
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
Published online 20 August 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cnm.1160
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING

Cache-efficient renumbering for vectorization

Rainald Löhner∗,†

CFD Center, Department of Computational and Data Science, M.S. 6A2, College of Sciences,
George Mason University, Fairfax, VA 22030-4444, U.S.A.

SUMMARY

A renumbering strategy for field solvers based on unstructured grids that avoids memory contention and
minimizes cache-misses is described. Compared with usual colouring techniques, the new renumbering
strategy reduces the spread in point-data access for edge-based solvers by more than an order of magnitude.
The technique is particularly suited for multicore, cache-based machines that allow for vectorization or
pipelining. Copyright q 2008 John Wiley & Sons, Ltd.

Received 11 December 2007; Revised 21 June 2008; Accepted 21 June 2008

KEY WORDS: grid renumbering; unstructured grids; vector machines; multicore machines; cache

1. INTRODUCTION

A considerable percentage of field solvers is presently run on computers whose microchips have
a cached memory and allow for vectorization (also known as pipelining). In order to enable
vectorization, a point in any given edge/element/face-loop should only be accessed once. This
requirement can lead to a considerable jump in memory access for points (and their associated
data) when looping through edges/elements/faces, leading to an increase in cache-misses and
the associated decrease in performance. Given the rise in available memory, the extensive use of
shared memory and the natural urge to solve ever larger problems, these problems are expected to
increase in the future. The present paper presents a renumbering technique to mitigate the increase
in memory access jumps.

2. RENUMBERING TO AVOID CACHE-MISSES

Consider the following loop over edges that typifies the central loop of many field solvers based
on unstructured grids [1–6], written in Fortran pseudo-code and shown schematically in Figure 1:
Loop 1

do 1600 iedge=1,nedge
ipoi1=lnoed(1,iedge)
ipoi2=lnoed(2,iedge)
redge=geoed(iedge)*(unkno(ipoi2)-unkno(ipoi1))
rhspo(ipoi1)=rhspo(ipoi1)+redge
rhspo(ipoi2)=rhspo(ipoi2)-redge

1600 continue

∗Correspondence to: Rainald Löhner, CFD Center, Department of Computational and Data Science, M.S. 6A2,
College of Sciences, George Mason University, Fairfax, VA 22030-4444, U.S.A.

†E-mail: rlohner@gmu.edu

Copyright q 2008 John Wiley & Sons, Ltd.

CACHE-EFFICIENT RENUMBERING FOR VECTORIZATION 629

A right-hand side (RHS), or residual, is formed at the edge-level (redge) by gathering informa-
tion from a vector of point unknowns (unkno) and performing a series operations on them. This
edge-RHS is then added to a global point-RHS (rhspo). The array lnoed stores the end-points
of each edge. Similar loops are obtained for element- or face-based solvers, and what follows is
equally applicable to them.

If cache-misses are a concern, then it is clear that the storage locations for the required point
information stored in the arrays unkno and rhspo should be as close as possible in the memory
when required by an edge. At the same time, as the loop progresses through the edges, the
point information should be accessed as uniformly as possible. This may be achieved by first
renumbering the points using a bandwidth-minimization technique (e.g. Reverse Cuthill McKee [7],
wavefront [8], recursive bisection, space-filling curve, etc.), and subsequently renumbering the
edges according to the minimum point number on each edge [8, 9]. This will result in a near-
optimal access of the memory as shown in Figure 2. All of these renumbering algorithms are of
complexity O(N) or at most O(N log N), and are well worth the effort.

ipoi1 ipoi2

ipoi1 ipoi2

ipoi1 ipoi2

+

Figure 1. Basic edge-loop.

1

nedge

1 npoin

Figure 2. Point access in edge-loop.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

630 R. LÖHNER

3. AVOIDANCE OF MEMORY CONTENTION

Pipelining or vectorization offers the possibility of substantial performance gains on any kind
of system. While previously restricted to so-called vector machines, such as those manufactured
by CRAY, Convex, NEC, Fujitsu or Hitachi, the concept has migrated to current microchips,
such as the Intel Xeon, Intel Itanium, AMD Opteron and IBM Power-series. In order to achieve
pipelining or vectorization, memory contention must be avoided. The enforcement of pipelining
or vectorization is then carried out using a compiler directive, as Loop 1, which becomes an inner
loop, still offers the possibility of memory contention. In this case, we would have

