
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2011; 87:2–14
Published online 22 June 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.2932

Deflated preconditioned conjugate gradient solvers for the
pressure-Poisson equation: Extensions

and improvements

Rainald Löhner1,∗,†, Fernando Mut1, Juan Raul Cebral1, Romain Aubry2

and Guillaume Houzeaux2

1CFD Center, Department of Computational and Data Science, M.S. 6A2, College of Science,
George Mason University, Fairfax, VA 22030-4444, U.S.A.

2Barcelona Supercomputing Center, Barcelona, Spain

SUMMARY

Extensions and improvements to a deflated preconditioned conjugate gradient technique for the solution of
the pressure-Poisson equation within an incompressible flow solver are described. In particular, the use of
the technique for embedded grids, for cases where volume of fluid or level set schemes are required and its
implementation on parallel machines are considered. Several examples are included that demonstrate a
considerable reduction in the number of iterations and a remarkable insensitivity to the number of groups/
regions chosen and/or to the way the groups are formed. Copyright � 2010 John Wiley & Sons, Ltd.

Received 11 January 2010; Revised 6 April 2010; Accepted 7 April 2010

KEY WORDS: iterative solvers; conjugate gradients; pressure-Poisson equation; incompressible solvers;
finite elements; CFD

1. INTRODUCTION

Many solvers for the incompressible Navier–Stokes equations, given by

�v,t +�v∇v+∇ p = ∇�∇v, (1)

∇ ·v = 0. (2)

where �,v, p,� denote the density, velocity, pressure, and viscosity of the fluid are based on
so-called projection or fractional step schemes. These split the advancement of the flowfield in
time into the following three substeps [1–22]:

• Advective–diffusive prediction: vn →v∗
[�

�t
−∇�∇

]
(v∗−vn)+�vn ·∇vn +∇ pn =∇�∇vn. (3)

• Pressure correction: pn → pn+1

∇ ·vn+1 = 0, (4)

�
vn+1 −v∗

�t
+∇(pn+1 − pn) = 0, (5)

∗Correspondence to: Rainald Löhner, CFD Center, Department of Computational and Data Science, M.S. 6A2,
College of Science, George Mason University, Fairfax, VA 22030-4444, U.S.A.

†E-mail: rlohner@gmu.edu

Copyright � 2010 John Wiley & Sons, Ltd.

DEFLATED CONJUGATE GRADIENT SOLVERS 3

which results in

∇2(pn+1 − pn)= �∇ ·v∗

�t
. (6)

• Velocity correction: v∗ →vn+1

vn+1 =v∗−�t∇(pn+1 − pn). (7)

The solution of the so-called Pressure-Poisson equation, given by Equation (6), which results
in a discrete system [23] of the form

A ·x=b (8)

is typically carried out with preconditioned conjugate gradient (PCG) solvers [18, 24], and
consumes a considerable percentage of the overall computational effort. Consequently, many
attempts have been made to mitigate the impact of the Pressure-Poisson equation on the overall
cost of a simulation. Options that have proven useful include:

• Improved prediction of the starting value for the iterative solver [10, 20];
• Linelet preconditioners for highly stretched (e.g. boundary layer) grids [5, 18] (in the sequel

diagonal preconditioning is assumed to be the default for isotropic grids);
• Multistage or implicit treatment of the advective terms (more advective–diffusive work,

allowing larger timesteps, nearly the same work for the Pressure-Poisson equation) [19, 21].

Several attempts have also been made to use multigrid solvers [2, 4, 7, 25–27]. However, for
unstructured grids the expected gains have proven elusive to date. Moreover, cases with moving
and or adapting meshes place further burdens on multigrid solvers vis a vis conjugate gradient
solvers. The present paper describes extensions and improvements to a simple deflation technique
[28] that has proven remarkably robust, and that works extremely well for those cases where
traditional PCGs perform poorly.

