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Abstract A standard use of triangulation in GIS is to model terrain surface using
TIN. In many simulation models of physical phenomena, triangulation is often used to
depict the entire spatial domain, which may include buildings, landmarks and other
surface objects in addition to the terrain surface. Creating a seamless surface of
complex building structures together with the terrain is challenging and existing
approaches are laborious, time-consuming and error-prone. We propose an efficient
and robust procedure using computational geometry techniques to derive triangulated
building surfaces from 2D polygon data with a height attribute. We also propose a
new method to merge the resultant building surfaces with the triangulated terrain
surface to produce a seamless surface for the entire study area. Using Oklahoma City
data, we demonstrate the proposed method. The resultant surface is used as the input
data for a simulated transport and dispersion event in Oklahoma City. The proposed
method can produce the seamless surface data to be used for various types of physical
models in a fraction of the time required by previous methods.

Keywords GIS . Computational geometry . Computational fluid dynamics . Transport and
dispersion . CAD .Mesh generation

1 Introduction

Triangle-based surface modeling is one the most popular representations of surfaces
[1]. In GIS, the Triangulated Irregular Network (TIN) data structure is commonly used to
display values along the third dimension, which can be elevation or any attribute of
locations [2]. TIN is a topic of great interest in GIS starting from the early era when
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modeling terrain and landscape had been one of the primary functions of GIS [1, 3, 4],
and TIN has been used frequently to build digital terrain models (DTMs). Much effort has
been devoted to develop and improve algorithms to generate “optimal” triangulations (e.
g., see review in de Berg 2008 [5], and Löhner 2008 [6]). However, the use of
triangulation is not limited to the GIS arena. When solving numerical partial differential
equations (e.g. Finite Element Methods [7], or Finite Volume Methods [8, 9]), a
tessellation of the computational domain is needed, and this tessellation can be a
triangulation in 2-dimensional problems. Examples of partial differential equations are the
Navier-Stokes Equations, which model fluid dynamics; the Maxwell Equations, which
model electromagnetic phenomena; and the Transport and Dispersion Equations, which
model mass transport. Regardless of whether the spatial domain is at a local or meso-
scale, meshes in the form of triangulation are often used to represent the computational
domain.

In GIS, triangulation is often used as a backdrop in depicting the landscape
topography on which various geographical phenomena draw for elevation or
topography information [1]. For instance, in modeling drainage systems, TIN provides
critical inputs in many situations [10, 11]. However, the use of TIN in GIS is often limited
to depicting one spatially continuous theme, such as topography in the form of elevation,
and other themes which may be regarded as part of the landscape, such as vegetative
cover or buildings, are often ignored or not integrated into the surface modeling. The way
that TIN is used in other physical sciences is somewhat different from the way it is used
in GIS. For instance, in the atmospheric transport and dispersion model (ATD) at the
urban scale, the TIN may need to include all physical features or objects that may affect
the ATD model simulation. Besides landscape topography, major features such as
buildings, landmarks and monuments need to be captured by the surface model which
provides the spatial domain for the numerical simulation. For other more precise
applications, features such as vegetations, or surface roughness may need to be part of the
model if the applications are at a very fine spatial scale. The creation of such triangulation
or TIN is not typical in GIS, and in fact, posts some challenges to current GIS technology
[6]. This paper focuses in the generation of TIN surfaces which include landscape
features other than topographic characteristics.

GIS provide an appealing environment to physical scientists to generate their
triangulations or surfaces to support their applications such as dispersion and transport
modeling [12–14] because of the wide availability of various types of geospatial data,
including elevation data, geometry information of buildings, and other landscape features
in GIS formats. Nevertheless, the current GIS technology has some limitations in
generating an integrated TIN surface. Besides the fact that most TIN generation in GIS
consider only one theme (e.g., terrain elevation) but not multiple themes together (e.g.,
terrain, trees, and buildings), another challenge is to use the same triangulation data
structure to model relatively complex buildings or structures. ATD simulations at the
urban scale need to combine all the different feature themes and complex physical
structures into one seamless surface as an input to the algorithm that creates the
tessellation in the computational domain. Integrating the landscape topography with other
feature themes to generate a TIN with elevation is a time-consuming, laborious and error-
prong process that requires human intervention. Also, little has been done to incorporate
complex building structures into the triangulation process in an automatic way [15].
Therefore, our objective is to improve the efficiency of related algorithms to generate a
surface integrating topography and buildings. Such surfaces may be used in various
scientific applications to support modeling and simulation.
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2 Relevant background and research challenges

2.1 Computational fluid dynamics and transport and dispersion modeling

Transport and dispersion modeling is of great interest in environmental science, and it
models advection (mass transport processes), and diffusion (mass dispersion processes) of
chemicals (particulate, or gaseous, or liquid state) in the three media of soil, water and air
[16, 17]. While the specific structure of models for different phenomena may be different,
most models depict levels of concentration in water, air, or soil over space and time. These
models are also different in their spatial coverage extents (e.g., micro-, urban-, meso-,
regional-, or global-scale). For instance, models such as Weather Research and Forecasting
(WRF) are used to simulate atmospheric events at a meso-scale level [18], and
Computational Fluid Dynamics (CFD) models are often used to model atmospheric
pollution at the urban scale [19–21].

