ELSEVIER

Advances in Engineering Software 39 (2008) 156-166

Available online at www.sciencedirect.com

ScienceDirect

ADVANCES I N

ENGINEERING
SOFTWARE

www.elsevier.com/locate/advengsoft

Adaptive methodology for meshless finite point method

F. Perazzo ®*, R. Léhner °, L. Perez-Pozo ?

* Department of Mechanical Engineering, Universidad Técnica Federico Santa Maria, Avenida Esparia 1680, Valparaiso, Chile
® School of Computational Science and Informatics, George Mason University, M.S. 4C7, Fairfax, VA 22030-4444, USA

Received 9 September 2006; received in revised form 13 February 2007; accepted 15 February 2007
Available online 27 April 2007

Abstract

In this work, a posteriori error estimator and an adaptive refinement process for the meshless finite point method (FPM), which is
based on point collocation, are presented. The error indicator is formulated by the least-squares functional evaluation, used in the shape
function development. New degrees of freedom or additional points can be incorporated without difficulty, in zones where the error esti-
mator presents a high value, by means of 4—p refinement processes. The validity of the proposed error estimator can be demonstrated by
developments of numerical problems in mechanics of solids, using an adaptive refinement process of the solution.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Meshless; Point collocation; Finite point method; Adaptivity; Error estimation

1. Introduction

In the last decades, the development of numerical mesh-
less methods has increased, as much in the theoretical for-
mulation as in the computational implementation. The
finite point method (FPM) has been developed like a
numerical technique, due to the investigations from several
authors [1-6].

In a weighting least-squares approximation, like a FPM,
the first step is the definition of sub-domains interpolation.
The correct definition of these sub-domains, called also
“clouds” is very important for the numerical results of
the method, reason why it must develop clouds of point
generation technique. In this investigation, local cloud of
point generation technique is presented. This technique is
based on the proposed by Lohner et al. [5].

Also it is possible to determinate the error of the
approximation in the FPM context. This error can be cal-
culated or estimated by means of many techniques. Various
investigation groups have been dedicated to develop rou-
tines of error estimation in meshless methods. In “meshless

" Corresponding author.
E-mail addresses: franco.perazzo@usm.cl (F. Perazzo), rlohner@
gmu.edu (R. Loéhner), luis.perez@usm.cl (L. Perez-Pozo).

0965-9978/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2007.02.007

particles methods” Rabczuk et al. [7] have developed an
error estimator based on the superior derivatives evalua-
tion, with the result of adaptive refinement. On the other
hand Kim et al. [8] have developed an error estimation
technique in the meshless local Petrov-Galerkin method
(MLPGQG), which incorporates “secondary nodes” in the ori-
ginal discrete model, without any change in the interpola-
tion sub-domains used. This allows an adequate error
control and in addition geometrical concavities are possible
to be analyzed. Finally, Park et al. [9] use a least-squares
approximation, where in order to add points in interesting
areas, Voronoi cells are used. From these investigations it
is deduced that the estimated error is used to redistribute
the discretization or to insert nodes in specific zones, being
based on a particular criterion. Considering the FPM con-
sistency, both for regular and irregular discretization, it is
possible to add new points in relevant zones, independent
of the already existing ones, or to redistribute them, fixing
in this way the degrees of freedom.

In this work, a posteriori error estimator based on a
least-squares functional will be analyzed in point colloca-
tion context. This method uses the differences between
nodals contributions and the calculated values after the
approximation obtained by point collocation. After the
error estimation is evaluated, an adaptive refinement is

mailto:franco.perazzo@usm.cl
mailto:rlohner@gmu.edu
mailto:rlohner@gmu.edu
mailto:luis.perez@usm.cl

F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166 157

formulated, based on the results from the error estimate
process, i.e., it considers aspects like: geometry optimal
points distribution, places where to insert new points and
insertion technique for them. The present development
considers a geometrical refinement techniques based on /-
and p-refinement, widely used in the finite element method,
but in the context of FPM.

Finally, in order to verify the correct analysis and devel-
opment of the proposed error estimation techniques, a
numerical solid mechanics example is presented.