2. DEFLATED CONJUGATE GRADIENTS

The discretization of the Pressure-Poisson equation (Equation (6)), as well as many other many
field equations (e.g. heat conduction and elasticity), leads to a symmetric positive-definite (SPD)
matrix system of the form:

A ·x=b. (9)

Besides multigrid [29] (if applicable), the conjugate gradient [30] is the method of choice for
solving SPD systems, such as Equation (9), in an iterative way. Its memory requirements are
minimal, which is particularly attractive for three-dimensional problems. It may also be viewed
as a direct method, giving the solution in a finite number of steps in exact arithmetic, although it
converges much faster in practice. Defining the residual r as

r=b−A ·x, (10)

the basic iterative step is given by

�xk =�k(rk−1 +ek−1�xk−1)=�kvk, (11)

where �k,ek−1 are scaling factors chosen so that successive increments are A-orthogonal to each
other:

�xk−1 ·A ·�xk =0. (12)

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

4 R. LÖHNER ET AL.

This yields

ek−1 =− rk−1 ·A ·�xk−1

�xk−1 ·A ·�xk−1
, (13)

which may be simplified for linear systems by observing that

rk−1 −rk−2 =−A ·�xk−1, (14)

and, hence,

ek−1 =− rk−1 ·(rk−1 −rk−2)

�xk−1 ·(rk−1 −rk−2)
. (15)

The parameter �k is obtained by forcing

A ·(xk−1 +�xk)=b (16)

in a ‘matrix weighted’ sense by multiplication with �xk

�xk ·A ·�xk =�xk ·rk−1, (17)

yielding

�k = vk ·rk−1

vk ·A ·vk
. (18)

The basic idea behind the deflated conjugate gradient (DCG) is to solve in a separate manner,
low frequency, and high frequency errors based on the fact that Krylov iterative solvers are known
to be very efficient for reducing high frequency modes whereas quite slow to smooth out low
frequency ones [28, 31–48]. At the algorithmic level this may be viewed as adding one more
(low-dimensional) search direction W·d for the increment:

�xk =�k(rk−1 +ek−1�xk−1 −W·dk)=�kvk . (19)

The columns of the matrix W are a basis for the deflation subspace. d is of very low dimension-
ality (<100) as compared with x (number of points in the mesh). Forcing successive increments
to be A-orthogonal now yields:

�xk−1 ·A ·(rk−1 +ek−1�xk−1 −W·dk)=0. (20)

The additional search direction is obtained by enforcing that all increments be A-orthogonal
with W (i.e. WT ·A ·�xk =0∀k):

WT ·A ·W·dk =WT ·A ·rk−1. (21)

As WT ·A ·�xk−1 =0, ek−1 is obtained as before from:

ek−1 =− rk−1 ·A ·�xk−1

�xk−1 ·A ·�xk−1
, (22)

vk from

vk =rk−1 +ek−1�xk−1 −W·dk, (23)

and �k from Equation (18).

2.1. Algorithmic implementation

An optimal algorithmic implementation is given in [49]:

• Define a preconditioning matrix: M
• Define: Â=WT ·A ·W

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

DEFLATED CONJUGATE GRADIENT SOLVERS 5

• Start: Given x−1
r−1 =b−A ·x−1

Â ·d0 =WT ·r−1
x0 =x−1 +W·d0
r0 =b−A ·x0

• Compute: M·z0 =r0

• Solve: Â·d=WT ·A ·z0
• Set: p0 =−W·d+z0
• Do until convergence:

� j = (r j ·z j)/(p j ·A ·p j)
x j+1 =x j +� j p j
r j+1 =r j −� j A ·p j
M·z j+1 =r j+1
� j = (r j+1 ·z j+1)/(r j ·z j)

Â ·d j =WT ·A ·z j+1
p j+1 =z j+1 +� j p j −W·d j

As the dimensionality of d is low, the solution/inversion of Â is carried out using a skyline
solver. The extra storage requirements for the DPCG are very modest: both W and WT ·A may
be stored in two arrays of O(Np), where Np denotes the number of points in the mesh. This is in
contrast with eigenvalue deflation [50], where storage increases proportionally to the number of
eigenvalues considered.

2.2. Definition of projection space

The DCG technique requires the definition of a mapping W from the lower-dimensional basis d to
the vector of unknowns x. The simplest way of defining this mapping W for a mesh-based system
of equations is by agglomerating the nodes of the mesh into subdomains (or ‘coarse grains’) and
then defining a polynomial reconstruction over each of them. The lowest-order reconstruction (and
the one most often employed due to its good performance, very low storage requirements and
simple interpretation) assumes that a constant value is assigned to all the points of a subdomain.
The entries in W are unity for the points of this region, and zero for all other points. We have
implemented several ways of defining these regions [28]. The two most commonly used are:

(a) Seedpoints: For this (manual) technique, the user defines an arbitrary set of points, called
seedpoints. Given a mesh, the closest mesh points to the seedpoints are found, and a region number
is assigned accordingly. Points not assigned to any region are then added one layer at a time until
all the points have been assigned a region number.