This paper will focus on the generation of input data for models that study the transport
and dispersion of gaseous pollutants in the atmosphere at the urban scale. The research on
transport and dispersion of gases for scales larger than a city using Gaussian models have
been the successfully applied [22, 23]. Unfortunately, these relatively simple models have
been unable to reproduce all pertinent complex processes at the urban-scale level because
relevant sources for the mechanical (i.e., building geometry, trees, traffic) and thermal (i.e.,
surface heating, HAVC systems) forces that control the dispersion at the urban scale are not
captured. Dispersion models that use first principle physics are available today thanks to the
sustained increase of computational capability. The use of CFD models has been noted for
its ability to represent and characterized the flow patterns in complex urban environments
[24–26]. The accuracy of these models has been tested and proven to be accurate in the past
decades for a broad range of engineering applications [6] and for predicting atmospheric
dispersion patterns [26–28]. Thus this modeling approach is valuable to support emergency
planning and impact assessment effects due to atmospheric releases, either from natural or
man-made events [14, 29]. These models have become a common tool in the planning of
field experiments in urban environments [19].

Any ATD model based on CFD needs a tessellation of the computational domain where
the partial differential equations are solved. The computational domain of modeling
atmospheric dispersion is usually 3-dimensional. The tessellation of a 3-dimensional
domain fills the space with geometrical objects called elements. The collection of these
elements composes what is called a mesh or grid in CFD modeling. Meshes can be
structured (e.g. bricks) or unstructured (e.g. tetrahedra). Any tessellation algorithm needs
the boundary surface information of the computational domain. This geometry description
of the boundary surface of the domain is represented as a collection of surfaces, lines and
points in a CAD application. An attractive way of representing the boundary surfaces is a
collection of triangles, which may be regarded as discrete surfaces [6]. Other possible
representations of surfaces are the analytic, the bilinear transfinite Coon’s patch, the
triangular Barnhill-Gregory-Nielsen patch, or the iso-parametric patch [6].

CFD models need a correct representation of buildings and terrain in order to produce
highly accurate predictions of atmospheric dispersion. Accurate representations of buildings
and terrain (e.g., building shapes, building heights, terrain slopes) are prerequisites to
produce an accurate solution of the flow patterns in the prevailing down wind direction.
Popular data formats representing buildings include shapefiles, stereo lithography (*.stl),
and proprietary formats like DWG, DWF, DXF, and OpenFlight (*.flt). Unfortunately, these
data are usually not publicly available and have to be acquired from private companies or
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organizations. These data have to be converted into formats suitable for ATD models. The
conversion process is often tedious and slow. Some approaches have been proposed to
ingest commercial data formats into CFD/ATD models [13, 20, 30], but the processes still
cannot be fully automated. The information about terrain and buildings is usually stored in
GIS databases, e.g. TIN format for terrain and shapefile for buildings. The TIN and
shapefile data are usually used as inputs for the CAD reconstruction of the computational
domain. The building data are not necessary a seamless representation, making the input
stage inefficient for obtaining a seamless/water tight surface for the CAD representation that
is used for the tessellation step.

2.2 Triangulation and tessellation

The literature shows that many methods can successfully create tessellations to
support various types of modeling effort and a review of common tessellation
methods can be found in Okabe et al. (2000) [2] and Löhner (2008) [6]. Besides
regularly gridded or raster partitions, unstructured tessellation (e.g., triangles in 2
dimensions, and tetrahedra in 3 dimensions) is probably one of the most popular
alternatives for partitioning space represented by a complex geometry. Unstructured
meshes are especially appealing because they can easily be used to model 3-dimensional
space and are highly flexible in their implementations [1, 31–34]. Data representing
surfaces in 3 dimensions can be obtained from various types of spatial sampling schemes
(e.g., random, stratified, or regular-grid sampling), profiling, or contouring, and they can
be triangulated to represent 3-dimensional surfaces. Therefore, triangulation, especially
TIN, is regarded as a desirable approach to reconstruct topographical surfaces in GIS [1].
Outside of GIS, triangulation has been used in various applications such as computer
graphics, robotics, image synthesis, stereo lithography, garment design, shape/surface
reconstruction and finite element analysis [35–38].

