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A parallel advancing front grid generation scheme
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SUMMARY

A parallel advancing front scheme has been developed. The domain to be gridded is �rst subdivided
spatially using a relatively coarse octree. Boxes are then identi�ed and gridded in parallel. A scheme that
resembles closely the advancing front technique on scalar machines is recovered by only considering
the boxes of the active front that generate small elements. The procedure has been implemented on the
SGI origin class of machines using the shared memory paradigm. Timings for a variety of cases show
speedups similar to those obtained for ow codes. The procedure has been used to generate grids with
tens of millions of elements. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: unstructured grid generation; parallel computing; CFD

1. INTRODUCTION

The widespread availability of parallel machines with large memory, solvers that can harness
the power of these machines, and the desire to model in ever increasing detail geometrical and
physical features has lead to a steady increase in the number of points used in �eld solvers.
Grids in excess of 107 elements have become common for production runs in computational
uid dynamics (CFD) [1–5] and computational electromagnetics (CEM) [6; 7]. The expec-
tation is that in the near future grids in excess of 108–109 elements will be required. While
many solvers have been ported to parallel machines, grid generators have lagged behind. For
applications where remeshing is an integral part of simulations, e.g. problems with moving
bodies [8–14] or changing topologies [15; 16], the time required for mesh regeneration can
easily consume more than 50 per cent of the total time required to solve the problem. Faced
with this situation, a number of e�orts have been reported on parallel grid generation [17–25].
The two most common ways of generating unstructured grids are the advancing front tech-

nique (AFT) [26–34] and the generalized Delaunay triangulation (GDT) [35–39]. The AFT
introduces one element at a time, while the GDT introduces a new point at a time. Thus,
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both of these techniques are, in principle, scalar by nature, with a large variation in the
number of operations required to introduce a new element or point. While coding and data
structures may inuence the scalar speed of the ‘core’ AFT or GDT, one often �nds that
for large-scale applications, the evaluation of the desired element size and shape in space,
given by background grids, sources or other means [34] consumes the largest fraction of the
total grid generation time. Unstructured grid generators based on the AFT may be parallelized
by invoking distance arguments, i.e. the introduction of a new element only a�ects (and is
a�ected by) the immediate vicinity. This allows for the introduction of elements in parallel,
provided that su�cient distance lies between them.
Several years ago, the author and his colleagues introduced a parallel AFT based on the

subdivision of the background grid [17; 19] While used for some demonstration runs, this
scheme was not general enough for a production environment. The background grid had to
be adapted in order to be su�ciently �ne for a balanced workload. As only background grid
elements covering the domain to be gridded were allowed, complex in=out tests had to be
carried out to remove re�ned elements lying outside the domain to be gridded. Furthermore,
element size speci�ed at CAD entities could not be ‘propagated’ into the domain, as is the
case in the scalar AFT, disabling an option favoured by many users and rendering many grid
generation data sets unusable. The otherwise positive experience gained with this parallel AFT
prompted the search for a more general parallel AFT. The key requirement was a parallel AFT
that changes the current, evolved and mature scalar AFT as little as possible, while achieving
signi�cant speedups on common parallel machines. This implies that the parallelism should
be applied at the level of the current front, and not globally.

2. PARALLEL GRIDDING SCHEME

The advancing front technique attempts to introduce an element at a time into an as yet un-
gridded domain by eliminating the face generating the smallest new element from the front
[28; 29]. Given that the introduction of an element only a�ects its immediate neighbourhood,
one could, in principle, introduce many elements at the same time, provided they are suf-
�ciently far apart. A convenient way of delimiting the possible zones where elements may
be introduced by each processor is via boxes. These boxes may be obtained in a variety of
ways, i.e. via bins, binary recursive trees, or octrees. We have found the octree to be the best
of these possibilities, particularly for grids with a large variation of element size. In order
to recover a parallel gridding procedure that resembles closely the advancing front technique
on scalar machines, only the boxes covering the active front in regions where the smallest
new elements are being introduced are considered. After these boxes have been �lled with
elements, the process starts anew: a new octree is built, new boxes are created and meshed
in parallel. The procedure is summarized schematically for a 2-D case in Figure 1.
At the end of each parallel gridding pass, each one of the boxes gridded can have an internal

boundary of faces. For a large number of boxes, this could result in a very large number of
faces for the active front. This problem can be avoided by shifting the boxes slightly, and
then regridding them again in parallel, as shown in Figure 2. This simple technique has the
e�ect of eliminating almost all of the faces between boxes with a minor modi�cation of the
basic parallel gridding algorithm.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:663–678
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Figure 1. Parallel grid generation.