(b) Advancing front: Starting from a point where x is prescribed, neighboring points are added
until a specified number of points per region is exceeded. The last set of points added is then used
as a starting point for the next group. The procedure is repeated until all points have been assigned
a region number. This technique requires a number of refinements in order to work reliably. The
main aim of these improvement techniques is to assure that the points belonging to a group
are connected in space, so that the approximation obtained from the coarse-grain agglomeration
reproduces as faithfully as possible the field of unknowns seen by the mesh. If a desired number
of elements or points is prescribed per region, it could happen that at corners or crevices, a few
points are added to a new group, prompting the addition of further points that are not connected
to these. The best way to proceed is to keep forming groups, and then to add the smaller groups
to the neighboring groups in a post-processing step.

3. EMBEDDED AND IMMERSED GRIDS

Embedded and immersed grids have proven invaluable when dealing with dirty or incomplete CAD
geometry [51–54], cases where the geometrical input would require too much human intervention

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

6 R. LÖHNER ET AL.

CSD Surface

i

j

Figure 1. Embedded surface.

or time [55], and fluid–structure problems with changing topology [53, 56]. For the DCG technique
to work well, it is important that points on either side of an embedded surface are not allocated
to the same group (Figure 1). After all, the unknowns in the upper and lower parts could be
completely different. If allocated to the same deflation group, the approximation via the deflation
vector d would be very poor, yielding no gain. When adding points to a group via the advancing
front technique, care is therefore taken not to consider any edges crossed by an embedded surface
or immersed body.

4. VOLUME OF FLUID AND LEVEL SET TECHNIQUES

Volume of fluid (VOF) or level set (LS) techniques have been used frequently to simulate flows
with free surfaces [57, 58]. As the pressure is only computed in the region where the liquid is
present, the deflated PCG technique has to be modified accordingly. One option would be to form
all groups before every update/timestep. This is rather expensive, and as it turns out, unnecessary.
A far simpler way to proceed is to see whether all points/edges within a deflation group/region
are active. Only if this is the case, the group is considered in the deflation procedure. Conversely,
should this not be the case, the usual PCG is used.

5. PARALLEL IMPLEMENTATION

5.1. Distributed memory implementation

Compared with the parallel PCG on distributed memories, the deflated PCG in parallel involves
the construction of matrix Â at the beginning of each solve, the construction of the small RHS
at each iteration by the multiplication with WT, the resolution of the small linear system, and the
extra update for p j+1 through the multiplication by W. In this work, the group decomposition is
completely independent of the domain decomposition, so that each processor is allowed to contain
an arbitrary number of groups, although roughly the same number is expected as both the domain
and the group decomposition are isotropic.

As far as the update for p j+1 is concerned, the multiplication by W is straightforward due to
the fact that it is completely local as each point knows which group it belongs to, so nothing
special needs to be done compared with the serial deflated PCG. For the construction of matrix
Â, each processor builds its own part of the matrix and an All_Reduce() is performed so that each
processor has a copy of the matrix. The inversion is done in parallel for each processor at the
beginning of the solve. Although the small matrix may be quite large for an All_Reduce(), it does
not represent a significant CPU part of the whole solve. As in the serial version, it is possible to
store matrix WT ·A locally in each processor with a point-to-point communication at the beginning
of the solve.

The main difficulty lies in the construction of the small RHS. As there are no particular
relationship between groups and subdomains, the groups are not local and a processor j that
is not a neighbor of processor i will contribute to the small RHS needed by processor i . This
involves another All_Reduce() at each iteration. As will be seen in the numerical results, this

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

DEFLATED CONJUGATE GRADIENT SOLVERS 7

may represent a nonnegligible part of the global CPU consumed by the solver. Two ways to
improve the solver in parallel have been followed. First, as a global All_Reduce() is needed by the
deflation and a small All_Reduce() is needed by the solver to compute the global � j coefficient,
the local � j coefficient may be computed first in each processor; then, the local RHS to the small
system may be computed next; and then an All_Reduce() on the small RHS extended by the local
� j coefficient may be performed. The vector to be reduced has been expanded in a negligible
way, so that negligible time is spent due to the increased size. However, the latency due to the
All_Reduce() of the � j coefficient has been completely eliminated as will be shown in the numerical
results.