According to Owen (1998) [39] and Löhner (2008) [6], triangulation methods can be
categorized into Delaunay triangulation, advancing front triangulation, and quadtree/octree
triangulation. Among the three methods, Delaunay triangulation has been regarded as the
preferable one due to many desirable properties such as the sizes and angles of resultant
triangles [2, 40, 41]. Other general properties of Delaunay triangulation have also been
discussed in the literature (e.g., Gold 1999 [41]).However, using Delaunay triangulation to
generate 3-dimensional surfaces to support the meshing of the computational domain for
ATD simulations is subject to several methodological challenges. The surfaces required for
ATD simulations need to describe not just the land surface topography, but also man-made
structures, especially buildings, all seamlessly integrated. The surface should be coherent
such that it is water-tight. However, in GIS, surface topography is often represented by
DEM, or TIN, while buildings are represented by footprints of 2D polygons (shapefiles or
other formats) or 3-dimensional polygons (CAD format, VRML, Collada, etc.). Existing
research often resorts to laborious manual manipulations of the geometry data representing
the topography and buildings to produce a coherent and consistent geometrical
representation of the surface including landscape and buildings.

Past approaches have used a background mesh as a framework to merge the terrain and
surfaces to obtain a seamless surface. A distance function was calculated from the
background mesh points to the surfaces and terrain, where positive and negative distances
may indicate outside and inside of the 3D objects. Once the distance function is obtained,
the iso-surface that represents the zero level distance is extracted. This algorithm is called
the level set [42, 43]. This approach show to be feasible for a small number of buildings,
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but is unreliable and not feasible for an entire urban area. The level set algorithm also fails
to make a proper representation of the intersection between terrain and buildings or other
structures. Another approach is to utilize some modified Delaunay methods. Such methods
carry different names, such as the generalized Delaunay triangulation [44], constrained
Delaunay or obstacle triangulation [45, 46], or restricted Delaunay triangulation [35, 47].
This family of constrained triangulation methods can deal with very complex objects and
truncated surfaces, such as topography with building footprints removed. However, a
prerequisite for applying this family of relatively sophisticated triangulation methods is a
consistent geometrical representation of all involved surfaces (topography) and structures
(buildings, landmarks, etc). As discussed before, topography and building structures are
often represented by different data layers and stored in different formats in GIS, and thus
the family of constrained triangulation methods is not particularly useful.

2.3 Modeling complex objects by merging 2.5D primitives into seamless 3D models

Another challenge in generating triangulated surfaces for ATD modeling is to capture the
man-made landscape accurately, particularly building structures. Detailed drawings of
buildings are quite often available from architectural drawings in CAD formats, but
gathering them for an extensive geographical region is quite laborious. On the other hand,
geospatial data at the urban-city or regional scale often include building boundaries or
footprints. Depending on the data collection or acquisition process, building data can be as
simple as polygons representing the outlines of buildings without any elevation or height
information, or can be as complex as overlapping polygons representing the perimeters of
the buildings at different elevations. Recreating the structures of buildings using this type of
data is quite laborious and almost impossible with existing GIS technology. Such data,
without further manipulation and processing, cannot be fed into any typical triangulation
algorithms to generate surfaces including the buildings.

The challenge can be formalized in the following manner. Let {Pi}be a set of polyhedra.
Although we are not limited ourselves to any type of polyhedra, the polyhedra in our
examples are generated by extruding the polygons defined in a given shapefile. These
polyhedra collectively represent the architectural structures when visualized from a view
external to all the polyhedra.The goal is extract a well-defined and seamless boundaries of
the structures. More specifically, our goal is to compute @ [iPið Þ, i.e., the boundary of the
union of all Pi. In CAD modeling and computer graphics, this process is known as
geometric boolean operations. The problem of geometric boolean operations has been
studied for more than three decades and the main focus of the research is on the robustness
of the computation because many numerical errors and degenerate cases can creep in during
the computation and result in incorrect output. In addition to the robustness issues, another
main challenge is the scalability of the algorithm for computing the union of a very large
number of polyhedra. In our example, {Pi} can have thousands of elements. Naïvely
computing the union between pairs of polyhedra in {Pi} can be impractical.

