
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.2560

Semi-automatic porting of a large-scale Fortran CFD code to GPUs

Andrew Corrigan‡, Fernando Camelli, Rainald Löhner∗,† and Fernando Mut

Center for Computational Fluid Dynamics, Department of Computational and Data Sciences, M.S. 6A2,
College of Science, George Mason University, Fairfax, VA 22030-4444, U.S.A.

SUMMARY

The development of automatic techniques to port a substantial portion of FEFLO, a general-purpose
legacy CFD code operating on unstructured grids, to run on GPUs is described. FEFLO is a typical
adaptive, edge-based finite element code for the solution of compressible and incompressible flows, which
is primarily written in Fortran 77 and has previously been ported to vector, shared memory parallel and
distributed memory parallel machines. Owing to the large size of FEFLO and the likelihood of human
error in porting, as well as the desire for continued development within a single codebase, a specialized
Python script, based on FParser (Int. J. Comput. Sci. Eng. 2009; 4:296–305), was written to perform
automated translation from the OpenMP-parallelized edge and point loops to GPU kernels implemented in
CUDA, along with GPU memory management. The results of verification benchmarks and performance
indicate that performances achieved by such a translator can rival those of codes rewritten by specialists.
The approach should be of general interest, as how best to run on GPUs is being presently considered
for many so-called legacy codes. Copyright � 2011 John Wiley & Sons, Ltd.

Received 14 October 2010; Revised 23 December 2010; Accepted 22 February 2011

KEY WORDS: graphics hardware; GPUs; Fortran; computational fluid dynamics

1. INTRODUCTION

At present, there is considerable interest in the application of graphics processing units (GPUs) to
computational fluid dynamics (CFD). This interest is largely due to the tremendous increase in the
performance of GPUs over the past few years. The latest Fermi architecture from The NVIDIA
Tesla C2050 now achieves more than 0.5 Teraflops of peak double-precision performance with a
peak memory bandwidth of 144GB/s. The consumer-market-oriented GeForce GTX 480 achieves
more than 1.25 Teraflops of peak single-precision performance with a peak memory bandwidth of
177.4GB/s [1, 2]. GPUs can now be programmed via general-purpose interfaces such as CUDA [1]
and OpenCL [3].

As a result, there has been a great deal of research investigating the implementation of CFD
codes on GPUs, with many codes obtaining impressive speed-ups. Work in this direction began
prior to the introduction of CUDA, when GPU programming was done via traditional graphics
APIs such as OpenGL. An excellent and comprehensive survey of work done during this era is
given by Owens et al. [4]. Much of the effort in running CFD codes on GPUs has been directed
toward the case of solvers based on structured grids. These solvers are particularly amenable to
GPU implementation due to their regular memory access pattern. Work in this area includes that

∗Correspondence to: Rainald Löhner, Center for Computational Fluid Dynamics, Department of Computational and
Data Sciences, M.S. 6A2, College of Science, George Mason University, Fairfax, VA 22030-4444, U.S.A.

†E-mail: rlohner@gmu.edu
‡Current address: Center for Reactive Flow and Dynamical Systems, Laboratory for Computational Physics and Fluid
Dynamics, Naval Research Laboratory, Washington, DC 20375, U.S.A.

Copyright � 2011 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids 2012; : –69 314 331
3 May 2011 /journal/nmf

of Brandvik and Pullan [5–7], who have developed 2D and 3D Euler and Navier-Stokes solvers
for GPUs, with support for multiple GPUs via MPI, and achieved an order of magnitude gain
in the performance. Göddeke et al. [8] have implemented a multi-level, globally unstructured,
locally structured, Navier–Stokes solver. LeGresley et al. [9] have implemented a multi-block Euler
solver for simulating a hypersonic vehicle configuration, while Cohen and Molemaker [10] have
implemented a 3D finite volume Boussinesq code in double precision. Further work on regular
grid solvers includes that of Phillips et al. [11], who have developed a 2D compressible Euler
solver on a cluster of GPUs. Jacobsen et al. [12, 13] have implemented a 3D incompressible
Navier–Stokes solver for GPU clusters, while Antoniou et al. [14] have implemented high-order
WENO finite difference methods on multi-GPU systems. Jespersen [15] has implemented a Jacobi
solver for OVERFLOW, a Reynolds-averaged Navier–Stokes solver which uses multiple overset
structured grids. Patnaik and Obenschain [16] have studied the application of GPUs to the FCT-
based structured grid solver FAST3D-CT, with a focus on reducing power requirements.

There has also been interest in running unstructured grid-based CFD solvers on GPUs. Achieving
good performance for such solvers is more difficult due to their data-dependent and irregular
memory access patterns. Work in this area includes that of Klöckner et al. [17], who have imple-
mented discontinuous Galerkin methods on unstructured grids. Markall et al. [18] developed a
form compiler to automatically generate finite element code from an abstract representation in the
Unified Form Language (UFL), which will be used to generate GPU-optimized CUDA code for
the CFD code fluidity. In the previous work [19] the authors presented results for a cell-centered
finite volume Euler solver running on a Tesla 10 series card, which achieved a nearly 10× speed-up
factor over an OpenMP-parallelized CPU code running on a quad-core Intel CPU. Similar results,
for a 2D edge-based solver, were also presented by Dahm and Fidkowski [20]. Asouti et al. [21, 22]
have also implemented a vertex-centered finite volume code for unstructured grids on GPUs.