The second way to improve the parallel performances of the deflated PCG was motivated by the
fact that, due to isotropy of the groups and the subdomains, only close (but not necessarily neighbor)
subdomains contribute to the same part of the small RHS, hence the All_Reduce() involves many
zero additions. Second, the implementation of an All_Reduce() traditionally involves a first phase
to reduce the sought vector, and a second phase to gather the sought vector to all the processors,
with a global complexity of 2∗O(log(nproc)). Another implementation would be to rely on an
All_Gatherv() where each processor would gather its contribution to the number of group in its
own domain to the rest of the other processors. The complexity of this operation is only half of the
All_Reduce(). However, a larger vector is gathered as it has the size of the sum of the number of
groups for each processor. The reasoning relies on the fact that this larger vector will be gathered
only at the last stages of the All_Gatherv(), whereas an All_Reduce() needs to exchange a vector
of the same size at each stage.

The deflated PCG has its roots in the multigrid paradigm. However, compared with a parallel
multigrid implementation, the direct solve is the cornerstone of the deflated technique. In a multi-
grid context, every solve is performed by an iterative approach. The main strength of an itera-
tive approach from a parallel viewpoint is that only point-to-point communications are involved
compared with the global communications induced by the RHS of the direct solver. This may
constitute a bottleneck for a massively parallel deflated PCG, although multigrid may also degrade
in performance in such instances.

5.2. Shared memory implementation

As stated before, the deflated PCG requires the construction of the matrix Â at the beginning of
each solve, the construction of the small RHS at each iteration by the multiplication with WT, the
resolution of the small linear system, and the extra update for p j+1 through the multiplication by
W. The multiplication by W to obtain p j+1 does not involve any form of memory contention or
recursion, and is therefore straightforward. The construction of WT ·Â is performed over groups
of edges that do not have any memory contention, neither in serial nor in parallel [58] (the same
could be done over elements if these are grouped such that memory contention is avoided). The
final product to obtain WT ·Â ·W is more difficult to parallelize, and has been carried out in the
scalar mode so far. At this point, we have only used the shared memory implementation on less
than 64 processors. In such cases this (scalar) part, as well as the (scalar) matrix solve, does not
impact the CPU considerably.

6. RESULTS

6.1. Flow past a sphere, embedded

The first case, taken from [22], considers laminar incompressible flow past a sphere, and is shown
in Figure 2. Owing to symmetry considerations, only a quarter of the sphere is treated. The physical
parameters were set as follows: D =1, v∞ = (1,0,0), �=1.0, �=0.01, yielding a Reynolds number
of Re=100.

The grid had an element size of approximately h =0.0450 in the region of the sphere. This
led to a grid with approximately 140 Kels. The surface grid and the footprint of the embedded

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

8 R. LÖHNER ET AL.

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 5 10 15 20 25

P
re

ss
ur

e
Ite

ra
tio

ns

Timetep

Deflation 0
Deflation 20
Deflation 40

(a) (b)

(d) (e)

(c)

Figure 2. (a)–(c) Sphere: surface grid, Abs(Veloc), Pressure; (d) deflation regions; and
(e) pressure iterations required.

surface on the boundary are shown in Figure 2(a). The respective pressures and absolute values
of the velocities are shown in Figures 2(b,c). The (20) deflation regions may be discerned from
Figure 2(d). The DCG technique was used for the Poisson equation [21]. Figure 2(e) compares the
number of pressure iterations required with and without deflation. Note that even on this coarse
mesh with rather small graph depth, the savings are considerable.