To show the significance of the problem, we have attempt to compute the union of all the
buildings in our Oklahoma city dataset using the union function provided by ArcGIS. ArcGIS
takes hours to complete the computation and requires specific types of overlaps between the
components in order to generate successful unions. Therefore, our proposed approach is designed
to tackle these serious deficiencies to improve both the robustness and efficiency of the process.
As detailed in the experimental results section later, our new approach takes only seconds on the
same dataset, and successfully handles degenerated cases. To simplify our discussion, wewill first
describe our method using 2D polygons and then extend it to 3D in the following section.
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3 Proposed procedure to generate seamless surfaces

To generate a seamless surface including both topography and building structures, we adopt
the following sequence of steps. Using geospatial data of building outlines as inputs, we
demonstrate the creation of reasonably realistic building objects that can be integrated with
the topographic surface. We use a constrained triangulation method to generate a water-tight
surface of the topography, but excluding building objects. Then the surface describing the
terrain is stitched together with the 3D building objects, creating a seamless surface that is
used as input data for a mesh generator. The ultimate goal is to expedite the preparing of
data to be used for ATD and other physical modeling processes.

3.1 Creating seamless building surfaces from geospatial data

3.1.1 Extracting the external boundary of the union of polygons (2D)

The main idea of our approach is to incrementally extract the boundary of the arrangement
induced from the input polyhedra. During the extraction process, we identify and extend the
extracted boundary by maintaining its desired topological properties. Since our main
application is a Finite Element Method (FEM) based simulation, we are only interested in
creating models from the external boundary of the union, i.e., the boundaries of holes will
be ignored. Extracting the external boundary of the union can be done much more easily
and efficiently than that of the hole boundaries.

Let {Pi} be a set of polygons. Our goal is to compute the outmost boundary of @ [iPið Þ.
To simplify our notation, we let Q ¼ @ [iPið Þ. For each polygon P, we denote the vertices of
P as {pi} and the edge that starts at vertex pi as ei ¼ pipiþ1. The edge ei has two associated
vectors, the vector from pi to pi+1, i.e., v ¼ pipiþ1

���!, and the outward normal ni. Traditionally,
{Pi} contains only two elements, and the boundary of Q is determined by computing the
arrangement of the edges of {Pi}, which is a subdivision of the space into vertices, edges
and faces (cells) from a set of line segments. One way to extract the boundaries from such
an arrangement is by finding all the faces that have positive winding numbers [48, 49].

Computing the arrangement can be time consuming, i.e., O(n2) for n line segments. Our
method skips arrangement computation and find the boundary by computing the intersections
on the fly. To start the extraction process, we compute the rightmost vertex r of all vertices in
{Pi}. We further let er be an edge incident to r such that er’s outward normal has the largest x
coordinate among all the edges incident to r. It is simple to show that r must be a vertex of Q,
and er must contribute to one or multiple edges of Q. See Fig. 1(a).

Our method then proceeds by incrementally discovering the vertices and edges of Q
from r and er. To slightly abuse the notation, we let r be the latest vertex of Q discovered,
and let er be an edge of {Pi} that contains an edge of Q. Therefore, in every incremental
step, our method will need to (1) identify which portion of er belongs to Q, and (2) identify
the next r and er until all edges of Q are discovered.

To identify the portion of er that contributes to Q, let {xi} be a sorted list of intersections
between er and other line segments ej ≠ er in {Pi}. The intersections {xj} are sorted in non-
decreasing order using the distance to r. Therefore x0 is the intersection closest to r. Now we
claim that x0 must be a vertex of Q and the segment rx0 between r and x0 must be an edge
of Q. This observation is proven in Lemma 1.

Lemma 1 Let x0 be the closest intersection to r. We say that x0 must be a vertex of Q and
the segment rx0 between r and x0 must be an edge of Q.
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Proof Assuming that x0 is not ∂Q. Then x0 must be interior to Q. Since we know that r is a
vertex of Q, when we move from r to x0, there must be a point x′ ∈ ∂Q before we reach the
interior of Q. If we wish to remain on the boundary of Q, we must move to the other edge of
Q at x′. Therefore, x′ must be an intersection of er and another segment from {Pi}. However,
we know that x0 is the intersection closest to r. This means that x0 cannot be interior to Q, and
in fact x0 and x′ must be the same point and the segment rx0 must be on ∂Q.

Therefore, rx0 is an edge of Q and x0 becomes the next r, i.e., the last vertex discovered.
In the second step, we need to find out which edge of {Pi} (that is not er) incident to x0 will
contain an edge of Q. Let S ¼ sj

� �ner be a set of line segments incident to x0 excluding er.
Then to compute the next er, we solve the following:

argmin
sj2S

Θ er; sj
� �

;

where Θ is a function measuring the clockwise angle between er and sj. Intuitively, the next
er will be a line segment that makes the largest right turn from the current er at x0. Now,
with r and er updated, we repeat the process until a closed loop is found. See Fig. 1(b).