While most of the work done so far has either been for relatively small codes written from scratch
or for a small portion of a large existing code, the goal of the present work is to port an existing,
large-scale code, used to perform production runs, in its entirety and obtain a similar performance
gain. We consider the solution of this task to be of general interest, as many CFD codes that have
been developed by teams over sometimes decades currently face the same basic questions when
pondering a port to GPU-hardware. The code under consideration is FEFLO, which is a typical
adaptive, edge-based finite element code for the solution of compressible and incompressible flows.
It consists (like many so-called legacy codes) of nearly one million lines of primarily Fortran 77
code, and is optimized for many types of parallel architectures. This code is used for a number of
compressible flow applications including supersonic jet noise [23], transonic flow, store separation
[24] and blast–structure interaction [25, 26], as well as incompressible flow applications including
free-surface hydrodynamics [27], dispersion [28] and patient-based hemodynamics [29]. Codes
with similar loop structures are those described in [30–34].

In the previous work [35], the authors introduced the concept of a Python script capable of
automatically generating a version of FEFLO in which all relevant portions are run on the GPU
using CUDA with minimal data transfer to or from the CPU throughout the course of a run. In this
paper, the performance issues which guided many of the decisions made in writing the translator
and porting FEFLO are first reviewed in Section 2. The main features of the Python script are then
described in Section 3. The status of FEFLO, particularly with respect to parallelism, prior to its
translation into GPU code is then described in Section 4, where the focus is on the performance
critical point and edge loops. In Section 5, the overall structure of FEFLO and flow of GPU data
is described. Finally, the results of runs used for validation purposes and performance tests are
given in Section 6.

2. GPU PERFORMANCE ISSUES

In order to obtain high performance on NVIDIA GPUs there are a number of criteria that must
be met. Three of the most important criteria are highlighted in the following.

Copyright � 2011 John Wiley & Sons, Ltd.

315SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

2.1. Fine-grained parallelism

Modern multi-core CPUs typically have 4–8 cores available, for which coarse-grained parallelism
can be sufficient due to the small number of threads needed to achieve a speed-up. In the context of
CFD solvers, such parallelism is often implemented via domain decomposition, and in fact, running
multiple MPI ranks on a single multi-core CPU can lead to satisfactory performance scaling.

For a number of reasons GPUs work best for codes which expose fine-grained parallelism. In
contrast to CPUs, GPUs could be described as many-core processors, with the latest NVIDIA
Tesla C2050 GPU providing 448 CUDA cores, and the Fermi architecture supporting up to 512
cores [1]. In terms of CFD solvers this implies parallelizing loops over individual points, edges,
faces, elements or cells. This alone requires a large number of active threads to fully populate
the available CUDA cores. Furthermore, even full population of the CUDA cores with threads is
insufficient for achieving full performance on NVIDIA GPUs. As pointed out by Bell and Garland
[36], this is due to the need for GPUs to hide memory latency via multi-threading: once the warp (a
group of 32 threads executed in parallel by the hardware [1]) currently being executed idles due to
a memory transaction, the GPU thread scheduler will attempt to continue the execution of another
warp in order to avoid the hardware idling. Using this approach, the more warps that are available
for execution, the better the GPU can hide memory latency, and thus achieve high performance.

In addition, the requisite number of threads will only increase across future generations, as
evidenced by the rate at which the number of CUDA cores has increased (nearly a factor of two)
across successive past and present generations of Tesla hardware [1]. To scale transparently across
future generations of hardware, codes should expose as much parallelism as possible [1, 37].

A further reason for fine-grained parallelism is implied by the memory access requirements of
GPUs, which will be elaborated upon in Section 2.3. Generally speaking, in order to read global
memory (the main off-chip memory space or RAM of a GPU [1, Section 2.3]) most efficiently,
(half-)warps (architectures prior to the Fermi architecture serviced memory transactions on a half-
warp basis, while Fermi services memory transactions on a per-warp basis) of threads are expected
to read in contiguous segments of memory. In comparison to a coarse-grained approach, where each
thread processes a large subarray, such a requirement is more readily fulfilled using fine-grained
parallelism with consecutive threads processing individual elements of arrays.

The practical implication of the requirement to achieve large fine-grained parallelism is that
loops have to be long and do (if possible) the same operations for each loop item. For those
young enough to still remember, this same requirement was placed upon developers when vector
machines (CDC-205, Cray, NEC) appeared in the mid-1980s.