6.2. Flow in the brain

This case has been chosen to illustrate the efficiency of the deflated PCG in a parallel, distributed
memory context. The geometry displayed in Figure 3(a) represents the arteries in the brain. Similar
problems are found for complex engineering piping applications. The mesh has 3.4 Mpts and
19 Mels. This example has been run on 512 IBM Power 5 processors. The group number has been
set to 500 for this case. The convergence obtained for this example is displayed in Figure 3(b).
The convergence is similar to the one obtained in the serial mode, as a speed-up of one order
of magnitude is reached in the iteration number. However, various interesting features appear in
the parallel version. First, due to the complex topology of the brain, various arteries abut at the
same area, as shown in Figure 3(c). One may display the number of surrounding processors for
each processor, as illustrated in Figure 3(d,e), where each point represents the barycenter of each
processor and its color is related to the number of neighboring processors. The complex topology
is reflected in the large variation of surrounding processors per processor. In an artery, the average
surrounding processors should be around 2, whereas it is seen that some processors have up to
9 neighbors. In this example, METIS was used to partition the domain. However, it is thought
that the variation in the surrounding domains is more due to the complex topology than to a
flaw in METIS. An imbalance is also reflected in each subdomain as the number of elements per
processor ranges from 2.5 to 3.5 Kels. To further study the parallel implementation, traces of the
run are displayed in Figures 3(f–i). Figure 3(f) shows the volume imbalance or the time spent in
each processor, where the horizontal axis represents the time and the vertical axis the processor
number. Note that some processors spend much more time than others in CPU time and that, for

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

DEFLATED CONJUGATE GRADIENT SOLVERS 9

Figure 3. (a) Brain geometry with group distribution; (b) brain convergence of Poisson solver;
(c) zoom of a convergent zone (d,e) neighbors per processor and zoom; (f) volume imbalance.
Time in horizontal and processor number in vertical. The green color represents the computational
time only. Darker color means longer computation time; (g) collective communications related to
algorithm; (h) original collective communication compared with computation; (i) collective size
improved blue is associated with All_Reduce(), green to Send_Receive(), and black is computation;

and (j) implementation with All_Gatherv().

the same processors, the point-to-point communication is much longer, as there are much more
neighbors to communicate with. Figure 3(h) presents the mapping between the trace colors and
the algorithm for the main loop. In Figure 3(h), the CPU time of the collective communications,
computation time, and Send_Receive communications are illustrated by different colors. As may
be observed, the time spent in the communication time represents roughly 40% of the total time.
In Figure 3(i), the improvement performed by grouping the All_Reduce() related to the scalar
product with the one associated with the small RHS is displayed, and may be compared with
the original one, Figure 3(h). Roughly, the cost of the scalar product communication has been
eliminated. Finally, Figure 3(j) illustrates the implementation with the All_Gatherv(). For this case,
the average number of groups per subdomain is three, which means that the gathered vector has
a size of 1560. This must be compared with the size of the All_Reduced() vector, which is equal
to the number of groups, namely 512. It is observed that the All_Gatherv() does not improve the

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

10 R. LÖHNER ET AL.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
ite

p

Timestep

NG=0
NG=200

(a) (b)

(c)

Figure 4. (a, b) Moldfilling: free surface; and (c) moldfilling: number of iterations required.

CPU time. This may be related to the fact that the final vector size has been multiplied by a factor
of three.

To sum up, the convergence has been increased by an order of magnitude, but the communication
represents 40% of the run-time. The final parallel speed up between the PCG and its deflated
version is therefore around four. It is not as impressive as the serial case but is still considerable,
as some cases may not even converge without deflation.

6.3. Moldfilling

The third case considers the filling of a piece (in this case a large earthmover shovel) with molten
metal. The flow is described by the incompressible Navier–Stokes equations with a Smagorinsky
turbulence model. Two stages during the mold-filling process are shown in Figures 4(a, b).

The mesh had approximately 1.42 Mels. The DCG technique was used for the Poisson equation
[21] that enforces the incompressibility of the fluid. Figure 4(c) compares the number of pressure
iterations required with and without deflation. As the number of elements with fluid increases
continuously as the piece is filled, so does the graph distance between the inflow (prescribed
velocity) and the free surface (prescribed pressure). This translates into an increasing number of
pressure iterations required per step as the filling process takes place. Using the deflated groups,
this number is almost constant.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

DEFLATED CONJUGATE GRADIENT SOLVERS 11

Figure 5. (a–c) Aneurysm: geometry and wall shear stress.