The proposed method have many advantages over existing approaches. First, in contrast
to the traditional boolean operation approach, the proposed method can handle an arbitrary
number of elements in {Pi} all at once. Second, we do not have to compute the arrangement
of the input segments, i.e., we avoid computing all the intersections for all the line segments
in {Pi}. Instead, we compute only the intersections of all er discovered during the
construction of Q. This is extremely helpful when the size of {Pi} is large and the boundary
of Q has only a few features (edges and vertices). This observation is usually true when the
size of {Pi} is large and for the architectural models in which many parts contribute only a
small portion to the external boundary. Because of this feature, our method is more sensitive
to the output complexity than existing methods. Third, the proposed method can handle
degenerated cases easily, i.e., two polygons touching at a single vertex or a line. The
proposed approach can even handle non-simple polygon, whose edges may self intersect,
and polychain, which do not form a loop or enclose an area.

(a) (b)

Fig. 1 a The union of two polygons P1 and P2. The vertex r is the rightmost vertex of P1 and P2, and er is
the edge incident to r whose outward normal has the largest x coordinate among all the edges incidents to r.
The pair r and (a subset of) er must be on @ [iPið Þ. b Given the last vertex r and a potential edge er
discovered in the extraction process, the segment rx0 must be an edge of Q and the next r is x0 and the next er
is the edge containing x0c
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3.1.2 Extracting the external boundary of the union of polyhedra (3D)

The boundary extracting process in 3D is similar to that for polygons. The main difference
is that, instead of tracking a single pair of a vertex r and a potential edge er, we keep track
of a “wavefront” of discovered facets and edges of Q. This wavefront will advance until the
entire external boundary is identified.

Let {Pi} be a set of polyhedra. Similar to the 2D case, we maintain a list of propagation
sites. Each propagation site is an edge e of Q and an incident facet fe of e that contains one
or multiple facets of Q. At each step of the wavefront propagation, we explore around a
current propagation site and add the new sites to the list.

This involves the computations of all the intersections of fe with the other facets in {Pi}.
These intersections are line segments and form a subdivision (i.e., a 2D arrangement) on fe.
We then compute the face f0 in the subdivision that is incident to e, see Fig. 2. We claim that
f0 must be a facet of Q, and the edges of f0 must be the edges of Q. See the proof in Lemma
2.

Lemma 2 Let A be the arrangement on fe induced by the intersections of fe and other facets
in {Pi}. Let f0 ∈ A be the face incident to e. We say that f0 must be a facet of Q and the
boundary of f0 must be the edges of Q.

Proof This proof is very similar to Lemma 1. Briefly, since we know that e must be on the
boundary of Q, then, if we traverse on the fe starting from any point of e, at certain point x,
we will enter the interior of Q. If we wish to remain on the boundary of Q, we must move
to the other facet of Q. This means that the point x must be on the intersection of fe and
other facets in {Pi}. Therefore, a set of points that are connected to e and are on the
boundary of Q must be bounded by e and a set of intersection segments between fe and
{Pi}. This region is exact f0.

At this point, we already have the portion of fe, i.e., f0 that forms a facet of Q and a set of
future propagation sites whose associated facets are missing, i.e., the boundary of f0. Let us
consider one of the edges e0=2e of f0. The other edges can be handled exactly the same. In
order to continue the propagation, we will need to identify the associated facet for e0 that
will potentially contain one or multiple facets of Q.

Fig. 2 The figure shows a propagation site which is composed of an edge e and a potential facet fe
discovered in the extraction process. The arrangement A on the facet fe is induced by the intersections
between fe and the rest of the facets. f0 ∈ A is incident to e must be a face of Q, and the boundary of f0 must
be the edges of Q
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Let F ¼ fj
� �nfe be a set of facets of {Pi} incident to e0 excluding fe. Then in order to

compute the associated facet for e0, we solve the following:

argmin
fj2F

Θ fe; fj
� �

;

where Θ is a function measuring the clockwise angle between fe and fj at e0. That is, the
next fe will be a facet that makes the largest right turn from the current facet feat ex.

3.2 Stitching external boundaries of buildings to a terrain surface

One of the difficulties in creating a seamless surface to depict both the terrain and buildings
stems from the fact that these data usually are in different formats and may have to be
processed separately. Merging them together into a triangulation surface can be laborious.
We propose a novel approach to expedite this process. This approach is based upon two
assumptions. The terrain surface can be triangulated with any type of triangulation method
with the elevation points within the building boundaries removed. In other words, our
approach is independent of the triangulation method adopted to generate the terrain surface.
Another assumption is that each building object is also represented by a triangulated
surface. Again, the actual method of triangulating building surfaces is not a concern. Thus,
the perimeter of a building base consists of line segments with points corresponding to the
vertices of triangles on the faces of the building.

