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Abstract. The nature of fast magnetoacoustic and Alfvén waves is investigated in a zero β plasma. This gives an indication
of wave propagation in the low β solar corona. It is found that for a two-dimensional null point, the fast wave is attracted to
that point and the front of the wave slows down as it approaches the null point, causing the current density to accumulate there
and rise rapidly. Ohmic dissipation will extract the energy in the wave at this point. This illustrates that null points play an
important role in the rapid dissipation of fast magnetoacoustic waves and suggests the location where wave heating will occur
in the corona. The Alfvén wave behaves in a different manner in that the wave energy is dissipated along the separatrices.
For Alfvén waves that are decoupled from fast waves, the value of the plasma β is unimportant. However, the phenomenon of
dissipating the majority of the wave energy at a specific place is a feature of both wave types.
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1. Introduction

The coronal heating problem remains a key unsolved problem
in solar physics. While the coronal magnetic field is ultimately
involved, there are many rival theories ranging from reconnec-
tion models involving nanoflares and wave heating models in-
volving phase mixing and resonant absorption. The reconnec-
tion models either require the formation of many current sheets,
due to random photospheric boundary motions that braid the
magnetic field, or the collapse of null points. The wave heat-
ing models rely on the generation of small length scale wave
motions in the corona. There is clear evidence from SOHO
and TRACE observations of slow MHD waves (Berghmans
& Clette 1999; De Moortel et al. 2000), fast MHD waves
(Nakariakov et al. 1999) and non-thermal line broadening due
to Alfvén waves (Harrison et al. 2002). While there may be in-
sufficient energy in these waves to heat the whole corona, their
dissipation will contribute to the overall energy budget. This
paper is concerned with the propagation of MHD waves in the
neighbourhood of null points in a zero β plasma, giving an in-
dication of how MHD waves behave in the low β plasma of the
solar corona.

The existence of null points is predicted on theoretical
grounds and their importance lies in the fact that the Alfvén
speed is actually zero at that point. This important consequence
will be utilised later. Potential field extrapolations, using pho-
tospheric magnetograms to provide the field distribution on
the lower boundary, suggest that there are always likely to
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be null points in the corona. The number of such points does
depend on the magnetic complexity of the photospheric flux
distribution. Detailed investigations of the coronal magnetic
field, using such potential field calculations, can be found in
Beveridge et al. (2002) and Brown & Priest (2001).

The fact that null points are a weakness in the magnetic
field has been used to investigate how they collapse in response
to boundary motions. This has been investigated by Craig and
co-workers and other authors using analytical and numerical
approaches (Craig & McClymont 1991; Hassam 1992). The
basic aim is to move the field lines passing through the bound-
ary in a particular manner in order to perturb the field. The
resulting field perturbations cause the null point to collapse to
form a current sheet in which reconnection can release mag-
netic energy. In these models the boundary motions move the
field lines but do not return them to their original positions.
Thus, the Poynting flux induced by the imposed motion (and
then fixing the field after the motion is complete) accumulates
at the resulting current sheet and provides the energy released
in the reconnection. However, if the boundary motions are sim-
ply due to the passing of incoming waves through the bound-
ary, then it is not clear that the null point need collapse and
form a current sheet. If this is the case, then it is not clear if
the energy in the wave, again due to the Poynting flux through
the boundary, will dissipate or simply pass through one of the
other boundaries.