2.2. CPU–GPU data transfer

Data transfer between the CPU and GPU should be minimized, due to the order of magnitude lower
memory bandwidth across the system bus as compared with internal GPU memory bandwidth [37,
Section 3.1]. This means that the straightforward ‘accelerator design,’ as so-called by Cohen and
Molemaker [10], of porting bottleneck loops or subroutines in isolation, with memory transfer
calls made just before and after these bottleneck loops or subroutines would in most cases severely
restrict any performance gain possible using GPUs.

Ignoring this issue would have greatly simplified the task of porting FEFLO. In fact, this was
the initial approach taken. As a test, a Roe solver subroutine of FEFLO (which for certain run
configurations is responsible for a large portion of the run time) was rewritten manually in CUDA.
Every time step, the arrays used by this subroutine were passed to the GPU. The results were
disappointing: while the CUDA kernels in isolation performed very efficiently in comparison with
the corresponding loops running on the CPU, no gain whatsoever was achieved once the cost
of data transfer between the GPU and CPU was factored in. Summarizing, if the ‘accelerator
design’ approach had been taken, even taking advantage of hardware features such as using pinned
memory and asynchronous data transfers, the performance gain would have been minimal in
comparison with what could be achieved without the data transfer. Instead, arrays processed by
CUDA kernels should be kept as much as possible on the GPU. One of the main features—and the
most complicated task of the Python script—is to carefully track how each array is used throughout

Copyright � 2011 John Wiley & Sons, Ltd.

316 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

the code, and enforce consistency throughout the entire subroutine call graph. An array which is
used in a parallel loop in one subroutine is prohibited from being accessed freely in serial code. Of
course, exceptions will need to be made in any large-scale, general-purpose code, and mechanisms
were implemented to enable access on both the CPU and GPU when necessary.

2.3. Coalesced memory access

The third issue highlighted is that of making the most effective use of memory bandwidth within
the GPU by achieving coalesced memory access. This issue is considered to be ‘perhaps the
single most important performance consideration in programming for the CUDA architecture’ [37,
p. 20]. This issue shares the purpose of maximizing cache hits on CPUs, i.e. reading memory
in low-latency cache in order to reduce slower off-chip memory access. Since GPUs service
memory transactions in 32, 64 or 128 byte segments, coalesced memory access minimizes the
number and size of segments required to fully service a particular global memory transaction for
a given (half-)warp. Given a particular array access in a CUDA kernel, coalesced memory access
means that the threads of a (half-)warp access a contiguous, aligned segment of memory (see
the CUDA Programming Guide [1] for full technical details). If the threads of (half-)warp were
to access memory in completely disparate locations, then each thread would require a separate
segment to be read from or written to in global memory, leading to an enormous degradation in
the performance [37, Figure 3.9]. Hardware up until the latest Fermi architecture simply discarded
unused portions of these segments, while the latest generation of GPUs introduces a cache which
can retain previously read segments on-chip, coalescing remains of the utmost importance for
achieving high performance.

2.4. Other performance issues

Shared memory is a feature of NVIDIA GPUs which can be used to avoid redundant global
memory access between threads within a thread block, which must be explicitly managed in
software by the programmer [1]. Owing to its low latency, shared memory can provide substantial
performance benefits; however, it is not applicable to FEFLO due to the fact that there is no
redundant memory access within each parallel loop, as described in Section 4.2.1. An additional
hindrance to employing shared memory is that the data-dependent memory access patterns used
in FEFLO make it difficult if not impossible to explicitly manage shared memory in software.
Therefore, the code generated by the current version of the Python script does not manage shared
memory. Utilizing shared memory would however be of utmost importance for codes with a fixed
memory, data-independent memory access pattern, such as structured grid solvers.

The texture cache is also not utilized, a hardware feature which has been shown to improve
the performance for unstructured memory access patterns in the work on sparse matrix–vector
multiplication solvers of Bell and Garland [36]. Texture memory is read-only, and thus could only
account for half of the potentially uncoalesced memory access encountered in the edge loops of
FEFLO, since such loops also involve unstructured writes to global memory. Instead, the more
general-purpose L1 and L2 cache space of the latest Fermi architecture [2], which shares resources
with the shared memory space, will be relied upon to alleviate the performance hit due to any
remaining uncoalesced memory access.

3. THE PYTHON SCRIPT

While GPUs offer high performance, arbitrary code cannot simply be recompiled and expected
to run efficiently on GPUs. Instead GPUs require that code be rewritten using interfaces such
as CUDA [1] or OpenCL [3]. While writing new code in CUDA or OpenCL is not intrinsically
difficult, the manual translation of a code on the scale of FEFLO necessarily introduces a large
number of bugs, and would involve an overwhelming amount of tedious work. There are more than
10 000 parallel loops in FEFLO to be translated. Translating loops is actually relatively simple
compared with handling the intricate bookkeeping required to properly track arrays across the

Copyright � 2011 John Wiley & Sons, Ltd.

317SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

subroutine call graph in order to ensure their consistent placement into either the GPU or CPU
memory space, deducing sub-array semantics, and correctly calling data transfer subroutines when
necessary. Just translating the code in its current state would be a formidable task. Furthermore,
FEFLO remains under continuous development, and therefore a manual approach would result in
a perpetual translation process and necessitate the creation of two separate codebases.