2. Fixed weighting least-squares (FWLS) approximations

In order to define the parameters that will be used in this
paper, general aspects of FPM approximation will be

specified.
Let Q; be the interpolation sub-domain or cloud from a
u(x) function, and s; with j=1,2,...,n a collection of n

points with coordinates x; € ©,. The subscript 7 in the
expressions means a point where the approximation will
have to evaluated. This point is called “star node”. The
unknown function u(x) can be approximated into the Q; by

1%

u(x) 2 a(x) = Zpl(x)oc/ =p (x)a Vx;€Q, Vx€Q,
=1

(1)

where af = [o o o,] and the p(x) vector, called
“interpolation base”, contains typically monomials. For
2D problems, the following can be used:

p=[1,xy" form=3, (2a)

P2:[17x7y7x27xy3y2]T for m = 6.

The unknown function u(x) can be evaluated in the n
points from the cloud, obtaining

u, w

h ~ T

ul ul p]

h ~ T

\ u2 [Z5) pz
u' = = =q ra=Ca, (3)

h 7 T

u, Up P,,

where u = u(x;) are the unknowns values.

Using the previous nomenclature, the fixed weighting
least-squares approximation (FWLS) is obtained minimiz-
ing the following functional:

J] = ZW(X[— X])(Mjl — l}(X,))z
=1

= Zw(x, - xj)(uj.’ —p} . 01)2. (4)

The weighting function w(x; — x;) evaluated in the star
node takes the unit value, and will be decreasing in far dis-
tances. Out of the sub-domain, the function w is null. In
this work, the Gauss function is used to weigh the approx-
imation error. In Fig. 1, the FWLS approximation is
showed with a fix weighting function w. More antecedents
respect to this and other weighted functions used in mesh-
less methods are presented in [10].

When the J; functional is minimized respect to «, the fol-
lowing is obtained:

o =A;'Bu, (5)
where
A; = P (x;)WP(x;) A B; = P"(x;) W, (6)

where P and W are expressed in vectorial form.
The final FPM approximation is obtained replacing (5)
into (1)

u(x) = i(x) = p"(x)4; ' Bl (7)

If all approximations based on “the local frame” are eval-
uated by shifting the coordinate origin to the point /, any

a(x)

Fig. 1. FWLS procedure.

158 F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166

value or derivative can be obtained quickly from . In
particular,

a/ = oy, (8)
Vil[= (O(Za o3, 0(4), (9)
and

VZLAII = 2% (O(5+063+0610). (10)
These expressions can also be written as

i, = CVu, (11)
ot ”

—| =D 12
axl ; luj’ ()
where DY = C% and ¢ =1+ 1, and

Viiy = L), LV =2%(CY+CY4C"). (13)

3. Local clouds generation

In all numerical meshless method, three processes are
defined: interpolation or approximation process, weighting
process and function discretization. From [10] can be seen
that the defined processes determines the relevance of the
sub-domains or ‘“clouds” generation. By this, geometrical
task of cloud generation determines the approximation
quality, into this numerical analysis in particular.

After the geometry discretization, both for the boundary
as well as for the domain, the clouds of points will be
generated.

It is possible to summarize the concept by the following
manner:

e Discretization, geometry list of points.

e For each node 7 (star node) the respective cloud is gen-
erated, that is conformed by itself and the closest points
or the points that more information give to this cloud.
This cloud is stored in a data file.

e Then, the previous step is repeated for the all points,
both for the boundary and the domain.

The investigators dedicated to the meshless methods,
have proposed several geometrical techniques for the
clouds generation [18-20]. This investigation, however,
uses the methodology presented by Lohner et al. [12].

Firstly an outline of the technique is presented. The
input required the list of points with their respective coor-
dinates and the list of triangles that define the outer bound-
aries domain.

