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Abstract

A multistep advective predictor has been developed within the context of projection schemes for incompressible

flows. The key idea is to integrate with schemes of different order the different regions of the domain. In regions where

advection dominates, multistepping yields a considerable benefit. In those regions where viscosity dominates, the

scheme reverts naturally to the original one-step scheme. Several examples show savings of the order of 1:3–1:10 as

compared with standard projection schemes, even for transient problems. Given that these benefits can be achieved with

a very modest change in existing codes, the proposed multistage advective predictor should be widely applicable.
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1. Introduction

Among the flows that are of importance and interest, the category of low Mach-number or incom-

pressible flows is by far the largest. Most of the products we use on a daily basis have been incompressible
flows during their manufacture (polymer extrusion, melts, a large number of food products, etc.). The air

which surrounds us can be considered, in almost all instances, as an incompressible fluid (airplanes flying at

low Mach-numbers, flows in and around cars, vans, buses, trains and buildings). The same applies to water

(ships, submarines, torpedoes, pipes, etc.) and most biomedical liquids (e.g., blood). Given this large

number of possible applications, it is not surprising that numerical methods to simulate incompressible

flows have been developed for many years, as evidenced by an abundance of the literature [5,7,21].

In order to fix the notation, the equations describing incompressible, Newtonian flows are written as

v; t þ vrvþrp ¼ rlrv; ð1Þ
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r � v ¼ 0: ð2Þ

Here p denotes the pressure, v the velocity vector and both the pressure p and the viscosity l have been
normalized by the (constant) density q. For most of the applications listed above, the important physical

phenomena propagate with the advective timescales. We will therefore assume that the advective terms

require an explicit time integration. Diffusive phenomena typically occur at a much faster rate, and can/

should therefore be integrated implicitly. Given that the pressure establishes itself immediately through the

pressure-Poisson equation, an implicit integration of pressure is also required. The hyperbolic character of

the advection operator and the elliptic character of the pressure-Poisson equation have led to a number of

so-called projection schemes. The key idea is to predict first a velocity field from the current flow variables

without taking the divergence constraint into account. In a second step, the divergence constraint is en-
forced by solving a pressure-Poisson equation. The velocity increment can therefore be separated into an

advective–diffusive and pressure increment

vnþ1 ¼ vn þ Dva þ Dvp ¼ v� þ Dvp: ð3Þ

For an explicit (forward Euler) integration of the advective terms, with implicit integration of the viscous
terms, one complete timestep is given by:

Advective–diffusive prediction: vn ! v�

1

Dt

�
� hrlr

�
v�ð � vnÞ þ vn � rvn þrpn ¼ rlrvn: ð4Þ

Pressure correction: pn ! pnþ1

r � vnþ1 ¼ 0; ð5Þ
vnþ1 � v�

Dt
þrðpnþ1 � pnÞ ¼ 0; ð6Þ

which results in

r2ðpnþ1 � pnÞ ¼ r � v�
Dt

: ð7Þ

Velocity correction: v� ! vnþ1

vnþ1 ¼ v� � Dtrðpnþ1 � pnÞ: ð8Þ

At steady state, v� ¼ vn ¼ vnþ1 and the residuals of the pressure correction vanish, implying that the result

does not depend on the timestep Dt. h denotes the implicitness-factor for the viscous terms (h ¼ 1: first

order, fully implicit, h ¼ 0:5: second order, Crank–Nicholson). The forward Euler integration of the ad-
vection terms imposes rather severe restrictions on the allowable timestep. For this reason, alternative

explicit integration schemes have been used repeatedly [22]. Many authors have used multilevel schemes,

such as the second-order Adams–Bashforth scheme. The problem with schemes of this kind is that they use

the values at the current and previous timestep, which makes them awkward in the context of adaptive

refinement, moving meshes, and local or global remeshing. For this reason, single step schemes are pref-

erable. Lax–Wendroff or Taylor–Galerkin schemes offer such a possibility, but in this case the result of