Another issue is that of choosing the right interface to access GPU hardware. CUDA has the
disadvantage of being proprietary, while OpenCL is an open standard. However, CUDA is more
mature and has extensive C++ support. Both these factors have contributed to the availability of
libraries such as Thrust [38], which are used extensively in the GPU version of FEFLO. A similar
library, with such a breadth of generic, data parallel algorithms, does not appear to be available
for OpenCL. In addition, even if a GPU code is written in OpenCL, it still needs to be optimized
to satisfy the performance requirements of different hardwares. Therefore, an approach is needed
which can be rapidly adapted to new combinations of hardware and software.

Owing to these issues, an automatic translator is used in this work, which avoids most issues
plaguing manual translation, and is flexible enough to satisfy future hardware and software require-
ments. Automatic approaches often compromise on the performance, which contradicts the ultimate
purpose of porting codes such as FEFLO to GPUs. This is not the case here, since the translator was
specialized to generate the same code that would be written via a manual translation. As a result,
the purpose of this script is not to automatically parallelize any arbitrary code, or even translate
any arbitrary OpenMP-parallelized code. Rather its purpose is to enable the main developers of
FEFLO to continue development in Fortran, with certain additional necessary restrictions. Most
of the script, however, is general purpose, and as a side benefit, it is entirely conceivable that this
translator could be adapted to also translate other codes automatically by adapting to the coding
style used. At this point it must be stressed again that the key requirement for the success of such
translators is the consistency and uniformity in coding style of the legacy code.

Currently, the translator has complete support for CUDA, with less complete support for CUDA
Fortran and OpenCL. CUDA, while freely available and very capable with a growing ecosystem
of useful libraries and supporting software, it is still proprietary. In the long term, the script will be
adapted to emit GPU kernels implemented in OpenCL, optimized for future hardware platforms,
by simply adding functions to the Python classes used to represent and transform the decomposed
Fortran code. The main impediment in the short term to a complete OpenCL implementation is the
lack of availability of a library similar to Thrust, which itself only provides a CUDA and OpenMP
backend due to the necessity of C++ support, which OpenCL lacks.

There were a few crucial factors which enabled such an automatic approach. The first is the
availability of FParser, a component of the F2PY package [39] which allows for Fortran source
code parsing in the highly productive programming language Python. The second is the strict and
uniform coding style used in FEFLO, due to most code having been either originally developed,
rewritten, or cleaned up by its main developer, in order to follow FEFLO’s strict coding standards.
While the script is capable of automatically generating optimal code from a very large class of
OpenMP loops which already exhibit fine-grained parallelism, there are many OpenMP loops
in FEFLO which do not explicitly exhibit the fine-grained parallelism needed to run efficiently
on GPUs. Automatically restructuring such loops essentially amounts to auto-parallelization, but
the strict, uniform coding style in FEFLO allowed for specialized Python code to be written to
automatically handles this.

In summary, the resulting translator is just a few thousand lines of Python code, which auto-
matically:

• Converts simple OpenMP loops into CUDA kernels, with support for arbitrary reduction
operations.

• Exposes finer-grained parallelism in coarse-grained OpenMP loops using FEFLO-specific
logic.

• Detects GPU arrays and enforces consistency across the subroutine call graph.
• Tracks physical array sizes of subarrays across subroutine calls.
• Uses a transposed array layout appropriate for meeting coalescing requirements.

Copyright � 2011 John Wiley & Sons, Ltd.

318 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

• Handles GPU array I/O and memory transfer.
• Allows ‘difficult’ subroutines to be ignored and left on the CPU, or overridden with custom
implementations, usually based on Thrust [38] and

• Integrates with pure CPU code, including MPI code.

3.1. Alternative translators

A number of alternative automatic translators and compilers were considered.
The PGI accelerator programming model uses compiler directives to parallelize Fortran and C

code for execution on the GPU. If explicit control over the code’s execution on the GPU, then
code must be written manually, using PGI’s CUDA Fortran compiler [40]. The obvious advantage
of this approach is that it would be relatively automatic in that only compiler directives would
need to be specified. A disadvantage is that it offers less control, as it only implicitly specifies the
parallel decomposition of the computation performed by a parallel loop. In addition, it would be
preferred to reuse, as much as possible, the existing OpenMP directives already in place, since the
introduction of another set of directives can be error prone.

The work of Lee et al. [41] also describes a compiler framework which also automatically
converts OpenMP loops into CUDA kernels. Their work includes more general and much more
advanced automatic optimization techniques than those present in the translator used in this work.
However, most loops in FEFLO can be either directly translated, restructured automatically using
specialized Python code, or overriden with calls to the Thrust library. Another crucial issue is that
the compiler used by Lee et al. only reduces memory transfer based on analyzing array names. In
contrast, the Python translator used in this work tracks arrays across subroutine calls to ensure that
arrays are kept on the GPU throughout an entire run, with exceptions made only when absolutely
necessary, for example to achieve IO or make use of intentionally serial code. Furthermore, the
presented compiler does not appear to support Fortran.