If we de�ne as dmin the minimum element size in the active front, and as smin the minimum
box size in which elements are to be generated, the parallel AFT proceeds as follows:

WHILE: There are active faces left:
Form an octree with minimum octant size smin for the active points;
Retain the octants that have faces that will generate elements of size dmin to cl · dmin;
If too many octants are left: agglomerate them into boxes;
DO ISHFT=0,2:
IF: ISHFT.NE.0:
Shift the boxes by a preset amount;

ENDIF
Generate, in parallel, elements in these boxes, allowing only elements up to a
size of cl · dmin;

ENDDO
Increase dmin = 1:5 ∗ dmin, smin = 1:5 ∗ smin;

ENDWHILE

The increase factor allowed is typically in the range cl = 1:5–2.0. The shift vectors are
given by

s = �s(1; 1; 1); �s = ±min(0:5 ∗ smin; 2:0 ∗ dmin)

We remark that the octree used to compute the boxes for parallel grid generation is very coarse
compared to the element size speci�ed by the user. The edge-length of the �nest octree box
is of the order of 20–50 times the speci�ed element size. This implies that its construction is
very fast, and can be accomplished on a single processor without discernable CPU penalty.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:663–678
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Figure 2. Shift and regrid technique. Figure 3. Estimation of volume to be gridded.

3. WORK ESTIMATION AND BALANCE

The procedure outlined above will work optimally if each box requires approximately the
same CPU time to complete its grid. This implies that a good work estimate should be
provided. Given that the boxes are not body conforming, even for uniform grids the volume
to be gridded can vary drastically from box to box. A balanced workload can be obtained by
starting with many boxes, estimating the work to be done for each of them, and then gridding
in parallel groups of boxes with similar workload.
The volume to be gridded is estimated by the marching cubes procedure shown schemat-

ically in Figure 3. Given the dimensions of the box, and the list of active faces, the box is
�rst subdivided into voxels (i.e. small cubes). In a �rst pass over the faces, the voxels cut
by faces are marked as ‘inside the domain’, and an average normal is computed for each
cut voxel. This normal information is used in a subsequent pass over the voxels in order to
mark the neighbours of cut voxels as either inside or outside the domain to be gridded. The
remaining voxels are then marked as inside or outside in several sweeps over the voxels.
These sweeps are carried out until no further voxels can be marked. Finally, a work estimate
is obtained by summing the expected number of elements in each of the voxels marked as
inside the domain to be gridded. This work estimation procedure is done in parallel.
Given the estimated work in each of the boxes, the load is balanced in such a way that

each processor receives a similar amount of work. The assumption is made that the number of
boxes is always larger than the number of processors. Should this not be the case, the boxes
are subdivided further (8 new boxes for each box). If any given box has a work estimate that
lies above the average work per processor, this box is also subdivided further. This ‘greedy’
work balancing algorithm may be summarized as follows:

(a) Obtain a minimum nr. of active boxes:

WHILE: The number of boxes is smaller than the number of processors:
Subdivide boxes (1:8);

ENDWHILE

(b) Balance the work:

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:663–678
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WHILE: Work unbalanced
Estimate, in parallel, the work for each box;
Obtain average work per processor;
IF: A box has a work estimate above average:
Subdivide it further (1:8) and balance again;
ENDIF
Attempt to group boxes in such a way that the work in each group is close to average;
IF: Good work balance impossible:
Subdivide boxes with highest work estimate (1:8) and balance again;
ENDIF

ENDWHILE

In many instances, boxes within a group will share a common face. In order to avoid the (un-
necessary) buildup of many faces at the borders of boxes, an attempt is made to agglomerate
these neighbouring boxes within groups. This is done recursively by checking, for any pair of
boxes, if two of the dimensions are the same and the boxes are coincident in the remaining
dimension. If so, the boxes are merged. Boxes are merged recursively, until no pair of boxes
passes the test outlined above.
It was found that the procedure outlined above can sometimes underestimate the number

of elements actually generated by each processor. This is particularly the case for complex
geometries or problems with many merging fronts. It was found that the best way of dealing
with this underestimation of work was to set a limit on the number of elements generated per
processor. If this maximum number of elements estimated is exceeded, the processor returns
to the main program with the current front, and the work is redistributed again.