steady-state calculations depends (albeit weakly) on the timestep (or equivalently the Courant-number)

chosen. For this reason, single step schemes whose steady-state result does not depend on the timestep are
preferable. Projection schemes of this kind (explicit advection with a variety of schemes, implicit diffusion,
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pressure-Poisson equation for either the pressure or pressure increments) have been widely used in con-

junction with spatial discretizations based on finite differences [1–3,13], finite volumes [10], and finite ele-

ments [4,6,11,12,14–18,20].
2. Multistep discretization of advective terms

The scheme given by Eqs. (4)–(8) is, at best, of second order in time. It is surprising to note that ap-

parently no attempt has been made to use multistage explicit schemes to integrate the advective terms with

higher order or to accelerate the convergence to steady state. This may stem from the fact that the implicit

integration of the viscous terms apparently impedes taking the full advantage multistage schemes offer for
the Euler limit of no viscosity. An interesting alternative, proposed here, is to integrate with different

timestepping schemes the different regimes of flows with highly variable cell Reynolds-number

Reh ¼
qjvjh
l

; ð9Þ

where h is the mesh size. For the case Reh < 1 (viscous dominated), the accuracy in time of the advective

terms is not so important. However, for Reh > 1 (advection dominated), the advantages of higher order

time-marching schemes for the advective terms are considerable, particularly if one considers vortex
transport over large distances. Dahlquist�s theorem states that no unconditionally stable, implicit one-step

scheme can be of order higher than two (this being the Crank–Nicholson scheme). However, explicit

schemes of the Runge–Kutta type can easily yield higher order timestepping. A k-step, time-accurate

Runge–Kutta scheme or order k for the advective parts may be written as

vi ¼ vn þ aicDt
�
� vi�1 � rvi�1 �rpn þrlrvi�1

�
; i ¼ 1; k � 1; ð10Þ

1

Dt

�
� hrlr

�
vk
�

� vn
�
þ vk�1 � rvk�1 þrpn ¼ rlrvk�1: ð11Þ

Here, the ai are the standard Runge–Kutta coefficients ai ¼ 1=ðk þ 1� iÞ. As compared to the original

scheme given by Eq. (4), the k � 1 stages of Eq. (10) may be seen as a predictor (or replacement) of vn by

vk�1. The original right-hand side has not been modified, so that at steady-state vn ¼ vk�1, preserving the

requirement that the steady-state be independent of the timestep Dt. The factor c denotes the local ratio of

the stability limit for explicit timestepping for the viscous terms versus the timestep chosen. Given that the

advective and viscous timestep limits are proportional to

Dta �
h
jvj ; Dtv �

qh2

l
; ð12Þ

we immediately obtain

c ¼ Dtv
Dta

� qjvjh
l

� Reh; ð13Þ

or, in its final form

c ¼ minð1;RehÞ: ð14Þ

In regions away from boundary layers, this factor is O(1), implying that a high-order Runge–Kutta scheme

is recovered. Conversely, for regions where Reh ¼ Oð0Þ, the scheme reverts back to the original one (Eq.
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(4)). Note also that the very tempting option of ignoring the pressure and viscous terms in Eq. (10) leads to

steady-state results are not independent of the timestep.

Besides higher accuracy, an important benefit of explicit multistage advection schemes is the larger
timestep one can employ. The increase in allowable timestep is roughly proportional to the number of

stages used (and has been exploited extensively for compressible flow simulations [9]). Given that for an

incompressible solver of the projection type given by Eqs. (4)–(9) most of the CPU time is spent solving the

pressure-Poisson system Eq. (5), the speedup achieved is also roughly proportional to the number of stages

used.
3. Examples

The multistage advection scheme described above was implemented in FEFLO, an edge-based finite

element solver using linear elements [16], and was tested on a variety of examples, a few of which are in-

cluded here. We remark from the outset that the main aim of the comparison is the relative speed of the

different schemes. Given that the discretization of fluxes is the same for one-stage and multistage explicit

advection, no change in results occurs for steady flow cases. The changes for time-accurate calculations are

shown for the respective cases. Detailed comparison to experiments, mesh refinement studies, etc. of the

basic scheme used in FEFLO may be found in [6,11,12,14,16,20].
For the steady flow cases, local timesteps were used to accelerate convergence. Moreover, the Courant-

numbers cited in the comparisons are the largest ones that still yielded stable solutions, and were all based

solely on the advective terms (as stated before, the viscous terms are always integrated implicitly).