Loop 2

do 1400 ipass=1,npass
nedg0=edpas(ipass)+1
nedg1=edpas(ipass+1)

c$dir ivdep ! Pipelining directive
do 1600 iedge=nedg0,nedg1
ipoi1=lnoed(1,iedge)
ipoi2=lnoed(2,iedge)
redge=geoed(iedge)*(unkno(ipoi2)-unkno(ipoi1))
rhspo(ipoi1)=rhspo(ipoi1)+redge
rhspo(ipoi2)=rhspo(ipoi2)-redge

1600 continue
1400 continue
It is clear that in order to avoid memory contention, for each of the groups of edges (1600

loop), none of the corresponding points should be accessed more than once. Given that in order
to achieve good pipelining performance on current microchips, a relatively short vector length of
mvecl=16 or mvecl=32 is sufficient, one can simply start from the edge-renumbering obtained
in order to minimize cache-misses, and renumber it further into groups of edges that are 16 or 32
long and avoid memory contention [8, 9]. The most straightforward renumbering or ‘colouring’
realization is given by the following algorithm:

ledge(1:nedge)=0 ! initialize new edge number array
lpoin(1:npoin)=0 ! initialize point marking array
nenew=0 ! initialize new edge counter
npass=0 ! initialize edge pass counter
nedg0=1 ! initialize start edge

1000 continue ! open loop over the passes
npass=npass+1 ! update pass counter
nvecl=0 ! initialize current vector length
do 1200 iedge=nedg0,nedge
if(ledge(iedge).eq.0) then ! edge is unmarked

if(lpoin(lnoed(1,iedge)).ne.npass) then ! point 1 unused
if(lpoin(lnoed(2,iedge)).ne.npass) then ! point 2 unused

nenew=nenew+1 ! store edge
ledge(iedge)=nenew
lpoin(lnoed(1,iedge))=npass ! mark points
lpoin(lnoed(2,iedge))=npass
nvecl=nvecl+1 ! update vector counter
if(nvecl.eq.mvecl) goto 1201 ! desired vector length

endif
endif

endif
1200 continue
1201 continue

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

CACHE-EFFICIENT RENUMBERING FOR VECTORIZATION 631

edpas(npass)=nenew ! store pass counter
do 1400 iedge=nedg0,nedge
if(ledge(iedge).eq.0) goto 1401 ! edge is unmarked

1400 continue
1401 continue

nedg0=min(iedge,nedge)
if(nenew.ne.nedge) goto 1000 ! unrenumbered edges left

As before, this renumbering is of complexity O(N).

4. AVOIDANCE OF MEMORY CONTENTION AND CACHE-MISSES

The basic edge-renumbering technique outlined above has the disadvantage of not taking into
account the jumps in memory access for the second index. As the edges are numbered according to
ascending point numbers, the first index will lead to a monotonic indirect access of memory with
limited jumps, and hence low cache-misses. However, the second index can jump considerably. In
order to see how this happens, consider the portion of the 2-D mesh shown in Figure 3.

Some edges will access near-neighbour information on the current ‘line’, while others will access
near-neighbour information from the next ‘line’. For the case shown, the first vector group accesses
points along the ‘line’ i, i+1. When starting the second vector group, the only edge-connection
left for point i is i, j . However, the next edge in this group will use points i+1, i+2, producing
a large jump in the second index. In 3-D the situation is even worse, as we have hyperplanes, i.e.
a much higher jump in memory between neighbours. The aim is therefore to reduce the jumps as
much as possible in the second index.

Of the many algorithms that may be devised to achieve this, the following offers a good
compromise of simplicity and performance. The assumption is made that the edges have been
ordered according to points, i.e. the first edge-point (first index) increases monotonically as one
progresses through the edges. At the start of a new edge-group, the second point of the first
edge of the group must be taken. The aim is then to find as many edges as possible that avoid
memory contention, and at the same time minimize the jump in the second edge-point (second
index). As the edges have been ordered according to ascending first edge-point numbers, all second
edge-points for a given first edge-point can be tested immediately. The idea is then to keep the
second edge-point that minimizes the jump with respect to the first second edge-point of the vector
group. Interestingly, this by itself does not yield the expected reduction in jumps for the second
edge-points. The reason is that in many cases the edges that lead to no memory contention have
large jumps with respect to the second edge-point of the first edge in the vector group. Clearly,
this depends on the topology of the mesh and the renumbering technique chosen, but experience
with many cases indicates that it is quite common. The solution is to increase the search for
vector-group candidates to a multiple of the desired vector length (we have used four times the
desired vector length), and then select the best from these. This will lead to a larger range in
the values of the first points of the vector group. However, as will be seen from the examples,

1 1

2

2 2i+1i i+2 i+3

j+1 j+2 j+3j

k+1 k+2k

Figure 3. Edge-groups.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

632 R. LÖHNER

this increase is modest, and the reduction obtained for the second edge-point range more than
compensates for this increase. Although lengthier, we include the new renumbering algorithm here
for completeness.