4. MESH IMPROVEMENT

After the generation of the mesh using the parallel advancing front technique has been com-
pleted, the mesh quality is improved by a combination of several algorithms, such as:

(a) Diagonal swapping,
(b) Removal of bad elements, and
(c) Laplacian smoothing.

4.1. Diagonal swapping

Diagonal swapping attempts to improve the quality of the mesh by reconnecting locally the
points in a di�erent way. Examples of possible 3-D swaps are shown in Figures 4 and 5.
The optimality criterion used is the one proposed by George [40].

Q=
hmaxS
V

where hmax; S and V denote the maximum edge length, total surface area and volume of
a tetrahedron. The number of cases to be tested can grow factorially with the number of
elements surrounding an edge. Figure 6 shows the possibilities to be tested for 4, 5 and 6
elements surrounding an edge.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:663–678
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Figure 4. Diagonal swap case 2:3. Figure 5. Diagonal swap case 6:8.

Figure 6. Swapping cases.

Given that these tests are computationally intensive, considerable care is required when
coding a fast diagonal swapper. Techniques that were used in the present implementation
include:

(i) Treatment of bad (Q¿Qtol), untested elements only;
(ii) Processing of elements in an ordered way, starting with the worst (highest chance of

reconnection);
(iii) Rejection of bad combinations at the earliest possible indication of worsening quality;
(iv) Marking of tested and unswapped elements in each pass.

As stated before, the computationally intensive part of any diagonal swapping is sifting through
all possibilities in order to �nd a better local point connectivity. One observes that a very
large number of tests are required to obtain an improvement. This implies that parallelizing
only the checking portion of a diagonal swapper, which can easily be done as no swapping
actually occurs, will yield very good speedups. The parallel swapper can then be summarized
as follows:

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:663–678
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Figure 7. Removal of element.

WHILE: There are bad, untested elements in the heap:
Check the worst elements in parallel;
Reconnect if possible, and the neighbouring elements have not been reconnected
(scalar, integer);
Remember swapped elements;

ENDWHILE

4.2. Removal of bad elements

A straightforward way to improve a mesh containing bad elements is to get rid of them. For
tetrahedral grids this is particularly simple, as the removal of an internal edge does not lead to
new element types for the surrounding elements. Once the bad elements have been identi�ed
(in parallel), they are compiled into a list and interrogated in turn. An element is removed
by collapsing the points of one of the edges, as shown in Figure 7 for a set of triangles in
2-D.
This operation also removes all the elements that share this edge. It is advisable to make a

check which of the points of the edge should be kept: point 1, point 2, or a point somewhere
on the edge (e.g. the mid-point). This implies checking all elements that contain either point
1 or point 2. This procedure of removing bad elements is simple to implement and relatively
fast. On the other hand, it will not tend to improve the overall quality of the mesh. It is
therefore used mainly in a pre-smoothing or pre-optimization stage, where its main function
is to eradicate elements of very bad quality from the mesh.

4.3. Laplacian smoothing

A number of smoothing techniques are lumped under this name. The edges of the triangulation
are assumed to represent springs. These springs are relaxed in time using an explicit time
stepping scheme, until an equilibrium of spring-forces has been established. Because ‘globally’
the variations of element size and shape are smooth, most of the non-equilibrium forces are
local in nature. This implies that a signi�cant improvement in mesh quality can be achieved
rather quickly. The force exerted by each spring is proportional to its length and along its
direction. Therefore, the sum of the forces exerted by all springs surrounding a point can be
written as

fi = c
nsi∑

j=1
(xj − xi)

where c denotes the spring constant, xi the co-ordinates of the point, and the sum ex-
tends over all the points surrounding the point. The time-advancement for the co-ordinates is
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accomplished as follows:

�xi = �t
1
nsi
fi

At the surface of the computational domain, no movement of points is allowed, i.e. �x = 0.
Usually, the timestep (or relaxation parameter) is chosen as �t = 0:8, and 5–6 timesteps
yield an acceptable mesh. The parallelization of the Laplacian smoothing is similar to that of
any other �eld solver. The loops over the elements=edges are coloured so that cash misses
are minimized, pipelining does not lead to memory contingencies and cache-line overwrite
is avoided [41]. The application of the Laplacian smoothing technique will yield an overall
improvement of grid quality, but can result in inverted or negative elements. These negative
elements are eliminated. It has been found advisable to remove not only the negative elements,
but also all elements that share points with them. This element removal gives rise to voids or
holes in the mesh, which are regridded using the advancing front technique. Another possible
option is to check for negative elements while smoothing, never allowing a point movement
that would result in negative elements. Our experience has been that for the majority of cases,
it is faster to use a very simple smoother and to regrid a few holes with negative or small
elements than to check at every instant for element quality.

5. SURFACE GRIDDING

For a scalar machine, the CPU required to generate the surface grids is small in comparison
to that of the 3-D volume mesh. This situation changes as soon as the number of processors
is increased. It was found that for some of the cases shown below, surface gridding required
more than 25 per cent of the CPU time once the number of processors increased beyond 16.
The situation deteriorates even further if one considers meshing surfaces that are de�ned in
a discrete manner, i.e. the re-triangulation of a triangular mesh [42]. Here, the interpolations
and checks required lead to a considerable increase in CPU as compared to planar surfaces
or Coon’s patches [29]. In order to achieve optimum scalability, the generation of surface
grids was also parallelized. The approach taken here is the simplest possible: generate each
surface independently on a processor. This approach will lead to load imbalances if some
of the surfaces have considerably more elements than others, but its simplicity and ease of
implementation make it very appealing.

6. IMPLEMENTATION

The procedure described above was implemented using the shared memory (i.e. c$doacross)
paradigm on the SGI Origin 2000. Although this is a distributed-memory machine, it can
be programmed as a shared-memory machine. This choice was adopted for the following
reasons:

• Coding for a shared-memory environment is much simpler than for a distributed-memory
environment. The operating system takes care of most of the inherent message passing,
communication conicts, etc., relieving the user from this task.
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Figure 8. Performance of FEFLO on di�erent
platforms.

Figure 9. Cube: speedups obtained.

• The production codes used in conjunction with the grid generator scale well using the
shared-memory paradigm [41]. Even on 32 processors, more than 50% of the theoretical
speedup is achieved. Figure 8 shows the speedups obtained for a steady compressible ow
problem using an edge-based, upwind solver on di�erent computer platforms. Note that the
speedups obtained using the shared and distributed memory paradigms are comparable.

• For the last years, all of the large-scale production runs carried out by the author and his
colleagues [13; 15; 16; 43] were performed on these machines, using the shared-memory
paradigm.

• The SGI Origin 2000 has become the dominant platform within the High-Performance
Computing sites in the U.S.; at present, there are more SGI Origin 2000 processors than
those of all other vendors combined; the expectation is that this trend will not change
drastically in the foreseeable future.

While some of the reasons stated above have to do with particular circumstances, the basic
ideas of the proposed algorithms are general, and may be coded within a distributed memory
framework with explicit message passing.

7. EXAMPLES

The proposed parallel advancing front scheme has been used extensively over the last year
in a production environment. We include a sampling of geometries gridded, highlighting the
characteristics of the proposed scheme. The timings for all examples include surface gridding,
mesh generation and mesh improvement, i.e. they can be considered representative of the
timings obtained in a production environment. All timings were obtained on SGI Origin 2000
servers.
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Figure 10. (a) Aneurism; (b) Aneurism: speedups obtained.

7.1. Cube

This academic example is included here to see how the procedure works in the ‘best case
scenario’. The unit cube is to be gridded with a uniform mesh of approximately 1 million
tetrahedra. Although this is not a large grid, the timings shown in Figure 9 are illustrative.

7.2. Aneurism

This example is taken from a hemodynamic analysis recently conducted for this particular
geometry. The outline of the domain, grid, as well as some sample results are shown in
Figure 10(a).
The �nal uniform mesh had approximately 2.7 million tetrahedra. The speedup obtained

is shown in Figure 10(b). As one can see, the parallel mesher was more e�cient for this
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Figure 11. (a) Garage: wireframe; (b) Garage: speedups obtained.