Waves in the neighbourhood of 2D null points have been
investigated by various authors. Bulanov & Syrovatskii (1980)
provided a detailed discussion of the propagation of fast
and Alfvén waves using cylindrical symmetry. In their paper,
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harmonic fast waves are generated and these propagate to-
wards the null point. However, the assumed cylindrical sym-
metry means that the disturbances can only propagate either
towards or away from the null point. Craig & Watson (1992)
mainly consider the radial propagation of the m = 0 mode
(where m is the azimuthal wavenumber) using a mixture of
analytical and numerical solutions. In their investigation, the
outer radial boundary is held fixed so that any outgoing waves
will be reflected back towards the null point. This means that
all the energy in the wave motions is contained within a fixed
region. They show that the propagation of the m = 0 wave to-
wards the null point generates an exponentially large increase
in the current density and that magnetic resistivity dissipates
this current in a time related to log η. Their initial disturbance
is given as a function of radius. In this paper, we are interested
in generating the disturbances at the boundary rather than inter-
nally. Craig & McClymont (1991, 1993) investigate the normal
mode solutions for both m = 0 and m � 0 modes with resistiv-
ity included. Again they emphasise that the current builds up
as the inverse square of the radial distance from the null point.
However, attention has been restricted to a circular reflecting
boundary. This paper will investigate wave propagation in a
zero β plasma in the neighbourhood of a simple 2D null point
but for more general disturbances, more general boundary con-
ditions and single wave pulses. This allows us to concentrate
on the transient features that are not always apparent on us-
ing normal mode analysis. Galsgaard et al. (2003) looked at a
particular type of wave disturbance for a symmetrical 3D null.
They investigated the effect of rotating the field lines around the
spine and found that a twist wave (essentially an Alfvén wave)
propagates in towards the null. They found that while the heli-
cal Alfvén wave spreads out, coupling due to the field geometry
generates a fast wave that focuses on the null and wraps around
it. This wrapping effect is analysed in more detail here for the
simpler 2D null.

The propagation of fast magnetoacoustic waves in an
inhomogeneous coronal plasma has been investigated by
Nakariakov & Roberts (1995), who showed how the waves are
refracted into regions of low Alfvén speed. In the case of null
points, it is the aim of this paper to see how this refraction pro-
ceeds when the Alfvén speed actually drops to zero.

The paper has the following outline. In Sect. 2 the basic
equations are described. The results for an uncoupled fast mag-
netoacoustic wave are presented in Sect. 3. Some simple ana-
lytical results are also discussed as a verification to and inter-
pretation of the numerical simulation. Section 4 discusses the
propagation of Alfvén waves and the conclusions are given in
Sect. 5.

2. Basic equations and numerical method

The usual MHD equations for a low β plasma appropriate to
the solar corona are used. Hence,

ρ

(
∂u

∂t
+ (u · ∇) u

)
=

1
µ

(∇ × B) × B, (1)

∂B
∂t
= ∇ × (u × B) + η∇2 B, (2)

Fig. 1. Our choice of equilibrium magnetic field.

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

where ρ is the mass density, u is the plasma velocity, B the
magnetic induction (usually called the magnetic field), µ =
4π × 10−7 Hm−1 the magnetic permeability, η = 1/µσ is the
magnetic diffusivity

(
m2 s−1

)
, and σ the electrical conductiv-

ity. The gas pressure and the adiabatic energy equation are
neglected in the low β approximation.

2.1. Basic equilibrium

The basic magnetic field structure is taken as a simple 2D
X-type neutral point. The aim of studying waves in a 2D con-
figuration is one of simplicity. The individual effects are much
easier to identify when there is no coupling between the fast
and Alfvén modes. However, the extension to 3D is relatively
straightforward. The modes will become coupled but their evo-
lution is predictable from the 2D case. Therefore, the magnetic
field is taken as

B0 = B0

( x
a
, 0,− z

a

)
, (4)

where B0 is a characteristic field strength and a is the length
scale for magnetic field variations. This magnetic field can
be seen in Fig. 1. Obviously this particular choice of mag-
netic field is only valid in the neighbourhood of the null point
located at x = 0, z = 0.

2.2. Linearised equations

To study the nature of wave propagation near null points, the
linearised MHD equations are used. Using subscripts of 0
for equilibrium quantities and 1 for perturbed quantities, the
linearised equation of motion becomes

ρ0
∂u1
∂t
=

(∇ × B1

µ

)
× B0, (5)

the linearised induction equation

∂B1

∂t
= ∇ × (u1 × B0) + η∇2 B1, (6)



J. A. McLaughlin and A. W. Hood: MHD waves in the neighbourhood of a null 1131

and the linearised equation of mass continuity

∂ρ1

∂t
+ ∇ · (ρ0u1) = 0. (7)

We will not discuss Eq. (7) further as it can be solved once
we know u1. In fact, it has no influence on the momentum
equation (in the low β approximation) and so in effect the
plasma is arbitrarily compressible (Craig & Watson 1992).
We assume the background gas density is uniform and la-
bel it as ρ0. A spatial variation in ρ0 can cause phase mixing
(Heyvaerts & Priest 1983).