After a triangulated surface is generated for each building according to the processes
described in the above sections, the perimeter, or the bottom outline of the building in 3D
space needs to be identified. For simple structures, the bottom outline can be the perimeter
of the building and can be represented by a simple 3D polygon. But for some buildings
with openings inside, then the bottom outlines may include holes within the outer 3D
polygons representing the perimeters of buildings. Another example of a complicated
building structure is a building that consists of two or more polyhedra on the ground, but
they are only connected above ground. In these cases, the bottom outlines are represented
by complex polygons.

To extract the bottom outline of a building, the wire frame of the polyhedron or
polyhedra representing the building is first computed using the algorithm described in the
previous section. Then points with the lowest elevation are identified. These points
represent the bottom outline of the building. To stitch the building surface to the terrain
surface, points defining the bottom outlines are projected onto the triangulated terrain
surface. Many existing methods, such as the bilinear triangulation or finite element shape
function, can be used to determine the height of the projected points on the terrain surface.
Simultaneously, triangles where the points are projected are identified, and subsequently
removed. Using the projected points and vertices of the reminding triangles, triangulation is
performed again to stitch building surfaces and the terrain surface together into a seamless
surface.

4 Demonstration examples

The Joint Urban 2003 transport and dispersion field experiment of a passive tracer was held
in Oklahoma City during 2003 [50]. This experiment was part of a series of major field
experiments performed in US cities. These experiments attempted to gain a better
understanding of the physical phenomena of transport and dispersion in urban settings
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and generate enough quality data to be used in numerical modeling. The data of the Joint
Urban 2003 experiment have been used to validate several CFD codes [51, 52]. We used
our proposed methodology to generate a seamless surface and obtain a computational
domain suitable as input for CFD models. We simulate a hypothetical transport and
dispersion event using FEFLO-Urban, a general purpose finite element model [19, 26, 53,
54]. The following sections describe the data preprocess and simulation steps.

4.1 Data preprocess for Oklahoma City

The building data from Oklahoma City are in ESRI shapefile format and the terrain data are
in ESRI ARC Grid format. The size of the domain that encompasses all buildings in the
study region is 1.8 by 1.7 km. About 350 buildings are in the area of interest, and the
buildings are represented as a set of polygons as they are depicted in Fig. 3(a). All the
downtown buildings and terrain are shown together in Fig. 3(b). Although Oklahoma City
is mainly in an area of flat terrain, the height difference in the area of interest is 29 m
between the northwest and the southeast corners of Downtown. The horizontal resolution of
the terrain data is 10 m. The building and terrain data were read using the Geospatial Data
Abstraction Library (GDAL). We extruded the polygons for buildings defined in the
Oklahoma City shapefile as the first step in the union process. The extruded polygons
produce a set of polyhedra that represent the building structures of Oklahoma City. The
extrusion height is determined by the attribute stored in the shapefile data.

Each building can be composed from one to several polygons. As an example of creating
a seamless surface for a single building, we present the Ford Center Arena that is shown in
Fig. 4. Figure 4(a) shows the polygons that represent the Ford Center Arena before being
merged. There are 38 polygons in total that describe this particular building. Figure 4(b)
shows partial sets of polyhedra obtained after the extrusion of the polygons.

All 38 polyhedra that represent the Ford Center Arena are shown in Fig. 5(a). The
seamless surface that represents the Ford Center Arena is shown in Fig. 5(b). The process to

Fig. 3 a Down town Oklahoma City. About three hundred buildings are represented in this image. The
buildings are in Shapefile format. b The terrain elevation and buildings in Oklahoma City. The elevation is in
meters. There are about 30 m of height difference between the North West corner (highest area) and the South
East corner (lowest area). The terrain representation is in DEM with a resolution of 10 m
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obtain the seamless surface for all buildings (about 350) in the study area took
approximately 7 s on a 2.54 GHz Intel CPU.

In order to merge the seamless surface of the buildings and the surface terrain, we need
to identify the bottom outline of each building. Figure 6(a) shows a group of buildings in
Oklahoma City. The bottom surface of the group of buildings is shown in Fig. 6(b). The

Fig. 4 Ford Center Arena. a 2D polygons that represent the Ford Center Arena. The Ford Center Arena is
composed of 38 polygons. b Two sets of extruded polygons that represent the Ford Center

Fig. 5 Ford Center Arena. a All the 38 polyhedra that represents the architectural structure of the Arena. b
Two different views of the 38 merged polyhedra that represent the Ford Center in 3 dimensions
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outline of the whole group is shown in Fig. 6(c). The outline of a single building
represented by a complex polygon is shown in a zoom-in area in Fig. 6(d).