ledge(1:nedge)=0 ! initialize new edge number array
lpoin(1:npoin)=0 ! initialize point marking array
nenew=0 ! initialize new edge counter
npass=0 ! initialize edge pass counter
nedg0=1 ! initialize start edge

1000 continue ! open loop over the passes
npass=npass+1 ! update pass counter
nvecl=0 ! initialize current vector length
nedgl=0 ! initialize local storage list
ipoi1=lnoed(1,nedg0) ! add the 1st edge
ipoi2=lnoed(2,nedg0)
nenew=nenew+1
nvecl=nvecl+1
ledge(nedg0)=nenew
lpoin(ipoi1)=npass
lpoin(ipoi2)=npass
if(nedg0.eq.nedge) goto 1201 ! renumbering complete
kpoi1=ipoi1
kvecl= 0
do 1200 iedge=nedg0+1,nedge
if(ledge(iedge).eq.0) then ! edge is unmarked

ip1=lnoed(1,iedge)
ip2=lnoed(2,iedge)
if(lpoin(ip1).ne.npass) then ! point 1 unused

if(lpoin(ip2).ne.npass) then ! point 2 unused
if(ip1.gt.kpoi1) then ! new 1st index

if(kvecl.eq.0) then ! new point
kpoi1=ip1 ! update new 1st index
kvecl= 1 ! initialize counter
ijum1=abs(ipoi1-ip1) ! initialize jumps
ijum2=abs(ipoi2-ip2)
iminl=iedge ! initialize min(jump) edge
ijmi1=ijum1
ijmi2=ijum2
ipmi1=ip1
ipmi2=ip2

else
nedgl=nedgl+1 ! already compared
ledgl(nedgl)=iminl ! transcribe best
lqual(nedgl)=ijmi2 ! transcribed quality
lpoin(ipmi1)=npass ! mark points
lpoin(ipmi2)=npass
kvecl=0 ! reset vector length

endif
else

kvecl=kvecl+1 ! point is known
ijum1=abs(ipoi1-ip1) ! compare
ijum2=abs(ipoi2-ip2)
if(ijum2.lt.ijmi2) then

iminl=iedge ! keep as better

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

CACHE-EFFICIENT RENUMBERING FOR VECTORIZATION 633

ijmi1=ijum1
ijmi2=ijum2
ipmi1=ip1
ipmi2=ip2

endif
endif

endif
endif

endif
if(nedgl.ge.mxedl) goto 1201 ! group is big enough

1200 continue
1201 continue

if(nedgl.eq.0) goto 1301 ! no edges in group
nvecl=min(mvecl,nedgl)
call iordv(nedgl,nvecl,lqual,leorl) ! get nvecl best
nene0=nenew reset start edge for new search
do 1300 iedgl=1,nvecl ! add the nvecl best
iedge=ledgl(leorl(iedgl))
nenew=nenew+1
ledge(iedge)=nenew

1300 continue
1301 continue

edpas(npass)=nenew ! store pass counter
do 1400 iedge=nedg0,nedge
if(ledge(iedge).eq.0) goto 1401 ! edge is unmarked

1400 continue
1401 continue

nedg0=min(iedge,nedge)
if(nenew.ne.nedge) goto 1000 ! unrenumbered edges left

As the local vector length is assumed small, the local ordering of edges (call iordv(...))
may be carried out by either using a simple O(nedgl*nvecl) exhaustive search, or any faster
ordering technique. For the examples shown below a heap-sort technique was used.

5. EXAMPLES

The renumbering strategies described were coded into FEFLO, an adaptive, edge-based finite
element code for the solution of compressible and incompressible flows [10].
5.1. NACA0012

The first example considered is the classic NACA0012 wing at �=5◦ angle of attack. This is a
steady, inviscid (Euler) case. A projection-type incompressible solver with upwind edge limiting
for the advective terms and 4th-order damping for the divergence constraint [9] is used. Figure 4(a)
and (b) shows the surface mesh employed, as well as the surface pressures obtained. Although the
mesh is rather coarse (nelem=370,514, npoin=68,664, nedge=451,187), it still allows
for a meaningful comparison of the different renumbering schemes.

Table I summarizes the average maximum jumps for the first and second points jump1, jump2
and total average jump between first and second points jmp12 in each vector group, as well as the
average edge-to-edge jumps for the first and second points jum1a, jum2a in each vector group.
As expected, the jumps increase with vector group size. As compared with the simple renumbering
technique, the new technique leads to a moderate increase in jumps for the first point (which is
low in any case) and a drastic decrease in jumps for the second point. This case was repeated
with a finer mesh (nelem=1,450,793, npoin=259,711, nedge=1,739,575), and the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

634 R. LÖHNER

Figure 4. (a,b) NACA 0012: surface mesh and pressure.