We now consider a change of scale to non-dimensionalise;
let v1 = v̄u∗1, B0 = B0B∗0, B1 = B0B∗1, x = ax∗, z = az∗, ∇ = 1

a∇∗
and t = t̄t∗, where we let * denote a dimensionless quantity and
v̄, B0, a and t̄ are constants with the dimensions of the variable
they are scaling. We then set B0√

µρ0
= v̄ and v̄ = a/t̄ (this sets

v̄ as a sort of constant background Alfvén speed). This process
non-dimensionalises Eqs. (5) and (6), and under these scalings,
t∗ = 1 (for example) refers to t = t̄ = a/v̄; i.e. the (background)
Alfvén time taken to travel a distance a. For the rest of this
paper, we drop the star indices; the fact that they are now non-
dimensionalised is understood.

The ideal linearised MHD equations naturally decouple
into two equations for the fast MHD wave and the Alfvén wave.
The slow MHD wave is absent in this limit and there is no
velocity component along the background magnetic field (as
can be seen by taking the scalar product of Eq. (5) with B0.
The magnetic resistivity, η, in Eq. (6) will be neglected in
the numerical simulations but is included for discussion in the
conclusions.

The linearised equations for the fast magnetoacoustic
wave are:

∂V
∂t
= v2A (x, z)

(
∂bz

∂x
− ∂bx

∂z

)

∂bx

∂t
= −∂V
∂z
,
∂bz

∂t
=
∂V
∂x
, (8)

where the Alfvén speed, vA (x, z), is equal to
√

x2 + z2, B1 =

(bx, 0, bz) and the variable V is related to the perpendicular ve-
locity; V =

[
(u1 × B0) · êy

]
. These equations can be combined

to form a single wave equation:

∂2V
∂t2
= v2A (x, z)

(
∂2V
∂x2
+
∂2V
∂z2

)
· (9)

The linearised equations for the Alfvén wave, with u1 =(
0, vy, 0

)
and B1 =

(
0, by, 0

)
are:

∂vy

∂t
= x
∂by
∂x
− z
∂by
∂z
,
∂by
∂t
= x
∂vy

∂x
− z
∂vy

∂z
, (10)

which can be combined to form a single wave equation:

∂2vy

∂t2
=

(
x
∂

∂x
− z
∂

∂z

)2

vy. (11)

3. Fast waves

We solve the linearised MHD equations for the fast wave,
namely Eqs. (8), numerically using a two-step Lax-Wendroff
scheme. The numerical scheme is run in a box with −6 ≤ x ≤ 6
and −6 ≤ z ≤ 6 and we initially consider a single wave pulse
coming in from the top boundary. For the single wave pulse,
the boundary conditions were set such that:

V(x, 6) =


sinωt for 0 ≤ t ≤ π

ω
0 otherwise,

∂V
∂x

∣∣∣∣∣∣
x=−6

= 0,
∂V
∂x

∣∣∣∣∣∣
x=6

= 0,
∂V
∂z

∣∣∣∣∣∣
z=−6

= 0.

Tests show that the central behaviour is largely unaffected by
these choices of side and bottom boundary conditions. The
other boundary conditions on the perturbed magnetic field fol-
low from the remaining equations and the solenodial condition,
∇ · B1 = 0.

We find that the linear, fast magnetoacoustic wave travels
towards the neighbourhood of the X-point and bends around
it. Since the Alfvén speed, vA (x, z), is spatially varying, dif-
ferent parts of the wave travel at different speeds, and it
travels faster the further it is away from the origin (i.e. the
further away a point is from the origin, the greater in magni-
tude vA (x, z) is). So the wave demonstrates refraction and this
can be seen in Fig. 2. A similar refraction phenomenon was
found by Nakariakov & Roberts (1995). It is this refraction ef-
fect that wraps the wave around the null point and it is this that
is the key feature of fast wave propagation.