The wire frames of the polyhedra were first derived. Points that are part of the lines that
represent the bottom side polygons were identified. This process was repeated for all the
buildings. After obtaining all the bottom 3D polygons, points representing these polygons
were projected onto the triangulated terrain surface. All triangles on the terrain surface that
host one or more projected points were deleted and a new connectivity preserving the
projected points was constructed using a constrained triangulation.

The process of merging the building surfaces and the terrain was also performed
using ArcGIS. The quality of triangulation results from both merging procedures were
analyzed using the quality factor Qt [55]. The Qt factor is defined as twice the ratio of
the radius of the largest inscribed circle in the triangle, and the radius of the smallest
circumscribed circle in the triangle. The value of the Qt factor is between zero and one,
where the value of one corresponds to an equilateral triangle. Therefore, a value of Qt
closer to one indicates a better quality triangulation. The ArcGIS procedure produced an
average Qt factor of 0.63, while the procedure we proposed gave an average Qt factor of
0.81, superior to the result provided by ArcGIS. The distributions of Qt values for all
buildings are shown in Figs. 7 and 8.

Once the buildings and terrain were all integrated into a seamless surface, this surface
was used as the input for an advancing front mesh generator [31]. The Ford Center Arena

Fig. 6 Extracting the outline of the bottom side of the buildings. a Group of buildings in down town
Oklahoma: Oklahoma Tower, Robinson Renaissance Building, Corporate Tower, Park-Harvey Center,
Leadership Square, Court Plaza, First National Tower, Century Center Parking, Westin Hotel, Bank First,
Bank One, and Main Street Parking. b Bottom side of the seamless surface of the buildings. c Only the
bottom surface of the buildings. d Detail of the bottom outline of the Park-Harvey Center, Leadership Square,
and Court Plaza. The outline is composed of an outer polygon and four small polygons
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finite element surface mesh produced is shown in Fig. 9(a). The triangles that form the
surface mesh of the Ford Center Arena are all of uniform size. The Ford Center Arena
merged with the terrain surface mesh is shown in Fig. 9(b). The triangle size is not uniform
in the case of Ford Center Arena merged with the terrain. The smaller triangles are close to
the terrain surface (see Fig. 9(b). The final mesh of the entire urban area is depicted in
Fig. 10. The final finite element volume mesh contains 39 million tetrahedra and 7 million
points.

A simulation of the flow, and the transport and dispersion of a gas was performed using
the volume mesh produced with the proposed data processing methodology. The simulation
assumed a boundary condition for the inflow of a logarithmic profile of 2 m/s with a
velocity at 10 m from the ground. The boundary conditions in the outflow boundaries
assumed a prescribed pressure. The flow was assumed to follow the incompressible Navier-
Stokes equations. The first stage of the simulation was to establish a quasi-steady state
regime of the flow. After this regime was reached, the transport and dispersion simulation
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Fig. 7 Q(T) values for triangles generated with the proposed improved triangulation algorithm. The average
value <Q(T)> is 0.81
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Fig. 8 Q(T) values for triangles generated using ArcGIS 9.3 TIN Management and Conversion toolset under
3D Analyst Toolbox. The average value <Q(T)> is 0.63
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was initiated. The temperature effects in the flow were neglected. The characteristics of the
simulated flow are complex with a large degree of variability over time. Figure 11 shows
instantaneous streamlines of the flow. In Fig. 11(a) a group of streamlines in the vertical
direction are shown. The streamlines at greater heights are in the direction of the main
inflow, while the streamlines closer to the ground depart from the main direction. Figure 11
(b) shows how the streamlines are split into two groups, one that follows the inflow
direction of the wind (aligned with the street direction), and a second group that turns from
the main direction. These figures show that the flow behaves in more regularized ways at
greater heights, and is more chaotic close to the ground level as was expected.