All runs were performed on a PC with an Intel-P4 processor running at 2.1 GHz with 1 Gbyte of RAM

using the Intel Fortran compiler under Red Hat Linux.

3.1. NACA0012

The first example considered is the classic NACA0012 wing at a ¼ 5� angle of attack. This is a steady,

inviscid case (Euler). Figs. 1(a) and (b) show the surface mesh employed, as well as the surface pressures

obtained. The mesh consisted of nelem¼368,872 elements and npoin¼68,321 points.
Each of these runs was considered converged when the change in lift, normalized by the Courant-

number, was below tl ¼ 10�3 for five subsequent timesteps. We have found such a measure to be a better

indicator of convergence than residuals, as this allows the user to state clearly which degree of accuracy is

desired. Figs. 1(c) and (d) show the convergence history for the lift and residuals respectively. One can see

that the multistage advection schemes converge significantly faster. The timings obtained have been

summarized in Table 1. Here, as in the subsequent tables, the notation Ex-k refers to explicit advection with

a k-state Runge–Kutta scheme (Eq. (10)). The timings indicate that this faster convergence also translates

into a marked reduction in CPU requirements.

3.2. Wigley Hull

The second example considered is the well-known Wigley Hull, given by the analytical formula

y ¼ 0:5 � B � 1
�

� 4x2
�
� 1

�
� z

D

� �2
�
;

where B and D are the beam and the draft of the ship at still water. The case considered here, which had

D ¼ 0:0625, B ¼ 0:1, has been studied before by L€ohner et al. [16]. This is a steady, inviscid case (Euler)



Fig. 1. (a) and (b) NACA 0012: surface mesh and pressure. (c) and (d) NACA 0012: convergence history for lift and re-

siduals.
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with free surface (no mesh movement, i.e., geometric free surface conditions). Figs. 2(a) and (b) show the

surface mesh employed (the volume mesh had nelem¼360,247, npoin¼67,785), as well as the free

surface obtained.

Figs. 2(c) and (d) show the convergence history for the wavedrag and residuals respectively. The

wavedrag coefficient obtained for the present mesh was cw ¼ 0:532� 10�4, and compares favourably with

the experimental data of cw ¼ 0:567� 10�4 [8] and the moving mesh result of cw ¼ 0:607� 10�4 [16]. One
Table 1

NACA-0012

Scheme CFL ntime CPU (s) Speedup

Ex 1 0.1 540 579 1.00

Ex 2 0.4 135 193 3.00

Ex 3 0.6 90 157 3.69

Ex 5 0.8 70 166 3.48



Table 2

Wigley Hull

Scheme CFL ntime CPU (s) Speedup

Ex 1 0.1 1910 3232 1.00

Ex 2 0.4 350 890 3.63

Ex 3 0.6 235 778 4.15

Table 3

von Karman vortex street

Scheme CFL Dt ntime CPU (s) Speedup

Ex 1 0.1 O(0.002) 9961 12,929 1.00

Ex 2 0.4 O(0.008) 2490 4194 3.08

Ex 3 0.6 O(0.012) 1660 3296 3.92

Ex 5 0.8 O(0.016) 1245 3201 4.03

Ex 5 1.2 O(0.025) 830 1546 8.36

Ex 5 1.6 O(0.033) 623 1114 11.60

Ex 5 1.8 O(0.037) 554 995 12.99

Fig. 2. (a) and (b) Wigley Hull: surface mesh and free surface elevation. (c) and (d) Wigley Hull: convergence history for lift and

residuals.
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Fig. 3. (a) von Karman vortex street: surface mesh. (b) von Karman vortex street: abs(velocity) in plane. (c) von Karman vortex street:

lift history.
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can see that, as before, the multistage advection schemes converge significantly faster. The timings, sum-

marized in Table 2, confirm a considerable speedup.