Since the Alfvén speed drops to zero at the null point, the
wave never reaches there, but the length scales (this can be
thought of as the distance between the leading and trailing
edges of the wave pulse) rapidly decrease, indicating that the
current (and all other gradients) will increase. As a simple il-
lustration, consider the wavefront as it propagates down the z
axis at x = 0. Here the vertical velocity is vz = dz

dt = −z. Thus,
the start of the wave is located at a position zs = 6 e−t, when
the wave is initally at z = 6. If the end of the wave leaves z = 6
at t = t0 then the location of the end of the wave is ze = 6 et0−t.
Thus, the distance between the leading and trailing edge of the
wave is δz = 6

(
et0 − 1

)
e−t and this decreases with time, sug-

gesting that all gradients will increase exponentially.

3.1. Current

Since we have a changing perturbed magnetic field whose gra-
dients are increasing in time, we have a build up of current
density. Simulations show that there is a large current accu-
mulation at the neutral point (Fig. 3) and that this build up is
exponential in time (Fig. 4), in keeping with our discussion on
the thickness of the wave pulse. Figure 4 shows the maximum
of the absolute value of the current at each time (left) and a plot
of the logarithm of it against time (right).

This build-up of current is extremely important since it im-
plies that resistive dissipation will eventually become impor-
tant, regardless of the size of the resistivity, and will convert
the wave energy into heat. In fact, the exponential growth of the
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Fig. 2. Contours of V for a fast wave sent in from the upper boundary and its resultant propagation at times a) t = 1.0, b) t = 1.8, c) t = 2.6 and
d) t = 3.4, labelling from top left to bottom right. Here, ω = 2π and time is measured in units of (µρ0)1/2 /B0. The axes have been rescaled in
these lower two subfigures to draw attention to the central behaviour. The number of points in each direction is 1600 × 1600.

Fig. 3. Shaded surfaces showing the build up of current at times a) t = 1.0, b) t = 1.8, c) t = 2.6, d) t = 3.4 and e) t = 4.2, labelling from top
left to bottom right. Note the change in vertical scale.
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Fig. 4. (– minimum current) against time elapsed (left), log (– minimum current) against time elapsed (right). The slope of the line between
t = 1 and t = 3 is 1.65.

current means that the time for magnetic diffusion to become
important will depend only on log η. Thus, refraction of the
wave focuses the majority of the wave energy at the null point.
This key result will be discussed further in the conclusions.
Note that the topology of the current accumulation seems to be
approaching that of a current line. The current line comes from
the collapse of the width of the fast wave as it approaches the
null. Note that while the current grows exponentially in time,
the velocity remains finite in magnitude.

As an aside, note that the line in Fig. 4 (right) starts to devi-
ate from a straight line after (approximately) t = 3.5. Recall the
discussion above concerning the decrease in width of the pulse,
where the distance between the leading and trailing edge of the
wave was shown to be δz = 6

(
et0 − 1

)
e−t. This exponential de-

crease in length scales means that we will always run out of nu-
merical resolution for the simulation in Fig. 2; for any topology
we want to resolve, for which δz will be of the form C

N (where N
is the number of grid points and C is a constant of inverse
proportionality), we see that a solution is improperly resolved
when et ≥ (

et0 − 1
)

N/C, i.e. t ≥ log N + log
(
et0 − 1

) − log C.
Thus, because of this logarithmic dependence on N, we will
only be able to resolve the solution up until a certain time and
increasing the number of grid points will not substantially im-
prove this. Thus, the line in Fig. 4 tails off due to a lack of
numerical resolution.