Do: For each point ipoin

Initialize the search region around ipoin

While: not enough close points (30 <n,. < 120):
Enlarge the search region;
Obtain the points in the search region;
Obtain the boundary faces in the region;
Remove, from the list of close faces, those that can
not see ipoin;

Remove, from the list of close points, those whose
ray ipoin:jpoin intersect a face;
End while
Produce a Delaunay grid with the local points;
Initialize the local cloud list with the first layer of the
nearest neighbours,
If the local cloud of points is acceptable: exit;
Do: For all points, according to layers
Add a further point to the local cloud;
If the local cloud of points is acceptable: exit;
End do
As no proper local cloud was found: increase the search
region,;
End do
With the surface triangulation: Correlate boundary
pointslfaces with the points of the global cloud in order
to apply boundary conditions.

In what follows, we describe in more detail the tech-
niques and parameters used in each one of these steps.

3.1. Search for close points

The search for close points is performed using an octree
[11,12,14]. Before generating any local clouds, all points are
placed in an octree. Whenever a search for close points in
the vicinity of ipoin is required, a small search region is
placed around ipoin. The octree is then queried for all
points in this search region. This takes approximately
O(logg(N,)) operations. If the number of close points found
is too small, the search region is enlarged by 30%. Con-
versely, if too many points were found, the search region
is reduced by 15%. This procedure is repeated until an
acceptable number of close points has been found.

3.2. Search for close faces

The search for close faces is performed using a modified
octree that stores faces. The bounding box for each face is
first determined. The faces are then placed in the octants as
if they were points, marking all octants covered. Given that
the bounding boxes of faces can overlap, it may happen
that the bounding boxes of more than eight faces can share
the same point. In this case, the classic octree would divide
ad infinitum. Therefore, only two subsubdivisions are
allowed when introducing a new face to the octree, and a
provision is made to allow the storage of more than eight
faces per octant. Given the search region used for the
points, all faces whose bounding boxes fall into this region
are retrieved from the modified octree. This takes approx-
imately O(logg(N,)) operations. Repeated faces are then
removed using hashing techniques [13].

3.3. Filtering close faces

The search for close faces may yield some that are not
related to the point whose local cloud is to be found. A

F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166 159

Fig. 2. Search for close points: (a) obtain search region, (b) retain relevant points and faces, (c) remove faces that can not see point i, and (d) remove points

with rays crossing faces.

typical case is shown in Fig. 2a, where faces A, B, C, D
clearly do not belong to the set of faces associated with
ipoin. These faces can not “see” ipoin, and this observation
can be used to remove them. One simply computes the nor-
mal distance of ipoin to this face, and, if negative, removes
the faces from the list.

3.4. Filtering close points

The search for close points can yield some that are on
the “wrong” side of a boundary, as shown in Fig. 2, for
the tail of a wing. This situation will happen frequently
for sharp corners, multimaterial applications, and in gen-
eral for complex geometries with coarse clouds of points.
The close faces obtained previously can be used to filter
the points further. The points on the “wrong” side of a
boundary will have to pierce through one of the boundary
faces. Therefore, any point jpoin whose ray jpoin:ipoin
intersects one of the close faces is removed from the list.

3.5. Delaunay meshing

Given a list of close points, there are many possible ways
of obtaining local clouds. Among them, the Delaunay tech-
nique will produce a graph of nearest neighbours with opti-
mal properties for finite elements and elliptic partial
differential equations (PDE). This therefore is a plausible
technique for the present context. We outline the main

steps, and refer the reader to George’s monogram [15] for
details.

Place a large tetrahedron (or box with 5/6 tetrahedra)
around the point to be grided;

Do: for all close points:
Find the element(s) x; fall into;
Obtain all elements whose circumsphere encompasses
Xi
Remove from the list of elements all those that would
not form a proper element (volume, angles) with x;;
this result in a properly constrained convex hull;
Reconnect the outer faces of the convex hull with x; to
form new elements;

End do

Retain only the elements with all nodes belonging to the
list of close points.

The basic procedure has been sketched in Fig. 3.

Given this tetrahedral mesh of close points, the graph of
nearest neighbours can be constructed.