3.3. von Karman Vortex street

The third example considered is also a well-known benchmark case [19]. A circular cylinder is suspended
in a uniform stream of incompressible fluid. The separation at the back of the cylinder generates the so-

called von Karman vortex street, whose characteristics depend on the Reynolds number
Fig. 4. (a) and (b)Ahmed body: surfacemesh and pressure. (c) Ahmed body: surface speed. (d) and (e) Ahmed body: drag and lift history.



Table 4

Ahmed body

Scheme CFL Dt ntime CPU (s) Speedup

Ex 1 0.1 O(0.0003) 3362 12,047 1.00

Ex 2 0.4 O(0.0012) 847 3785 3.18

Ex 3 0.6 O(0.0018) 563 3224 3.74

Ex 5 1.0 O(0.0030) 339 2840 4.24

Ex 5 1.2 O(0.0035) 282 2420 4.97
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Re ¼ qV1D
l

;

where D denotes the diameter of the cylinder. This is essentially a 2-D example, but was run with the 3-D

solver. A mesh of nelem¼113,056, npoin¼23,228 was used for the simulation, with special

placement of points in the vicinity of the cylinder. The parameters were chosen such that the resulting

Reynolds number was Re ¼ 190.

Figs. 3(a) and (b) show the surface grid and the absolute value of the velocity in a cut plane. In order to

compare the different schemes, the run was started impulsively using the one-stage explicit-advection

scheme. The run was continued until the vortex street was fully developed. Starting from this (restart) state,

the different schemes were exercised and compared to one another. The lift of the cylinder as a function of
time for the original explicit-advection projection scheme and the multistage advection schemes is displayed

in Fig. 3(c), and Table 3 summarize the results.

Observe that for all the explicit-advection multistep schemes, the results are almost identical. The

Strouhal number obtained is approximately S ¼ 0:2, in good agreement with experiments [19].

3.4. Ahmed car body

The fourth example considered is high Reynolds-number flow past the so-called Ahmed body. This is

a standard test case for external car aerodynamics. The parameters were set to: q ¼ 1:0, v ¼ ð1; 0; 0Þ,
l ¼ 2:33� 10�7, L ¼ 1, which implies a Reynolds-number of Re ¼ 4:29� 106. The k � � turbulence

model was used. The resulting flow is quasi-steady and shows the development of a vortex train behind

the body. Figs. 4(a)–(c) show the surface mesh employed, as well as the pressure and velocity field
obtained. Note the boundary layer mesh (the complete mesh consisted of (nelem¼420,245, npoin¼
77,279).

This unsteady problem was solved using the different explicit schemes. Figs. 4(d) and (e) show the forces

computed, and Table 4 summarizes the runs. Note that the drag and lift curves are not identical for all

schemes, but that the differences are small. This is to be expected for the k � � turbulence model, where

small changes can have a pronounced effect as the solution evolves. The speedups are not as high as in the

case of the laminar cylinder flow, as a significant amount of CPU time is spent updating the k � � equations.
Nevertheless, speed-ups of the order of O(1:4) are realized.
4. Conclusions

A multistep advective predictor has been developed within the context of projection schemes for

incompressible flows. The key idea is to integrate with schemes of different order the different regions of the

domain. In those regions where advection dominates, multistepping yields a considerable benefit. In those

regions where viscosity dominates, the scheme reverts naturally to the original one-step scheme.
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Several examples show savings of the order of 1:3–1:10 as compared with standard projection schemes,

even for transient problems. Given that these benefits can be achieved with a very modest change in existing

codes, the proposed multistage advective predictor should be widely applicable.
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