3.2. Analytical results

We can approximately solve Eq. (9) for the fast wave to gain
more insight into the current build-up observed in the numeri-
cal simulations. Substituting V = eiφ(x,z) · e−iωt into Eq. (9) and
assuming that ω � 1 (WKB approximation), leads to a first
order PDE of the form F

(
x, z, φ, ∂φ

∂x ,
∂φ
∂z

)
= 0. Applying the

method of characteristics, we generate the solution:

φ = −ω2s,

x =

[
x0 cos

(
Ax0

z0
s

)
+ z0 sin

(
Ax0

z0
s

)]
e−As,

z =

[
z0 cos

(
Ax0

z0
s

)
− x0 sin

(
Ax0

z0
s

)]
e−As,

where s is some parameter along the characteristic, x0 is a
starting point distinguishing between different characteristic
curves, z0 is a second starting point (z0 = 6 in our simula-
tions), ω is the frequency of our wave and A is a constant such

that A = z0 ω/
√

x2
0 + z2

0. Figure 5 shows constant φ at four dif-

ferent values of the parameter s. Constant φ can be thought of
as defining the position of the leading edge of the wave pulse,
i.e. with this choice of s, the WKB solution represents the front
of the wave. s is comparable to t and so the subfigures can be
directly compared to Fig. 2. The agreement between the ana-
lytic model and the leading edge of the wavefront is very good,
as seen in an overplot of a contour and our WKB solution in
Fig. 6. Note that there is a difference between the side and bot-
tom boundary conditions of the simulations and the analytical
model.

We can also use our WKB approximation to predict the cur-
rent density build up. The current density is given by j = ∇2V
which from above can be approximated by:

j = ∇2V = − −ω
2V

x2 + z2
= −−ω

2e2AsV

x2
0 + z2

0

= −A2e2AsV = −A2e2Aseiφe−iωt

= −A2e2Ase−iω2 se−iωt.

By considering the modulus of this result, we can see that | j|
will grow exponentially with s, i.e. as e2As, and that the current
will be negative (in agreement with Fig. 4). To compare with
our simulations, we first note that the time in our numerical
scheme, t, is related to our parameter s by t = ωs. Now, the

exponent 2As in the exponential is equal to 12ωs/
√

x2
0 + z2

0 and
so along x0 = 0 and at z0 = 6 (x0 = 0 is where the maximum
current of our numerical simulations occured) this is simply 2t.
The slope of the numerical experiment in Fig. 4 between t = 1
and t = 3 is 1.65. This agreement between the analytical and
numerical current density build up is quite good, considering
that the WKB solution is only valid for a harmonic wavetrain
with ω� 1.

3.3. Asymmetric pulse

As mentioned in the introduction, MHD waves in the neigh-
bourhood of null points have been investigated before in cylin-
drical coordinates. In this paper however, we can readily
consider asymmetric pulses and how they propagate in the
neighbourhood of coronal null points. Hence, to demonstrate
the wrapping around the null phenomena further, we consider
the same numerical experiment above but with a pulse being
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Fig. 5. Plots of WKB solution for a wave sent in from the upper boundary and its resultant positions at times a) t = 1.0, b) t = 1.8, c) t = 2.6
and d) t = 3.4, labelling from top left to bottom right. The lines represent the front, middle and back edges of the wave, where the pulse enters
from the top of the box. Note the axes change in c) and d).

Fig. 6. Comparison of numerical simulation and analytical solution at times a) t = 1.0, b) t = 1.8, c) t = 2.6 and d) t = 3.4, labelling from top
left to bottom right. As before, the lines are the front, middle and back edges of the analytical solution.
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Fig. 7. Contours of V for a fast wave sent in from upper boundary in accordance with Eq. (12) with ω = 2π , and its resultant propagation at
times a) t = 0.5, b) t = 1.17, c) t = 1.83, d) t = 2.33, e) t = 3.17 and f) t = 3.67, labelling from top left to bottom right. The axes have been
scaled down in the last two subfigures to draw attention to the central behaviour. The number of grid points in each direction is 1200 × 1200.

fed in only on one part of the upper boundary. This pulse took
the form;

V = sin (ωt) [1 + cos π (x − 3) ]


2 ≤ x ≤ 4, z = 6

0 ≤ t ≤ π
ω
·

(12)

The propagation can be seen in Fig. 7. Again, it is important
to note the majority of the wave energy tends to accumulate at
the coronal null point; this is where wave heating would occur.
The growth of the current density occurs in a similar manner
to that demonstrated in Fig. 3. However, it is important to note
that the more the pulse is displaced to one side, the more the
boundary conditions will influence the subsequent evolution.