3.6. Change of polynomial order for clouds for boundary
points

The application of Neumann conditions typically
requires derivatives that are of lower order than those
required by the PDE to be solved in the domain. It is

160 F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166

a
R b
® ®
e o e
i @
® e O
"
° ®
e °
e [)
c d

Fig. 3. Formation of local cloud: (a) place points in macro-triangles, (b) Delaunay-mesh of local clouds, (c) retain elements of original points, and

(d) retain first layer of nearest neighbours.

therefore advantageous (requiring less storage and CPU) to
reduce the polynomial order of the local clouds for these
boundary points. As we need to identify the closeness of
boundary faces in any case for the proper generation of
local clouds (see above), we have the information as to
whether a point is on the boundary or not. If so desired
by the user, the polynomial order of these points is reduced
accordingly.

3.7. Trimming of clouds for boundary points

The application of Neumann conditions typically
requires gradients in the direction normal to the wall. It
is found that for these cases it is best to assign very low
weights, or to remove completely from the local cloud,
those points that are co-planar with the points whose local
cloud is being formed. This can be done in a straightfor-
ward way by identifying these points and assigning to them
a high “local neighbour” value (see Fig. 4). In this way, the
co-planar points are used for the local Delaunay mesh,
yielding the desired result. Removing them before perform-
ing the local Delaunay mesh does not yield a proper list of
near neighbours, as evidenced in Fig. 4b.

If several faces are present (see Fig. 5), a point is tested
against all faces. If the maximum normal distance falls

below a tolerance (typically 5% of the local side length),
the point is marked. Otherwise, the point is treated as if
it was a domain point.

3.8. Acceptable cloud criteria

The local clouds produced by the procedure outlined
above will not always be useful for finite point methods.
The main reason is that a local cloud can yield a singular
approximation matrix A; (5). For this reason, several tests
are carried out for every local cloud. Before carrying out
the tests, the coordinates of the local cloud are ‘“non-
dimensionalized” as follows:

/ (X —XO)

X = 5 (14)

where x, are the coordinates of the point whole local cloud
is sought, and 0 a representative distance between points.
Using the minimum distance between points for o, an aver-
age, or the maximum distance does not change the result-
ing clouds.

The first test is to see if the matrix A4; will be singular.
The most obvious indication that A; is singular, or not ade-
quate, will occur during inversion. However, we have
found cases where the local cloud is not suitable for

Fig. 4. Trimming of clouds for boundary points: (a) marking of layers and (b) pre-removal.

F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166 161

3 3
» -
A=
. P
\‘\ e ’
“~ P
‘\\ - d
S| -
* o $3
2]
./’./ N \
o .
//’ .7\\.
/r. .\-,
f// h \‘\
. . »
o i %

Fig. 5. Points at corners.

FPM although the inverse exists and 4-A4 '~1. We
therefore also test for the largest (absolute) entry in A~ '.
If this value exceeds a tolerance (e.g. 10°), the local cloud
is rejected.

The second test is to take a known function, and see
how much the derivatives deviate from the exact values.
For the first derivatives, we take u = x + y, which should
yield a gradient of Au = (1,1). For the second derivatives
(in case we have a polynomial of order p > 1), we take
u = x>+ y% which should yield a Laplacian of A’u =4. If
the values obtained via local cloud approximation and
the exact values deviate by more than 10~'°, the local cloud
is rejected.

3.9. Test for Neumann boundary conditions

The application of Neumann boundary conditions
requires that the coefficients corresponding to the first
derivatives should be significant. From (12) this implies
that

|C?'| > ¢, max(|CY|), I=2,...,n, (15)

where ¢ = 2;3;4 (i.e. each dimension), n is the number of
points in the local cloud and the tolerance ct is typically
of order ¢t = 0O(0.01). It was found that not applying this
acceptance criterion could lead to clouds that pass all the
criteria described above in Section 3.8, but are numerically
unstable.

3.10. Approximations order of local cloud

If one consider the edges of a typical tetrahedral mesh
and use these to obtain local clouds, would have a determi-
nated number of points in each local cloud. For a Cartesian
distribution of points, the nearest neighbours would yield
local clouds with 27 points in 3D case.

