; and (c) �nal mesh.

Figure 11. Cavity: surface mesh and solution (Re=1000) �nal mesh.

(a) Nose-cone: The surface triangulation of the isotropic mesh is shown in Figure 10(a). The
removal of points within the future non-isotropic layers of elements results in the surface mesh
shown in Figure 10(b). The �nal surface mesh is depicted in Figure 10(c). One can see the
considerable stretching achieved.
(b) Cavity: This is a classic 2-D testcase for incompressible 
ows. It was run here with a 3-D

code, using a parallelepiped of [1:0; 1:0; 0:1], i.e. an extension of 1=10th the side-length in the third
dimension. The surface mesh obtained on one of the outside surfaces is shown in Figure 11(a). The
results of a simulation for a Reynolds number of Re=1000 are given in Figures 11(b) and 11(c).
(c) Ship: This case shows a RANS grid for the generic chemical tanker shown in Figure 12(a).

Figures 12(b) and 13(a)–13(c) show surface grids and cross-sections for the generated mesh.
The isotropic (Euler) mesh for this case had approximately 1.2 million elements, while the �nal,
anisotropic (RANS) mesh had close to 5 million elements.
(d) Flyer: The third con�guration considered is that of a generic hypersonic 
yer. Figures 14(a)

and 14(b) show the surface grids obtained, and Figures 15(a) and 15(b) show a plane cut in
the region of the vertical tail and stabilizer. Observe the proper gridding in the corner regions.
The isotropic (Euler) mesh for this case had approximately 2 million elements, while the �nal,
anisotropic (RANS) mesh had approximately 6 million elements. On an SGI Origin 2000, using
1 R10000 processor, the isotropic grid generation took approximately 45 min, while the anisotropic
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Figure 12. Computational domain and surface mesh along the side.

Figure 13. Transversal cut: (a) stern region; (b) and (c) bow region.

enrichment took approximately 40 min. One can see from these �gures that the speed of the
proposed RANS gridding technique is acceptable.
(e) Racecar: The fourth con�guration considered is that of a generic racecar. Figures 16(a) and

16(b) show the surface de�nition and the overall surface grid, while Figures 17 and 18 focus on
particular regions of the mesh (driver, nose of the car, back of the car, gaps, etc.), which had
approximately 8.3 million elements. A result for a 
ow simulation using Luo’s implicit LU-SGS-
GMRES solver [32] is shown in Figures 19(a) and 19(b) demonstrating the usefulness of the
procedure.

9. CONCLUSIONS AND OUTLOOK

A procedure for the generation of highly stretched grids suitable for Reynolds-averaged Navier–
Stokes (RANS) calculations has been developed. In a �rst stage, an isotropic (Euler) mesh is
generated. In a second stage, this grid is successively enriched with points in order to achieve
highly stretched elements. The element reconnection is carried out using a constrained Delaunay
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Figure 14. Generic hypersonic 
yer: (a) surface grid; and (b) detail.

Figure 15. Generic hypersonic 
yer: (a) planar cut; and (b) detail.

approach. Points are introduced from the regions of lowest stretching towards the regions of highest
stretching. The procedure has the advantages of not requiring any type of surface recovery, not
requiring extra passes or work to mesh concave ridges=corners, and guarantees a �nal mesh, an
essential requirement for industrial environments. Given that point placement and element quality
are highly dependent for the Delaunay procedure, special procedures are required in order to obtain
optimal point placement. Among these, the most important is the removal of points that fall into
the RANS zone before enriching the mesh.
Several examples demonstrate the usefulness of the proposed anisotropic gridding technique.

Timings from grids generated to date show that the procedure is faster than traditional advancing
front techniques for isotropic grids, implying that the generation of anisotropic grids does not place
an extra burden on CPU or memory requirements.
Near-future work will centre on:

(a) improvements in point placement and element control,
(b) automatic wake placement and topological connection to CAD models, and
(c) parallelization.
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Figure 16. Generic racecar: (a) surface de�nition; and (b) surface mesh.

Figure 17. Driver and nose of the car.

Figure 18. Details of back, back-wheel and car-
oor gap.
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Figure 19. Pressure contours: (a) and (b) streamlines.

Looking further into the future, we envision fully automatic RANS gridders integrated into a
multidisciplinary, database-linked framework that is accessible anywhere on demand, simulations
with unprecedented detail and realism carried out in fast succession, and �rst-principles driven
virtual reality.
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