4. Alfvén waves

The equations describing the behaviour of the Alfvén wave,
Eqs. (10), were solved numerically using the same two-step
Lax-Wendroff scheme. We initially consider a box (0 ≤ x ≤ 6,
0 ≤ z ≤ 6) with a single wave pulse coming in across half of
the top boundary (0 ≤ x ≤ 3). We chose such a pulse because,
as shown in Fig. 8, the Alfvén wave spreads out along the field
lines as it propagates and we found that this choice of boundary
condition illustrated this effect much clearer. The full boundary
conditions were;

vy(x, 6) = sinωt
(
1 + cos

πx
3

)
for


0 ≤ x ≤ 3

0 ≤ t ≤ π
ω
,

∂vy

∂z

∣∣∣∣∣∣
z=6

= 0 otherwise

∂vy

∂x

∣∣∣∣∣∣
x=6

= 0,
∂vy

∂x

∣∣∣∣∣∣
x=0

= 0,
∂vy

∂z
|z=0 = 0.

Tests show that the central behaviour is unaffected by these
choices. The other boundary conditions follow from the re-
maining equations and the solenodial condition, ∇ · B1 = 0.
Note that we have used a slightly different inital pulse to those
in the fast wave investigation. This is because the field lines
(see Fig. 1) leave the box and we know that the Alfvén wave
follows the field lines. Hence, we made this choice of inital
pulse in case reflections from the side boundaries influenced
the subsequent evolution.

We found that the linear Alfvén wave travels down from the
top boundary and begins to spread out, following the field lines.
As the wave approaches the lower boundary (the separatrix), it
thins but keeps its original ampitude. The wave eventually ac-
cumulates very near the separatrix; defined by the x axis. This
can be seen in Fig. 8.

4.1. Analytical results

The Alfvén equation we have to solve takes the form:

∂2vy

∂t2
=

(
x
∂

∂x
− z
∂

∂z

)2

vy,

and this can be solved using the method of characteristics. Let
∂
∂s =

(
x ∂∂x − z ∂∂z

)
and comparing the original equation with

∂vy
∂s =

∂x
∂s
∂vy
∂x − ∂z∂s

∂vy
∂z leads to:

x = x0es, z = z0e−s, (13)
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Fig. 8. Contours of vy for an Alfvén wave sent in from upper boundary for 0 ≤ x ≤ 3.0 and its resultant propagation at times a) t = 0.25,
b) t = 0.5, c) t = 0.75, d) t = 1.0, e) t = 1.25 and f) t = 1.5, labelling from top left to bottom right.

where x0 and z0 are the starting positions of our characteristics.
In our simulation, z0 = 6. Thus, our characteristic equation,
∂2vy
∂t2 =

∂2vy
∂s2 can be solved with a D’Alembert solution such that:

vy = F (x0)G (t − s) . (14)

In order to compare these analytical results with the numerical
results above, we substitute the same initial conditions into the
D’Alembert solution, i.e. F (x0) = 1 + cos

(
πx0
3

)
and G (t) =

sin (ωt) to get the analytical solution for vy, namely:

vy(x, z, t) =
[
1 + cos

(
πxz
18

)]
sinω

(
t + log

z
6

)

for


0 ≤ t + log

z
6
≤ π
ω

0 ≤ πxz
6
≤ 3.

(15)

The agreement between the analytical and numerical results
is excellent (the contours essentially lie on top of each other),
even though the analytical solution does not satisfy the numer-
ical boundary conditions.

Furthermore, we use our analytical solution to calculate by,
jx and jz:

by = −
[
1 + cos

(
πxz
18

)]
sinω

(
t + log

z
6

)
, (16)

jx =
2π
z

[
1 + cos

(
πxz
18

)]
cosω

(
t + log

z
6

)

−πx
18

sin
(
πxz
18

)
sinω

(
t + log

z
6

)
, (17)

jz =
πz
18

sin
(
πxz
18

)
sinω

(
t + log

z
6

)
(18)

all for


0 ≤ t + log

z
6
≤ π
ω

0 ≤ πxz
6
≤ 3.