From Fig. 2a—d one can infer that the smallest number
of points in the local cloud required to achieve a linear
function, a quadratic function and a cubic function is 3,
6 and 10 respectively. A considerable percentage of the
local clouds obtained from the first layer of Delaunay-

neighbours will allow for these higher-order approxima-
tions. Therefore, a test is carried out as before for the A4-
matrices and the derivatives of a known function. If these
tests yield a better result than the quadratic approximation,
the higher-order approximation is retained.

3.11. Symmetrization of local cloud

From an intuitive argument of symmetry, it was thought
that the symmetry of local clouds (i.e. if point j belongs to
the local cloud of point i, then point i should belong to the
local cloud of point j) could provide a better numerical
approximation. Therefore, options were implemented to
symmetrize all clouds, or only the clouds of points that
are not on the boundary. This latter option was motivated
by the fact that some of the boundary clouds can exhibit up
to two levels of points inside the domain.

4. Adaptive refinement

Automatic adaptive refinement procedures have shown
great benefits in all areas of computational mechanics.
They achieve the highest possible accuracy for a given
number of degrees of freedom, and alleviate the burden
of constructing a near-optimal mesh of point cloud by
the user. Any adaptive refinement procedure is composed
of three main ingredients:

e an optimal-mesh criterion,
e an error indicator, and
e an algorithm or strategy to refine and coarsen the mesh.

They give answers to the questions

e How should the optimal mesh be defined?
e Where is refinement/coarsening required? and
e How should the refinement/coarsening be accomplished?

The topic of adaptation being now three decades old, it
is not surprising that a variety of answers have been pro-
posed by several authors for each of these questions. In
the following, we consider the equivalent of /- and p-refine-
ment in the FPM context.

4.1. Error estimationlindication

A large number of error estimators/indicators have been
proposed in the literature [16]. The FPM offers some
unique possibilities, due to its approximation basis. The
most obvious one is to consider the difference between
the point value of # and the approximation value obtained
after least-squares approximation. From (11) we have

e = |i‘|1*”];| = |CU”§?*”¢|- (16)

162 F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166

It is intuitively clear that regions where this error indica-
tor is high require an increase in the degrees of freedom, i.e.
adaptation. On the other hand, one can also use interpola-
tion error indicators on the edges (local clouds) by compar-
ing the difference of gradients:

élj = |.X1j . (Vuj’ + Vuf)|, (17)

where x; = x; — x;.

From the above, one can deduce that in the FPM
formulation the weighting least-squares functional J (4)
can be considered like an error indicator. This functional
J calculates the quadratic deviation between the approxi-
mation and the unknown value, called nodal contribution.
Then the error estimator in each node, can be defined
like

n

&y = wln —x)u) — a(x)]’. (18)

j=1

4.2. Introduction of new points

Once the error estimator/indicator for the points or
edges has been evaluated, a new degree of freedom (i.e.
points) can be introduced. In principle, FPM offers the lib-
erty to introduce new points in a completely general and
arbitrary way. In order to arrive at a more orderly intro-
duction, the new points are introduced at the mid-point
location of edges. This has the advantage of ensuring that
in the limiting case of a perfectly regular, Cartesian point
distribution, the regularity of the initial point distribution
is maintained. The algorithmic steps required for new point
cloud may then be summarized as follows:

evaluate the desired error estimator/indicator;
obtain the edges to be refined;

introduce the new points;

update the boundary conditions.

Next, we describe in more detail the techniques and
parameters used in each one of these steps.

4.2.1. Edges to be refined

The initial list of edges marked for refinement needs to
be trimmed further in order to avoid too many new points.
The following steps are taken:

(a) Retention of closest near-neighbour layer: Local
clouds, and hence edges, may go beyond nearest
neighbours. The introduction of a new point for such
an edge could lead to new points being very close to
existing nodes. Therefore, taking advantage that we
know the near-neighbour layer number of any local
cloud of points from the Delaunay triangulation,
we only allow the introduction of points for edges
that belong to the first near-neighbour layer.

(b) Retention of ordered edges: Nearly all edges to be
refined appear twice (once in the local cloud of node
i and than also in the local cloud of node j). There-
fore, we only retain for refinement those edges for
which i <j.