The F2C-ACC translator developed by Govett [42] is another option for automatically translating
Fortran code based on custom directives, similar to the Python script used here. There are a few
reasons that it could not be used for FEFLO. The first is that it does not appear to be possible to
pass GPU arrays across subroutines, which is an essential feature of the Python translator used for
FEFLO. Additionally, it lacks support for IO. Finally (and this is not a strictly scientific argument),
the developer of the translator used in this work, simply prefers the productivity of programming in
Python, for the purpose of customizing the translator to FEFLO, in comparison to the C language
used in F2C-ACC.

4. PARALLELISM IN FEFLO

FEFLO is a typical adaptive, edge-based finite element code for the solution of compressible and
incompressible flows. It is based on linear elements (tetrahedra, i.e. unknowns stored at nodes) for
geometric flexibility and adaptivity. The edge-based formulation is employed in order to reduce
indirect addressing, and facilitate the implementation of limiting and upwinding [43]. The code
has been ported to vector, shared memory parallel (via OpenMP [44]) and distributed memory
parallel (via MPI [45]) machines.

In FEFLO, the vast majority of parallel loops fall into two categories. The first category
consists of loops without any indirect addressing, or with only gather operations to achieve a
result that is stored in arrays that are commensurate with the loop index. These loops can be
over points, faces, edges, elements, etc. In the sequel, we will denote these as point loops. These
point loops, c.f. Section 4.1, are parallelized using OpenMP in a way that exhibits fine-grained
parallelism, which enables their direct translation into GPU kernels. The second category of loops
consists of loops where fluxes, source-terms or other right-hand side (RHS) terms are built using
a scatter-add process. These loops can be over faces, edges, elements, etc. As most of these occur
over edges, we will denote these as edge-loops. The edge-loops, Section 4.2, which are also
parallelized using OpenMP, but in a way that exhibits domain decomposition-like coarse-grained
parallelism. One of the main ways in which the Python script is specialized for FEFLO is that it

Copyright � 2011 John Wiley & Sons, Ltd.

319SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

automatically recognizes these edge loops and restructures them using specialized Python code,
in order to expose fine-grained parallelism in the edge loops. Additional loop types present in
FEFLO include those related to random number generation, index operations and array compaction,
c.f. Section 4.3.

FEFLO is also parallelized to simultaneously take advantage of distributed memory parallelism
on CPU clusters. Fortunately, the existing MPI calls are expected to be able to be used unmodified,
but the application of FEFLO to GPU clusters is left as future work, as will be described in Section 7.

4.1. Point loops

The point loops in FEFLO are directly translated into CUDA code, since they already explicitly
exhibit fine-grained parallelism in the original Fortran code. Loops such as these (they could
also be element, edge, face, etc.), are treated automatically by the translator, in which case, the
parallelization of the CUDA kernel exactly mirrors that of the OpenMP parallel loop, with each
CUDA thread corresponding to a loop iteration, and OpenMP private items treated as per-CUDA-
thread variables which are stored in on-chip registers. Consider a loop from the locfct subroutine
in Listing 1 taken from the flux-corrected transport module of FEFLO, used for the benchmarks
in Section 6.

Listing 1: An OpenMP point loop.
c
c −−−−−mu l t i p l y by t h e mass−ma t r i x
c
! $omp p a r a l l e l do p r i v a t e (ip , cmmat)
! c d i r i n n e r
! c d i r concu r
c

do 1600 i p =npami , npamx
cmmat =mmatm (i p)
de l un (1 , i p)= cmmat∗ de l un (1 , i p)
de l un (2 , i p)= cmmat∗ de l un (2 , i p)
de l un (3 , i p)= cmmat∗ de l un (3 , i p)
de l un (4 , i p)= cmmat∗ de l un (4 , i p)
de l un (5 , i p)= cmmat∗ de l un (5 , i p)

1600 c o n t i n u e

Once processed by the translator, this OpenMP-parallelized loop is replaced with a subroutine call,
as shown in Listing 2.

Listing 2: The subroutine call which replaces the OpenMP point loop.
! −−−−−mu l t i p l y by t h e mass−ma t r i x
! −−−−− D i r e c t i v e removed
c a l l l o c f c t _ l o o p 2 (delun ,mmatm , npami , npamx)

This subroutine call is to a C++ function which invokes a CUDA kernel, as shown in Listing 3.
The CUDA kernel is invoked with a number of threads greater than or equal to the number of loop
iterations, rounded up to be a multiple of the thread block size, which is a user-specified parameter
in the Python script.

Listing 3: The C++ function which invokes the CUDA kernel.
ex tern "C"
void l o c f c t _ l o o p 2 _ (da_doub l e2∗ delun , da_doub l e1∗ mmatm ,

i n t ∗ npami , i n t ∗ npamx)
{

dim3 dimGrid = dim3 (round_up ((∗ npamx)−((∗ npami)) + 1) , 1 , 1) ;
dim3 dimBlock = dim3 (2 5 6 , 1 , 1) ;
l o c f c t _ l o o p 2 <<<dimGrid , dimBlock >>>

(delun−>a , de lun−>shape [1] , mmatm−>a , ∗npami , ∗npamx) ;
}

Copyright � 2011 John Wiley & Sons, Ltd.