Table I. Statistics for aneurysm.

nelem (M) nproc CPU (s) Speedup Speedup(Ideal) nproc*time/elem/step

14 8(S) 31853 1.00 1.00 1.76e−5
14 8(S1) 15362 1.00 1.00 0.88e−5
64 4(S) 199433 1.00 1.00 1.25e−5
64 64 18176 1.00 1.00 1.82e−5
64 128 8901 2.04 2.00 1.78e−5
64 256 5330 3.41 4.00 2.13e−5
128 8(S1) 319592 1.00 1.00 2.00e−5
128 256 13822 1.00 1.00 2.76e−5

6.4. Aneurysm

The fourth example is the incompressible flow in an aneurysm with a stent. The geometry, together
with the stent, is shown in Figure 5(a,b). The shear stress obtained is shown in Figure 5(c). This
case was run on an SGI ICE machine with 640 Intel processors running at 2.3 Ghz. Each node
contained two processors and the nodes were grouped in to 80 blades or nodes of 8 cores at each
node (2 Quad-core Xeon processors Hapertown E5440 series). The interconnection network was
composed of two InfinibBand interconnects (10/20 Gb/s), with one interconnect dedicated to I/O
and the other to MPI traffic. The operating system was Suse Linux Enterprise 10 tuned for SGI.

The code (FEFLO) was compiled using the Intel compiler, version 10.1.017, and the following
compiler options were used:

The advective terms were integrated implicitly using an LU-SGS technique [59–61]. The
pressure-Poisson equation was solved using a diagonally PCG algorithm with projective pressure
prediction [20] and approximately 200 deflated groups. The (approximately 120 000) spheres that
describe the stent are treated using the immersed body approach [22, 56, 62].

This case was run to steady state in 1000 timesteps. Different meshes and different numbers
of processors were used to obtain the timings, which are summarized in Table I. The code was
also run in shared memory mode on eight processors on the SGI ICE (denoted as 8(S)), as
well as some Harpertown shared memory machines (denoted as 8(S1)). Note that the ‘figure of
merit’ nproc*time/nelem/nstep remains largely unaffected by the grid size or by the number of
processors, up to approximately 300 Kels per processor.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

12 R. LÖHNER ET AL.

7. CONCLUSIONS AND OUTLOOK

The deflated PCG technique has been extended to include:

• Embedded grid techniques (i.e. treatment of cut edges and deactive zones);
• Cases where VOF or LS schemes are required; and
• The implementation on parallel machines (in particular distributed memory machines).

Several examples are included that demonstrate a considerable reduction in the number of iterations
and a remarkable insensitivity to the number of groups/regions chosen, and/or to the way the
groups are formed.

Future developments will consider extensions to cases where embedded surfaces or immersed
bodies are moving. For these, the techniques used to date to assign points to deflation groups are
inadequate.

REFERENCES

1. Kim J, Moin P. Application of a fractional-step method to incompressible Navier–Stokes equations. Journal of
Computational Physics 1985; 59:308–323.

2. Bell JB, Colella P, Glaz H. A second-order projection method for the Navier–Stokes equations. Journal of
Computational Physics 1989; 85:257–283.

3. Löhner R. A fast finite element solver for incompressible flows. AIAA-90-0398, 1990.
4. Bell JB, Marcus DL. A second-order projection method for variable-density flows. Journal of Computational

Physics 1992; 101:2.
5. Martin D, Löhner R. An implicit linelet-based solver for incompressible flows. AIAA-92-0668, 1992.
6. Gunzburger MD, Nicolaides R. Incompressible Computational Fluid Dynamics: Trends and Advances. Cambridge

University Press: Cambridge, 1993.
7. Alessandrini B, Delhommeau G. A multigrid velocity-pressure-free surface elevation fully coupled solver for

calculation of turbulent incompressible flow around a hull. Proceedings of the 21st Symposium on Naval
Hydrodynamics, Trondheim, Norway, June 1996.

8. Kallinderis Y, Chen A. An incompressible 3-D Navier–Stokes method with adaptive hybrid grids. AIAA-96-0293,
1996.

9. Ramamurti R, Löhner R. A parallel implicit incompressible flow solver using unstructured meshes. Computers
and Fluids 1996; 5:119–132.

10. Fischer PF. Projection techniques for iterative solution of Ax=b with successive right-hand sides. Computer
Methods in Applied Mechanics and Engineering 1998; 163:193–204.

11. Löhner R, Yang C, Onate E, Idelssohn S. An unstructured grid-based, parallel free surface solver. Applied
Numerical Mathematics 1999; 31:271–293.

12. Codina R. Pressure stability in fractional step finite element methods for incompressible flows. Journal of
Computational Physics 2001; 170:112–140.

13. Takamura A, Zhu M, Vinteler D. Numerical simulation of pass-by maneuver using ALE technique. JSAE Annual
Conference (Spring), Tokyo, May 2001.