(c) Rejection of small edges: In cases with singularities or
physical discontinuities, the introduction of new
points will continue unhindered unless a stopping cri-
terion is imposed. The first of these is the proximity
that points can have to each other. If an existing edge
is smaller than this preset length tolerance, the edge is
not retained for refinement.

(d) Rejection of edges with new points close to existing
points: Some of the edges marked for refinement
may lead to the introduction of points that are very
close to existing points. In order to avoid such prob-
lems, the existing points are introduced in an octree.
Every edge marked for refinement. If the new point
position is too close to an existing point, the edge is
rejected. Note that the bounding box of the edge pro-
vides a natural search region for the octree.

(e) Rejection of edges with new points close to new points:
Some of the edges marked for refinement may lead to
the introduction of points that are very close to new
points. A typical case is shown in Fig. 6. Edges i, k
and j, / will introduce new points that are at almost
identical positions. In order to avoid such problems,
the points introduced by the edges marked for refine-
ment are stored in an octree. Every edge marked for
refinement is then checked. If a new point position
from an edge with lower number is too close to the
new point, the edge is rejected.

4.2.2. Introduction of new points

The new points are introduced at the mid-points of all
edges marked for refinement. The unknowns are averaged.
Alternatively, one could use the values recovered from a
higher-order polynomial approximation.

4.2.3. Update of boundary conditions

The edges marked for refinement also provide a mecha-
nism for the update of boundary conditions. Assuming that
we know, for each boundary point, the CAD entity
it belongs to (end-point of line, line, surface), one can

@ Point before Refinement

»
[]
®

B Possible New Point

*
*

Fig. 6. Removal of close new points.

F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166 163

establish if new points originating from edges are on the
boundary or not, as well as their proper CAD entity. The
new boundary points thus found are added to the respec-
tive lists.

5. Computational implementation

In this section, the computational implementation of
elastic solids mechanics applying FPM is described.

Let the differential equations system that describes the
behavior of a linear-elastic solid, where inertia forces are
not considered, be

V-o(x)+p-bx)=0 VxeQ (19)
with the Neumann condition

ox)-n=1tx) VxeT, (20)

and the Dirichlet condition
ux)=u(x) Vvxerl,. (21)

Being o, p, b, n, u, t, u; the stress tensor, the solid
density, vector of internal forces, normal vector, displace-
ment vector, traction prescribed vector and displacement
prescribed vector over the boundaries I', and I, respec-
tively.

Utilizing the FWLS approximation of the u(x) function
(1) in the sub-domain ©; for the displacement field and the
point collocation technique, finally the discrete system
obtained is

(A+W)V(V it(x)) + uV%i(x)) +p-b(x;) =0 Vx; € (Q-T),

(22a)
AV a(xp)) -n4u(i(x) @V+Vu(x)) n=1t(x;) Vx; €T,
(22b)
it(x,) = L_l(xl) Vx; € r,. (220)

Note that in the above system, only interior nodes sup-
port the equilibrium equation (22a).

On the other hand, the Neumann boundary condition is
imposed at I',. In the cited notation, A, u are the Lamé con-
stants that characterize the elastic behavior of the material,
and the operators ® and V are the gradient and divergence
respectively.

The numerical implementation, produce the following
equations system

K;-u"=f I=1,...,N. (23)

In same cases K matrix presents instabilities problems
with the imposition of Neumann boundary condition by
means of Eq. (22b) [4]. For this reason, a stabilization pro-
cess has been implemented, based in the finite calculus pro-
cedure (FIC), developed by Onate [17,22].

Then applying the FIC techniques, the stabilized form
of the equations is

o o o
o © o O o
o 6 O o o o
o © o
° hd (@] dxmm:hx ©
° o -0 o
© 1 e ° o
¥
— °
o ° &Y, =h, ° ®
o d v
o ®dx,,=h o ay,,=h, I
o
© o
o o © o
a b

Fig. 7. Characteristic length 4 for (a) interior nodes and (b) boundary
nodes.