4.2. Current

As in the fast wave case, we have a spatially varying perturbed
magentic field and so current is forming, given by 1

µ
(∇ × B1) =

( jx, 0, jz). In the Alfvén case only jx = − 1
µ

∂by
∂z and jz = 1

µ

∂by
∂x

are present. The evolution of the current can be seen in Figs. 9
and 11.

From Fig. 9, we see that jx spreads out along the field lines,
accumulating along the separatrix; z = 0. jx takes a discontin-
uous form; this is due to our choice of initial conditions and
this is confirmed by the analytical solution. jx also increases
in time. From Eq. (17), we see that jx grows like 1

z and thus,
in accordance with Eq. (13), this means jx grows like es, i.e.
grows as et (since s = t+ constant in the D’Alembert solution).
The behaviour of the maximum of jx with time can be seen
in Fig. 10; the slope of the line is +1.0 in agreement with our
analytical solution.

The behaviour of jz can be seen in Fig. 11. jz takes the spa-
tial form of the inital pulse and, in the same way as vy, spreads
out along the fieldlines. It decays in amplitude as it approaches
the separatrix. The analytical solution, Eq. (18), shows that
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Fig. 9. Surfaces of jx at times a) t = 0.25, b) t = 0.5, c) t = 0.75, d) t = 1.0, e) t = 1.25 and f) t = 1.5, labelling from top left to bottom right.

Fig. 10. Maximum jx against time elapsed (left), log (maximum jx) against time elapsed (right). The slope of the line is +1.0.

it behaves like z (and z is going to zero). Thus, according to
Eq. (13), jz decays as e−t. The behaviour of the maximum of jz
with time can be seen in Fig. 12. In this case, the slope of the
line is −1.0 in agreement (again) with our analytical solution.

Hence, the Alfvén wave causes current density to build up
along the separatrix.

5. Conclusions

This paper describes the start of an investigation into the nature
of MHD waves in the neighbourhood of null points. From the
work explained above, it has been seen that when a fast mag-
netoacoustic wave propagates near a magnetic X-type neutral
point, the wave wraps itself around the null point due to re-
fraction (at least in two dimensions). It has also been seen that
this behaviour causes a large current density to accumulate at

the null and simulations have shown that this build up is expo-
nential in time, although the exponential growth in this linear
simulation will be modified by non-linearities. We also note
that for the set of disturbances investigated here, there is no
evidence of the X-point collapsing; rather, the current density
seems to form a spike. However, it is clear that the refraction
of the wave focusses the energy of the incident wave towards
the null point. As seen from both the numerical work and ana-
lytical approximations, the wave continues to wrap around the
null point, again and again. The physical significance of this
is that any fast magnetoacoustic disturbance in the neighbour-
hood of a neutral point will be drawn towards the region of zero
magnetic field strength and focus all of its energy at this point.
Hence, this is where the build up of current will occur and en-
ergy will be dissipated. Experiments are being carried out to
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Fig. 11. Surfaces of jz at times a) t=0.25, b) t=0.5, c) t=0.75, d) t =1.0, e) t=1.25 and f) t=1.5, labelling from top left to bottom right.

Fig. 12. Maximum jz against time elapsed (left), log (maximum jz) against time elapsed (right). The slope of the line is −1.0.

extend the analysis to multiple null points and three dimensions
but, if the results transfer, then null points should effectively
trap and dissipate the energy contained in fast magnetoacoustic
waves. Therefore, wave heating will naturally occur at coronal
null points.

The numerical experiments and analytical work described
above were all conducted using the ideal MHD equations.
However, we can make some comments about the addition of
resistivity into the model. For the fast magnetoacoustic wave,
all the current density accumulates at the null point and appears
to form a null line. Hence, no matter how small the value of the
resistivity is, if we include the dissipative term, then eventually
the η∇2 B1 term in Eq. (6) will become non-negligible and dis-
sipation will become important. In addition, since ∇2B1 grows
exponentially in time, the diffusion terms become important

in a time that depends on log η; as found by Craig & Watson
(1992) and Craig & McClymont (1993). This means that linear
wave dissipation will be very efficient. Thus, we deduce that
null points will be the locations of wave energy deposition and
preferential heating.