�ner grid than for the unit cube, even though the volume to be gridded in each box can vary
widely due to geometric features.

7.3. Garage

This example was taken from a blast simulation recently carried out for an o�ce complex.
The outline of the domain is shown in Figure 11(a).
The �nal uniform mesh had approximately 9.2 million tetrahedra. The speedup obtained is

shown in Figure 11(b). As before, the parallel mesher was more e�cient for this �ner grid
than for the unit cube, even though the volume to be gridded in each box can vary widely
due to geometric features.

7.4. Tysons Corner

This example was taken from a dispersion simulation recently carried out for this well-known
shopping center. The outline of the domain is shown in Figures 12(a) and (b).
The �nal mesh had approximately 16 million tetrahedra. The smallest and largest speci�ed

element side lengths were 230 and 1400 cm, respectively. The speedup obtained is shown in
Figure 12(c).

7.5. Space shuttle

This example is included here because it is typical of many aerodynamic data sets. The outline
of the domain is shown in Figure 13(a).
The surface triangulation of the �nal mesh, which had approximately 4 million tetrahedra,

is shown in Figure 13(b). The smallest and largest speci�ed element side lengths were 5.08
and 467 cm, respectively, i.e. an edge-length ratio of approximately 1 : 102 and a volume ratio
of 1 : 106. The spatial variation of element size was speci�ed via approximately 200 sources
[34]. Figure 13(c) shows the boxes used for parallel meshing as the element size increases
during the grid generation process.
The speedup obtained is shown in Figure 13(d). Finally, the results of an Euler run for

an incoming Mach number of M =2:0 and angle of attack of �=1:1◦ are shown in Figure
13(e).
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Figure 12. (a) Tysons Corner: wireframe (W); (b) Tysons Corner: wireframe (N);
(c) Tysons Corner: speedups obtained.

7.6. Pilot ejecting from F18

Problems with moving bodies often require many remeshings during the course of a simulation.
The case shown here was taken from a pilot ejection simulation recently conducted. The
outline of the domain is shown in Figure 14(a).
The surface triangulation of the �nal mesh, which had approximately 14 million tetrahedra,

is shown in Figure 14(b). The smallest and largest speci�ed element side lengths were 0.65
and 250 cm, respectively, i.e. an edge–length ratio of approximately 1 : 4× 102 and a volume
ratio of 1 : 5:6× 107. The spatial variation of element size was speci�ed via approximately 110
sources [34]. The speedup obtained for two di�erent grid sizes is displayed in Figure 14(c).
As could be seen from the previous examples, the grid generator certainly scales well with

the number of processors. As with many other areas where parallel processing is being
attempted, scalability improves with the amount of work required. The larger the grids, the
better the scalability. One can also observe that for each case the ‘scalability slope’ is
somewhat di�erent, ranging from almost perfect for the garage to a 1 : 3 asymptote for the
shuttle. Closer inspection revealed that for the shuttle, although the �nal mesh contains 4 mil-
lion elements, the number of elements created in each parallel pass over increasing element
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Figure 13. (a) Space shuttle: outline of domain; (b) Space shuttle: surface mesh; (c) Space shuttle:
gridding boxes; (d) Space shuttle: speedups obtained; (e) Space shuttle: surface pressures.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:663–678



676 R. L �OHNER

Figure 14. (a) F18 pilot ejection: outline of domain; (b) F18 pilot ejection: surface mesh
(closeup); (c) F18 pilot ejection: speedups obtained.

sizes was rather modest, never exceeding 0.5 million elements. Thus, the inherent parallelism
of this problem is rather low.

8. CONCLUSIONS AND OUTLOOK

A parallel advancing front scheme has been developed. The domain to be gridded is �rst
subdivided spatially using a relatively coarse octree. Boxes are then identi�ed and gridded in
parallel. A scheme that resembles closely the advancing front technique on scalar machines
is recovered by only considering the boxes of the active front that generate small elements.
The procedure has been implemented on the SGI Origin class of machines using the shared
memory paradigm. Timings for a variety of cases show speedups similar to those obtained
for ow codes. The procedure has been used to generate grids for a large variety of cases,
and is nearing production maturity.
Current work is focusing on improved work prediction algorithms, as it is found that in

going to a larger number of processors, any small imbalance incurs a heavy CPU penalty.
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