320 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

The invoked CUDA kernel, shown in Listing 4, is essentially the inner body of the OpenMP loop
from Listing 1. In this example the transposed multi-dimensional array layout is apparent, which is
used to ensure coalesced memory access into delun. This ensures that the array is accessed with a
unit stride, avoiding the serious performance loss that would occur using the original Fortran array
layout, c.f. Section 2.3 and [37, Section 3.2.1.4]. The physical array size of delun is also used to
index into the array, which is tracked at run time, since it may differ from the size specified in its
declaration at the beginning of the locfct subroutine. The result of Fortran’s 1-based indexing is
also apparent, which is not translated into 0-based indexing in order to maintain consistency with
the many 1-based connectivity and index arrays which appear throughout FEFLO. Apart from the
unsimplified index arithmetic, which should be taken care of by the CUDA compiler optimizer,
this code is essentially the same code that would be produced with manual translation.

Listing 4: Point loop CUDA kernel.
__g l ob a l __
void l o c f c t _ l o o p 2 (double ∗ delun , i n t delun_s1 , double ∗ mmatm ,

i n t npami , i n t npamx)
{

double cmmat ;

cons t unsigned i n t i p =blockDim . x∗ b l o ck I dx . x+ t h r e a d I d x . x+npami ;
i f (i p > npamx) return ;

cmmat=mmatm [ip −1];
de l un [ip −1+de l un_s1 ∗ (1−1)]= cmmat∗ de l un [ip −1+de l un_s1 ∗ (1 −1)] ;
de l un [ip −1+de l un_s1 ∗ (2−1)]= cmmat∗ de l un [ip −1+de l un_s1 ∗ (2 −1)] ;
de l un [ip −1+de l un_s1 ∗ (3−1)]= cmmat∗ de l un [ip −1+de l un_s1 ∗ (3 −1)] ;
de l un [ip −1+de l un_s1 ∗ (4−1)]= cmmat∗ de l un [ip −1+de l un_s1 ∗ (4 −1)] ;
de l un [ip −1+de l un_s1 ∗ (5−1)]= cmmat∗ de l un [ip −1+de l un_s1 ∗ (5 −1)] ;

}

4.2. Edge loops

The edge loops in FEFLO are not as easy to translate into CUDA code since they are written in a
way that does not explicitly exhibit fine-grained parallelism. However, such parallelism is implicit
and can be exposed automatically by the translator. This relies, for example, on the consistent
naming of loop variables, and the uniform loop structure. In Section 4.2.3, the CUDA translation
will be described, after first showing the vectorization and parallelization of the CPU code. The
code in Listing 5 shows a generic, serial edge loop.

Listing 5: Basic edge loop.
do 1600 i edge =1 , nedge
i p o i 1 = l noed (1 , i e dg e)
i p o i 2 = l noed (2 , i e dg e)
redge =geoed (i e dg e)∗ (unkno (i p o i 2)−unkno (i p o i 1))
rh spo (i p o i 1)= rhspo (i p o i 1)+ redge
rhspo (i p o i 2)= rhspo (i p o i 2)− r edge

1600 cont inue

The operations to be performed can be grouped into the following three major steps:

(a) Gather point information into the edge.
(b) Perform the required mathematical operations at the edge level (for the loop shown—a

Laplacian—this is a simple multiplication and subtraction; for an Euler solver the approxi-
mate Riemann solver and the equation of state would be substituted in).

(c) Scatter-add the edge RHS to the assembled point RHS.

This simple loop already illustrates the type of data-dependent, indirect memory access which
occurs in the majority of edge loops present in FEFLO (and any similar CFD code for that matter).
For CPUs, cache-misses are likely to occur if the nodes within each edge are widely spaced in
memory, necessitating slower off-chip memory access. To minimize such cache-misses, algorithms

Copyright � 2011 John Wiley & Sons, Ltd.

321SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

based on bandwidth minimization are typically employed [43, 46]. The situation for GPUs is
different: for such loops meeting coalescing requirements replaces avoiding cache misses as being
the main goal of optimizing memory access patterns, c.f. Section 2.3.

4.2.1. Edge loops on vector processors. The possibility of memory contention inhibits vectoriza-
tion, which can occur if two of the nodes within the same group of edges being processed by vector
registers coincide. If the edges can be reordered into groups such that within each group none of
the nodes are accessed more than once, vectorization can be enforced using compiler directives.
Denoting the grouping array by edpas, the vectorized edge loop is shown in Listing 6.