In the case of the Alfvén wave, the results show that the
wave propagates along the field lines, accumulating on the sep-
aratrix and hence, due to symmetry, along the separatrices. The
wave also thins and stretches along the separatrices. The cur-
rent jx increases and accumulates along the separatrix, whilst jz
decays away. This is seen in both the analytical and numerical
work.

Now consider the effect of including resistivity.
Considering∇2 B1, this can be split into ∂

∂x
∂by
∂x +

∂
∂z
∂by
∂z =

∂ jz
∂x +

∂ jx

∂z .

As shown in the appendix, ∂ jz
∂x decays away (exponentially) but
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Fig. 13. Plot of maximum ∂
∂x jz against time (left), plot of log maximum ∂

∂x jz against time (right). The slope of the line is −2.

Fig. 14. Plot of minimum − ∂
∂z jx against time (left), plot of log−minimum ∂

∂z jx against time (right). The slope of the line is +2.

∂ jx

∂z increases (exponentially). We have also seen that the cur-
rent accumulates along the separatrices. Hence, eventually (due

to its exponential increase), the resistive term, η∂
2by
∂z2 = η

∂ jx

∂z ,
will become important, no matter how small the value of η.
Hence, all the Alfvén wave energy will be dissipated along the
separatrices. This is a different behaviour to that of the fast
wave in the sense that the two wave types deposit all their wave
energy at different areas (along the separatrices as opposed to
the null point), although the phenomenon of depositing wave
energy in a specific area is common to both.

One of the next steps to be taken is to extend the model
to 3D. Galsgaard et al. (2003) performed a similar analysis of
MHD wave propagation for a particular disturbance of a sym-
metric 3D null. Their findings show a close link to our own and
support the possibility of transferring our results to 3D.

Another of the steps to be taken is to investigate the effect of
pressure on the system. This has been investigated by Craig &
Watson (1992) with cylindrical symmetry and they find that
the rapid current growth is halted. The most obvious effect of
including a finite β is the introduction of slow magnetoacoustic
waves. Fast waves can now pass through the null point (as we
would now have a non-zero sound speed) and thus perhaps take
wave energy away from that area. The exact nature depends on
the choice of boundary conditions. In a simple manner, if the β
has a value of β0 � 1 at, say, x2 + z2 = 1, the finite pressure
effects will become important once x2 + z2 = 2β. From our
WKB solution, with z0 = 6 and x0 = 0, the gas pressure will
become non-negligible when t 	 − 1

2 log β0. This is not true for
Alfvén waves since they are unaffected by the finite β.

Finally, the validity of the linearisation is questionable once
the perturbed velocity becomes comparable to the magnitude

of the local Alfvén speed. In a similar argument to the fi-
nite β case, the linearisation is valid until t 	 − log MA,
where MA is the initial Alfvén Mach number. Once the Alfvén
Mach number exceeds unity, the fast wave is likely to shock
and the wave energy will still be dissipated but this time in
the shock. A more rigorous analysis requires detailed numeri-
cal simulations of the non-linear MHD equations and will be
investigated in the future.
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Appendix

Consider the induction equation for the Alfvén wave:

∂by
∂t
=

(
x
∂

∂x
− z
∂

∂z

)
vy + η

∂

∂x
jz − η ∂

∂z
jx.

In order for the resistive terms to become important, they have
to become comparable to the convective term;

(
x ∂
∂x − z ∂

∂z

)
vy.

So we have to calculate the behaviour of ∂
∂x jz and the behaviour

of ∂
∂z jx over time. From Fig. 13, we see that the maximum

of ∂∂x jz decays exponentially over time. From Fig. 14, we see
that the maximum of − ∂

∂z jx increase exponentially over time.
Hence, the resistive terms invloving ∂

∂z jx will eventually be-
come important, no matter how small the value of the resis-
tivity, whereas the resistive terms invloving ∂

∂x jz will become
negligible.
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