14. Eaton E. Aero-acoustics in an automotive HVAC module. American PAM User Conference, Birmingham, Michigan,
24–25 October 2001.

15. Karbon KJ, Kumarasamy S. Computational aeroacoustics in automotive design, computational fluid and solid
mechanics. Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Boston, June
2001; 871–875.

16. Li Y, Kamioka T, Nouzawa T, Nakamura T, Okada Y, Ichikawa N. Verification of aerodynamic noise simulation
by modifying automobile front-pillar shape. JSAE 20025351, JSAE Annual Conference, Tokyo, July 2002.

17. Karbon KJ, Singh R. Simulation and design of automobile sunroof buffeting noise control. 8th AIAA-CEAS
Aero-Acoustics Conference, Brenckridge, June 2002.

18. Soto O, Löhner R, Camelli F. A linelet preconditioner for incompressible flows. International Journal of Numerical
Methods for Heat and Fluid Flow 2003; 13(1):133–147.

19. Löhner R. Multistage explicit advective prediction for projection-type incompressible flow solvers. Journal of
Computational Physics 2004; 195:143–152.

20. Löhner R. Projective prediction of pressure increments. Communications in Numerical Methods in Engineering
2005; 21(4):201–207.

21. Löhner R, Yang C, Cebral JR, Camelli F, Soto O, Waltz J. Improving the speed and accuracy of projection-type
incompressible flow solvers. Computer Methods in Applied Mechanics and Engineering 2006; 195(23–24):3087–
3109.

22. Löhner R, Appanaboyina S, Cebral J. Comparison of body-fitted, embedded and immersed solutions for low
Reynolds-number flows. International Journal for Numerical Methods in Fluids 2008; 57(1):13–30.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

DEFLATED CONJUGATE GRADIENT SOLVERS 13

23. Zienkiewicz OC. The Finite Element Method. McGraw-Hill: New York, 1991.
24. Saad Y. Iterative Methods for Sparse Linear Systems. PWS Publishing: Boston, 1996.
25. Waltz J, Löhner R. A grid coarsening algorithm for unstructured multigrid applications. AIAA-00-0925, 2000.
26. Waltz J. Unstructured multigrid methods. Ph.D. Thesis, George Mason University, 2000.
27. Chen NH. Multigrid methods for the incompressible Navier–Stokes problem on three-dimensional unstructured

meshes. Ph.D. Thesis, George Mason University, 2004.
28. Aubry R, Mut F, Löhner R, Cebral JR. Deflated preconditioned conjugate gradient solvers for the pressure-Poisson

equation. Journal of Computational Physics 2008; 227(24):10196–10208.
29. McCormick SF. Multigrid Methods. SIAM: Philadelphia, PA, 1987.
30. Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of Research of the

National Bureau of Standards 1952; 49:409–436.
31. van der Sluis A, van der Vorst HA. The rate of convergence of the conjugate gradients. Numerische Mathematik

1986; 48:543–560.
32. Nicolaides RA. Deflation of conjugate gradients with applications to boundary value problems. SIAM Journal on

Numerical Analysis 1987; 24:355–365.
33. Mansfield L. On the use of deflation to improve the convergence of the conjugate gradient iteration.

Communications in Applied Numerical Methods 1988; 4:151–156.
34. Mansfield L. On the conjugate gradient solution of the schur complement system obtained from domain

decomposition. SIAM Journal on Numerical Analysis 1990; 27:1612–1620.
35. Mansfield L. Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration on parallel

computers. SIAM Journal on Numerical Analysis 1991; 12:1314–1323.
36. Mulyarchik SG, Bielawski SS, Popov AV. Efficient computational method for solving linear systems. Journal of

Computational Physics 1994; 110:201–211.
37. Morgan RB. A restarted GMRES method augmented with eigenvectors. SIAM Journal on Matrix Analysis and

Applications 1995; 16:1154–1171.
38. Bielawski SS, Mulyarchik SG, Popov AV. The construction of an algebraically reduced system for the acceleration

of preconditioned conjugate gradients. Journal of Computational and Applied Mathematics 1996; 70(2):189–200.
39. Erhel J, Burrage K, Pohl B. Restarted GMRES preconditioned by deflation. Journal of Computational and