Listing 6: Vectorized edge loop.
do 1400 i p a s s =1 , npass
nedg0= edpas (i p a s s)+1
nedg1= edpas (i p a s s +1)

! d i r $ i vdep ! I gno r e Vec t o r Dependenc i e s
do 1600 i edge =nedg0 , nedg1
i p o i 1 = l noed (1 , i e dg e)
i p o i 2 = l noed (2 , i e dg e)
redge =geoed (i e dg e)∗ (unkno (i p o i 2)−unkno (i p o i 1))
rh spo (i p o i 1)= rhspo (i p o i 1)+ redge
rhspo (i p o i 2)= rhspo (i p o i 2)− r edge

1600 cont inue
1400 cont inue

Algorithms that group the edges into such non-conflicting groups fall into the category of coloring
schemes [43].

4.2.2. Edge loops on multicore processors. In order to obtain optimal performance on shared
multicore processors via OpenMP, care has to be taken not to increase cache misses while allowing
for parallelization and vectorization. The compromise typically chosen is similar to that of domain
decomposition: assign to each processor groups of edges that work on the same group of points
[44]. In order to avoid the explicit declaration of local and shared variables, a sub-subroutine
technique is used [43]. The result of this is shown in Listing 7.

Listing 7: The vectorized edge loop parallelized using OpenMP.
c

do 1000 imacg =1 , npasg , np roc
imac0= imacg
imac1=min (npasg , imac0+nproc −1)

! $omp p a r a l l e l do p r i v a t e (i p a sg) ! P a r a l l e l i z a t i o n d i r e c t i v e
do 1200 i p a sg =imac0 , imac1
c a l l l oop2p (i p a sg)

1200 cont inue
1000 cont inue

c
c −−−
c

subrout ine l oop2p (i p a sg)
npas0 =edpag (i p a sg)+1
npas1 =edpag (i p a sg +1)
do 1400 i p a s s =npas0 , npas1
nedg0= edpas (i p a s s)+1
nedg1= edpas (i p a s s +1)

! d i r $ i vdep ! I gno r e Vec t o r Dependenc i e s
do 1600 i edge =nedg0 , nedg1
i p o i 1 = l noed (1 , i e dg e)
i p o i 2 = l noed (2 , i e dg e)
redge =geoed (i e dg e)∗ (unkno (i p o i 2)−unkno (i p o i 1))
rh spo (i p o i 1)= rhspo (i p o i 1)+ redge
rhspo (i p o i 2)= rhspo (i p o i 2)− r edge

1600 cont inue
1400 cont inue

Copyright � 2011 John Wiley & Sons, Ltd.

322 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

For relatively simple Riemann solvers and simple equations of state, this type of loop structure
works well. However, once more esoteric Riemann solvers and equations of state are required, one
is forced to split the inner loop even further. In particular, for equations of state one may have a
table look-up with many if-tests, and even parts that do not vectorize well. The usual recourse is
to split the inner edge-loop even further, as shown in Listing 8.

Listing 8: Split vectorized edge loops.
c i n n e r loop , p r o c e s s ed i n g roups

do 1600 i edge =nedg0 , nedg1 , medgl
i edg0 = iedge −1
i edg1 =min (i edg0 +medgl , nedg1)
nedg l = iedg1−i edg0

c
c t r a n s c r i b e v a r i a b l e s f o r l o c a l edge−group

c a l l t r a n v a r i a b (. . .)
c
c o b t a i n f l u x e s f o r l o c a l edge−group

c a l l apprx r i em (. . . .)
c
c o b t a i n RHS f o r l o c a l edge−group

c a l l r h s v i s c (. . .)
c
! d i r $ i vdep ! I gno r e Vec t o r Dependenc i e s

do 1800 i e d g l =1 , nedg l
i p o i 1 = l n o e l (1 , i e d g l)
i p o i 2 = l n o e l (2 , i e d g l)
rh spo (i p o i 1)= rhspo (i p o i 1)+ r e d g l (i e d g l)
rh spo (i p o i 2)= rhspo (i p o i 2)− r e d g l (i e d g l)

1800 cont inue
1600 cont inue

Note that the transcription of variables, the fluxes and the RHS obtained at the local edge-group
level may involve many branches (if-statements), but that care has been taken that these innermost
loops (which reside in separate subroutines) are, if at all possible, vectorized.

4.2.3. Edge loops on GPUs. The parallel edge loop in Listing 7 is implemented using coarse-
grained parallelism via domain decomposition. Such parallelization is inappropriate for GPUs, and
the edge loops cannot be directly parallelized from this OpenMP code. While not exactly equivalent,
analogies can be drawn between the requirements for vectorization and GPU parallelization, for
example:

• Both vectorized loops and GPUs perform more efficiently without branching, and FEFLO has
been coded to avoid branching in inner loops. GPUs do allow some amount of branching, but
branching results in serialized execution, if different branches are taken by the threads of a
warp [37, Chapter 6].

• Vectorized loops are required to be tight inner loops, consisting primarily of arithmetic opera-
tions and intrinsic functions, which leads to fine-grained parallelism with minimal branching.