The transport and dispersion simulation was performed for a period of 500 s real time.
The release type was continuous, and the simulated gas was a passive tracer with density
close to the air density. The total time for the simulation, including the initialization time
and dispersion, took approximately one week on a workstation running a four core Xeon
X5560. An iso-surface of the concentration of level 10−4 ppm was extracted from the
volume data for 10, 100, 250, and 500 s after the release was initiated and the
corresponding clouds are shown in Fig. 12. The cloud at 10 s, Fig. 12(a), is uniformly
distributed and close to the ground and it is slightly elongated along the wind direction. The

Fig. 9 Finite Element surface mesh of the Ford Center Arena. a Surface mesh of the merged polyhedra. b
Surface mesh of the merged polyhedra and terrain

Fig. 10 Overview of Oklahoma City. a Shading surface of all buildings and terrain. b Surface mesh of all
buildings and terrain
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subsequent clouds at 100, 250, and 500 s are not uniformly shaped, and they are not
necessarily stretched along the wind direction. For example, at 500 s, small clouds detached
from the main cloud, and these detached clouds are moving away from the wind direction,
showing the effect of the wind close to the ground that was transversal to the main wind
direction (Fig. 12(d)).

Fig. 11 Stream lines of the absolute value of the velocity. The stream lines are colored with the speed value.
a Ten stream lines are drawn at 10 meter intervals in the vertical direction. The stream lines close to the
ground show a lower velocity value (blue color) and they deviate from the main wind direction due to the
objects that are in their way down wind. The stream lines at higher heights show a higher velocity (red to
magenta colors) and they are all aligned with the main wind direction. b The stream lines depicted are five in
the vertical direction by five in the transversal direction to the main wind direction. These set of stream lines
are also colored with the speed velocity. They show the main deviation of the flow in the levels close to the
ground due to buildings in their way down wind, while the top lines follow the main wind direction

Geoinformatica (2012) 16:307–327 321



5 Conclusions

We have presented in this paper a robust and efficient procedure that produces seamless 3D
surfaces of buildings from 2.5D data GIS data. The methodology was tested with the
Oklahoma City 2.5D shapefile data. We have also used a simple algorithm that stitches the
3D polyhedra representing buildings created from the 2.5D data with the terrain surface.
This final surface depicting both the buildings and terrain is a seamless surface. The final
seamless surface was successfully used as an input to create a 3D volume tetrahedral mesh.
The time of the entire process, including the creation of building polyhedra and stitching
the building surface to the terrain, was less than one minute. In the past, the preparation of

Fig. 12 A cloud is depicted at 4 different time instances. The cloud is transported and diffused by the effects
of the wind and turbulence. a Cloud at 10 s from the beginning of the release. b Cloud at 100 s from the
beginning of the release. c Cloud at 250 s from the beginning of the release. d Cloud at 500 s from the
beginning of the release. The size and shape of the cloud change with time. The cloud represents an iso-
surface of concentration level of 10−4 ppm
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the input data for ATD modeling required a much longer time if the use of a water tight
surface was required [21]. Previous attempts to simulate large urban areas resort to different
approaches other than a seamless surface as input, such as porosity [52], or embedded
models [20]. The pre-processing of input data to obtain the volume mesh usually took from
several weeks to months. The input data, i.e. shapefile data and DEM data, had to be
processed by hand before being used by a grid generator. The proposed approach combines
creating seamless surfaces of buildings and merging buildings and terrain using a robust
methodology that requires almost no user intervention. This processing time is very much
shorter than the manual pre-processing required in creating a seamless surface from 2.5
data. The volume mesh was used to simulate the flow in Downtown Oklahoma city and to
study the dispersion of a continuous release. We have also compared the performance of
using the existing procedure in ArcGIS and our proposed procedure of stitching the
building polyhedra with the terrain. The resulting triangles from the existing GIS procedure
are of inferior quality when they are compared with the triangles created with our stitching
process. We have also explored the use of GIS procedures to create seamless surfaces using
2.5D building data. Unfortunately, existing GIS procedures do not ensure creating a
seamless surface and the time for the procedure to complete the same task was orders of
magnitude longer than our proposed method.

A recent trend in GIS is the increasing use of true 3D data (e.g., Batty and Lin [56]).
While many channels are available to gather and store building data with vertical
information, an obvious challenge is to process these data to create realistic and accurate 3D
models of building objects in large quantity efficiently for extensive areas. The
computational geometry-based algorithm we proposed here is relatively robust and
efficient, and should serve as one of the foundation tools to create 3D building models.
To illustrate how our proposed approach can generate the seamless surface combining
terrain and buildings, we use atmospheric transport and dispersion as an application
example. However, many models in physical sciences also require such seamless water-
tight surfaces. Our method to create such surfaces is relatively efficient, and will benefit
scientists outside of the GIS arena. In this paper, the resultant seamless surface includes
only terrain and buildings. The proposed method can surely accommodate the inclusion of
other surface objects or features, large or small, if the modeling efforts require more detailed
and comprehensive descriptions of the landscape.
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