Applied Mathematics 1996; 69:303–318.
40. Chapman A, Saad Y. Deflated and augmented Krylov subspace with eigenvectors. Numerical Linear Algebra

with Applications 1997; 4:43–66.
41. Erhel J, Guyomarc’h F. An augmented subspace conjugate gradient. Research Report INRIA, 1997.
42. Kotolina LY. Twofold deflation preconditioning of linear algebraic systems I. Theory. Journal of Mathematical

Sciences 1998; 89:6.
43. Vuik C, Segal A, Meijerink JA. An efficient preconditioned CG method for the solution of a class of layered

problems with extreme contrasts in the coefficients. Journal of Computational Physics 1999; 152:385–403.
44. De Gersem H, Hameyer K. Convergence improvement of the conjugate gradient iterative method for finite

element simulations. COMPEL: The International Journal for Computation and Mathematics in Electrical and
Electronic Engineering 2000; 20:90–97.

45. De Gersem H, Hameyer K. A deflated iterative solver for magnetostatic finite element models with large
differences in permeability. The European Physical Journal Applied Physics 2000; 13:45–49.

46. Frank J, Vuik C. On the construction of deflation-based preconditioners. SIAM Journal on Scientific Computing
2001; 23:442–462.

47. Vuik C, Segal A, Meijerink JA, Wijma GT. The construction of projection vectors for a deflated ICCG method
applied to problems with extreme contrasts in the coefficients. Journal of Computational Physics 2001; 172:426–
450.

48. Vermolen F, Vuik C, Segal A. Deflation in preconditioned conjugate gradient methods for finite element problems.
In Conjugate Gradient and Finite Element Methods, Kr̆iz̆ek M, Neittaanmäki P, Glowinski R, Korotov S (eds).
Springer: Berlin, 2004; 103–129.

49. Saad Y, Yeung J, Erhel J, Guyomarc’h F. A deflated version of the conjugate gradient algorithm. SIAM Journal
on Scientific Computing 2000; 21:1909–1926.

50. Kharchenko SA, Yu Yeremin A. Eigenvalue translation based preconditioners for the GMRES(k) method.
Numerical Linear Algebra with Applications 1995; 2:51–70.

51. Landsberg AM, Boris JP. The virtual cell embedding method: a simple approach for gridding complex geometries.
AIAA-97-1982, 1997.

52. Aftosmis MJ, Berger MJ, Adomavicius G. A parallel multilevel method for adaptively refined Cartesian grids
with embedded boundaries. AIAA-00-0808, 2000.

53. Baum JD, Mestreau E, Luo H, Löhner R, Pelessone D, Charman Ch. Modeling structural response to blast
loading using a coupled CFD/CSD methodology. Proceedings of the Design and Analysis of Protective Structures
against Impact/Impulsive/Shock Loads (DAPSIL), Tokyo, Japan, December 2003.

54. Camelli FF, Löhner R. VLES study of flow and dispersion patterns in heterogeneous urban areas. AIAA-06-1419,
2006.

55. Appanaboyina S, Mut F, Löhner R, Putman CM, Cebral JR. Computational fluid dynamics of stented intracranial
aneurysms using adaptive embedded unstructured grids. International Journal for Numerical Methods in Fluids
2008; 57(5):475–493.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

14 R. LÖHNER ET AL.

56. Löhner R, Cebral JR, Camelli FF, Appanaboyina S, Baum JD, Mestreau EL, Soto O. Adaptive embedded
and immersed unstructured grid techniques. Computer Methods in Applied Mechanics and Engineering 2008;
197:2173–2197.

57. Löhner R, Yang C, Onate E. Simulation of flows with violent free surface motion and moving objects using
unstructured grids. International Journal for Numerical and Methods in Fluids 2007; 53:1315–1338.

58. Löhner R. Applied CFD Techniques. Wiley: New York, 2008.
59. Luo H, Baum JD, Löhner R. A fast, matrix-free implicit method for compressible flows on unstructured grids.

Journal of Computational Physics 1998; 146:664–690.
60. Sharov D, Luo H, Baum JD, Löhner R. Implementation of unstructured grid GMRES+LU−SGS method on

shared-memory, Cache-based parallel computers. AIAA-00-0927, 2000.
61. Luo H, Baum JD, Löhner R. Parallel unstructured grid GMRES+LU−SGS method for turbulent flows. AIAA-

03-0273, 2003.
62. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AF. Efficient pipeline for image-based

patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Transactions in
Medical Imaging 2005; 24(1):457–467.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 87:2–14
DOI: 10.1002/nme