Table I. NACA0012 wing: Coarse mesh.

Method mvecl jump1 jump2 jum1a jum2a jum12

Original 16 23 2465 1.57 597 2500
Improved 16 79 282 5.27 63 1505
Original 32 55 2498 1.77 572 2534
Improved 32 183 412 5.91 70 1625
Original 64 123 2516 1.95 562 2585
Improved 64 410 630 6.52 83 1840

Table II. NACA0012 wing: Fine mesh.

Method mvecl jump1 jump2 jum1a jum2a jum12

Original 16 23 5708 1.56 1382 5757
Improved 16 79 516 5.25 115 3351
Original 32 54 5760 1.75 1331 5796
Improved 32 180 758 5.81 133 3535
Original 64 121 5780 1.94 1332 5848
Improved 64 398 1063 6.32 147 3793

results are summarized in Table II. Note that the differences between the old and new renumbering
remain almost unchanged.

5.2. Dam-break with column

This case considers a column of water collapsing close to a square column. As before, a projection-
type incompressible solver with upwind edge limiting for the advective terms and fourth-order
damping for the divergence constraint [9] is used. The free surface is captured using a volume
of fluid approach [11]. A closeup of the surface mesh, as well as a typical solution are shown in
Figure 5(a) and (b).

This was a larger mesh (nelem=4,902,314, npoin=857,901, nedge=5,814,629).
Table III summarizes the average jumps for the first and second points in the vector groups of
length mvecl=16,32,64.

As before, the jumps increase with vector group size, and as compared with the simple renum-
bering technique, the new technique leads to a moderate increase in jumps for the first point and
a drastic decrease in jumps for the second point.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

CACHE-EFFICIENT RENUMBERING FOR VECTORIZATION 635

Figure 5. (a,b) Dam-break with column: surface mesh and free surface.

Table III. Dam-break with column.

Method mvecl jump1 jump2 jum1a jum2a jum12

Original 16 24 6249 1.59 1552 6296
Improved 16 79 521 5.30 116 3617
Original 32 56 6285 1.80 1498 6323
Improved 32 180 748 5.81 130 3790
Original 64 125 6304 1.99 1483 6375
Improved 64 394 1057 6.26 144 4057

Regarding the run-times, the new renumbering technique leads to a modest run-time reduction
of 10% as compared with the old renumbering technique. The machine on which the problem was
run had Intel Xeon quadcore processors with 2Mbyte cache per core. It is expected that for larger
problem sizes these differences will increase.

6. CONCLUSIONS

A renumbering scheme has been developed that allows vectorization while reducing significantly
the jumps in memory access for edge-based solvers. The reduction should lead to a considerable
decrease in cache-misses for large problems, thereby improving CPU performance.

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the input and encouragement of Dr J. D. Baum from SAIC, whose push
for the one-billion element flow case on shared memory machines spurred this effort.

REFERENCES

1. Barth T. A 3-D upwind Euler solver for unstructured meshes. AIAA-91-1548-CP, 1991.
2. Mavriplis D. Three-dimensional unstructured multigrid for the Euler equations. AIAA-91-1549-CP, 1991.
3. Jameson A. The AIRPLANE Code. Private communication, January, 1992.
4. Peraire J, Peiro J, Morgan K. A three-dimensional finite element multi-grid solver for the Euler equations.

AIAA-92-0449, 1992.
5. Luo H, Baum JD, Löhner R, Cabello J. Adaptive edge-based finite element schemes for the Euler and

Navier–Stokes equations. AIAA-93-0336, 1993.
6. Weatherill NP, Hassan O, Marcum DL. Calculation of steady compressible flowfields with the finite element

method. AIAA-93-0341, 1993.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

636 R. LÖHNER

7. Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matrices. Proceedings of the ACM National
Conference, New York, 1969; 157–172.

8. Löhner R. Some useful renumbering strategies for unstructured grids. International Journal for Numerical Methods
in Engineering 1993; 36:3259–3270.

9. Lohner R. Applied CFD Techniques (2nd edn). Wiley: New York, 2008.
10. Löhner R. FEFLO theoretical manual. GMU-CSI-CFD Lab. Report, 2003.
11. Löhner R, Yang C, Oñate E. On the simulation of flows with violent free surface motion. Computer Methods in

Applied Mechanics and Engineering 2006; 195:5597–5620.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2010; 26:628–636
DOI: 10.1002/cnm