{(V-a(x,) +p-b(x;)) —%hT-V(V-o(xI) +p~b(x1))} =0

VXI S (Q— F), (243.)
{O’(X[) - —Z(XI) —%hn . (V . O'(X]) +p b(xI))} =0

vy €T, (24b)
i) =a(x;) Vo € Lo, (24¢)

where £ is a characteristic length of the finite sub-domain
(Fig. 7) and h, = |h" - |
In this work the /4 vector was chosen as

hT = [dr mindy min]v (25)

where d, i, 18 the minimal distance in X-direction from the
I node to the nodes of the cloud and d, i, is the minimal
distance in Y-direction from the I node to the nodes of
the cloud.

1F><

P

Fig. 8. Disc under diametral compression.

164 F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166

6. Example

In order to validate the proposed error indicator based
in J functional (4) a 2D example is presented.

The following problem consists of a disc under diame-
tral compression load, where P = 1.0, diameter D = 0.5
as shown in Fig. 8. A plane stress condition is considered,
a material with £ = 1.0 and v = 0.25. This problem is used
in standardized tests (ASTM D-4123, 1987) for bituminous
and fragile materials.

With an appropriate coordinate change [21] and consid-
ering R = D/2 (disc radium) the theoretical stress field is

r=\R+R=y) =2+ R+, (26)

-_N104

T N=205

. N-213

Fig. 9. Disc under diametral compression: (a) discretization, (b) error indicator and (c) maximum shear stress iso-lines for N =

points.

8 Nléz.
|
R % . '-. R .
|- - o

2P [(R—y)x* (R 201

oo = 2P {(4y)x (+4y)x B _] ’ (27a)
T & 5 D
2P [(R—y)x (R+y) 1

e L o1 | (27)

2P [(R—y)’x (R+y)x
Txy ? }"4 — r4 (270)
i 2

The maximum shear stress is calculated using the follow-
ing expression:

Trmax = (%)2 + 12, (28)

il p TN
J f O
,n i' . A \) \
J | ;J / \".\]].\)
\ '\!\';’, ‘\\"\)/
3 _\\\g : WS A
> \\\ il (L
|,

104, 162, 205, and 213

F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166 165

Fig. 10. Disc under diametral compression: (a) discretization, (b) error indicator and (c) maximum shear stress iso-lines for N =433, 501, and 514 points.

This example is solved using a quadratical interpolation
bases (2b), is to say, m = 6.

At the beginning the disc is discretized by N =104
points, later the location of the points is adapted because
of the values of the proposed indicator (18).

As seen in Figs. 9 and 10, the maximum shear stress
tends to the optimal distribution (Fig. 11).

As is shown in Figs. 9 and 10, in this example the posi-
tion of new points is not always symmetric, this is because

Fig. 11. Lines of maximum shear stress for disc under diametral
compression: (a) theoretical [21], (b) numerical N = 5.851 points (applying
a non-adaptive process).

the initial clouds are not symmetric respect to the “star
node”. Nevertheless the distribution of the numerical result
(shear stress) is symmetric like the theoretical solution.

7. Conclusions

In the present work, a strategy of adaptive refinement
applicable to meshless method based on point collocation
has been presented, which has been evaluated in a numer-
ical 2D example in order to verify its quality. The method-
ology of local clouds generation presented, permits to
avoid all of the discretization problems generated by com-
plex geometries (sharp faces).

The strategy of change of polynomial order in clouds for
boundary points is a good alternative in order to minimize
the induced errors caused with the imposition of Neumann
condition. This allows decreasing the necessary refinement
in a particular boundary. The use of the error indicator
based on J (4) is an important advantage of the proposed
techniques, because FPM formulation is precisely based
on the minimisation of this functional.

From the present results, one can observe that the pro-
posed methodology is easily extensible to the 3D case; in
fact, the authors are working on extending the analysis to
more real solid pieces. On the other hand, all of this

166 F. Perazzo et al. | Advances in Engineering Software 39 (2008) 156166

proposed methodology can be applied in future research to
other kind of computational mechanics problems, for
example CFT, fracture mechanics, etc., always in the
FPM context.

Acknowledgements

The authors acknowledge the financial support from
FONDECYT Proyect 1040371 and UTFSM DGIP Pro-
yect 250521.

References

[1] Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL. A finite point
method in computational mechanics. Applications to convective
transport and fluid flow. Int J Numer Methods Eng 1996;39:3839-66.

[2] Onate E, Idelsohn S. A mesh-free finite point method for advective-
diffusive transport and fluid flow problems. Comput Mech
1998;21:283-92.

[3] Onate E, Sacco C, Idelsohn S. A finite point method for incompress-
ible flow problems. Comput Visual Sci 2000;3:67-75.

[4] Onate E, Perazzo F, Miquel J. A finite point method for elasticity
problems. Comput Struct 2001;79:2151-63.

[5] Lohner R, Sacco C, Onate E, Idelsohn S. A finite point method for
compressible flow. Int J Numer Methods Eng 2002;53:1765-79.

[6] Boroomand B, Tabatabaei AA, Onate E. Simple modifications for
stabilization of the finite point method. Int J Numer Methods Eng
2005;63:351-79.

[7] Rabczuk T, Belytschko T. Adaptivity for structured meshfree particle
methods in 2D and 3D. Int J Numer Methods Eng 2004;63:1559-82.

[8] Kim HG, Atluri SN. Arbitrary placement of secondary nodes, and
error control, in the meshless local Petrov-Galerkin (MLPG) method.
CMES 2000;3:11-32.

[9] Park SH, Kwon KC, Youn SK. A posteriori error estimates and an
adaptive scheme of least-square meshfree method. Int J Numer
Methods Eng 2003;58:1213-50.

[10] Perazzo F. Una metodologia numérica sin malla para la resolucion de
las ecuaciones de elasticidad, mediante el método de Puntos Finitos.
Doctoral thesis UPC 2002.

[11] Lohner R. Some useful data structure for the generation of
unstructure grids. Commun Appl Meth 1988;4:123-35.

[12] Lohner R, Onate E. An advancing point grid generation technique.
Commun Numer Methods Eng 1998;14:1097-108.

[13] Knuth DN. The art of computer programming, vols. 1-3. Addison-
Wesley; 1973.

[14] Samet H. The quadtree and related hierarchical data structures.
Comput Surv 1984;2:187-285.

[15] George PL, Borouchaki H. Delaunay triangulation and mesh-
ing. Editions Hermes; 1998.

[16] Lohner R. Applied CFD techniques. J. Wiley & Sons; 2001.

[17] Onate E. On the stabilization of numerical solution for advective-
diffuse transport and fluid flow problems. CIMNE 1996:81.

[18] Perrone N, Kao R. A general finite difference method for arbitrary
meshes. Comput Struct 1975;5:45-58.

[19] Liszka T, Orkisz J. The finite difference method at arbitrary irregular
grids and its application in applied mechanics. Comput Struct
1980;11:83-95.

[20] Liszka T, Duarte CA, Tworzydlo W. hp-Meshless cloud method.
Comput Methods Appl Mech Eng 1996;139:263-88.

[21] Saad MH. Elasticity. Elsevier Butterworth-Heinemann; 2005, p. 480.

[22] Onate E. Possibilities of finite calculus in computational mechanics.
Int J Numer Methods Eng 2004;60:255-81.

	Adaptive methodology for meshless finite point method
	Introduction
	Fixed weighting least-squares (FWLS) approximations
	Local clouds generation
	Search for close points
	Search for close faces
	Filtering close faces
	Filtering close points
	Delaunay meshing
	Change of polynomial order for clouds for boundary points
	Trimming of clouds for boundary points
	Acceptable cloud criteria
	Test for Neumann boundary conditions
	Approximations order of local cloud
	Symmetrization of local cloud

	Adaptive refinement
	Error estimation/indication
	Introduction of new points
	Edges to be refined
	Introduction of new points
	Update of boundary conditions

	Computational implementation
	Example
	Conclusions
	Acknowledgements
	References