Because of these similarities, the vectorized inner loops are ideal candidates for GPU parallelization,
as they contain implicit fine-grained parallelism. Edge loops in FEFLO are consistently indicated
by naming the loop variable of the outermost loop ipasg. This indicates to the translator to
restructure this loop to propagate coarse-grained parallelism in the loop over ipasg inwards toward
the vectorized loop over iedge. Issues that are accounted for throughout this process include:

• The lack of an OpenMP private items list for the inner loop, specifying per-thread variables for
the inner loop, information which instead must be deduced via inner-loop-variable dependency.

• The presence of serial reductions within the inner loop, for which custom reduction directives
are needed.

• The necessity to propagate parallelism through subroutine calls, as in the split vectorized edge
loop shown in Listing 8.

Copyright � 2011 John Wiley & Sons, Ltd.

323SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

• Variations in code structure due to flow control statements and
• The absence of vectorization directives in the case of edge-to-edge operations indicating that
the loop contains fine-grained parallelism.

The resulting GPU code is analogous to the example shown in Section 4.1, with the inner
vectorized edge loop replaced with a call to a CUDA kernel.

4.3. Other loops

Some subroutines in FEFLO contain loops which cannot be automatically translated to the CPU.
Fortunately such cases are few, and tend to be general-purpose algorithms which are well studied
on the GPU, with implementations available in the library Thrust [38]:

• Reduction (thrust::reduce).
• Indexes of Extrema (thrust::min_element, thrust::max_element).
• Array Compression/compaction and index gathering (thrust::copy_if).
• Prefix sum/scan (thrust::inclusive_scan).
• Random number generation (thrust::uniform_real_distribution) and
• Histogram Computation (thrust::sort, thrust::upper_bound,
thrust::adjacent_difference).

The subroutines containing these algorithms are automatically replaced with manually implemented
lightweight wrappers which call the corresponding Thrust function. A benefit of this approach
is that these algorithms are all non-trivial to implement, and FEFLO will automatically inherit
from Thrust any future improvements to these algorithms and fine-tuning made to meet evolving
performance requirements.

5. FEFLO STRUCTURE AND GPU DATA FLOW

The main steps during a FEFLO run are similar to that of any other field solver:

(a) Field (points, elements, unknowns, boundary conditions, etc.) and control (nr. of time steps,
diagnostics output, etc.) data is read in.

(b) Data are renumbered for the particular machine architecture.
(c) Derived data required for the flow solver (edges, faces, geometry parameters, etc.) are

computed.
(d) The loop over the time steps is performed; within each step the solution is advanced in time;
(e) Restart data are outputted.

As far as the flow of information between the CPU and GPU, it proceeds as follows:

(a) Field data is read into the CPU and automatically passed to the GPU; control data always
resides on the CPU.

(b) Before data renumbering (which is largely scalar) the required data are passed to the CPU
(!$gpu cpu(...))); renumbering is then carried out on the CPU; thereafter, the renumbered
data are transferred back to the GPU (!$gpu end cpu(...)).

(c) The computation of the missing data required for the flow solver is carried out in the GPU.
(d) Within the time-stepping loop the solution is advanced in time entirely on the GPU.
(e) Field restart data are passed automatically to the CPU and outputted.

6. RESULTS

The GPU version of FEFLO was tested for a variety of benchmark cases. Three different compress-
ible flow cases were considered. The first two cases are drawn from blast applications, while the

Copyright � 2011 John Wiley & Sons, Ltd.

324 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

Figure 1. Sod shock tube: densities and pressures. (a) density; (b) pressure.

Table I. Blast in room (60 time steps).

Nelem CPU/GPU Mvecl Time (s)

1.0 M Core i7 940 (1) 32 35
1.0 M Core i7 940 (2) 32 25
1.0 M Core i7 940 (4) 32 18
1.0 M Core i7 940 (8) 32 17
1.0 M GTX 285 51200 10

third is from steady-state aerodynamics. The other two cases are incompressible flows, the first of
which is a pipe flow, while the last is a two-phase dam break problem.

The system used for the timing studies consisted of an Intel Core i7 940 CPU and an NVIDIA
GTX 285 GPU. The Intel Core i7 940 CPU is a quad-core CPU which supports up to eight threads
via hyper-threading and features a peak memory bandwidth of 25.6GB/s. The NVIDIA GTX 285
is a GeForce 200 series GPU (same architecture as the Tesla 10 series), which contains 240 cores
(30 multiprocessors) and a peak memory bandwidth of 159.0GB/s.

In each of the subsequent tables nelem denotes the number of elements (mesh size), CPU/GPU
the hardware used, mvecl the maximum vector length allowed when reordering elements and edges
to avoid memory contention, and Time the total run time in seconds.

6.1. Sod shock tube

The first example is the classic Sod Shock Tube. A diaphragm that separates two states of compress-
ible flow bursts at time T =0.0, resulting in a shock, a contact discontinuity and an expansion
wave. The geometry, together with the solution, can be discerned from Figure 1. The compressible
Euler equations are solved using the edge-based FEM-FCT technique [43, 47, 48].

This case was run for verification purposes only. Figure 1 shows overlaid contour lines at the
same time for the CPU and GPU runs. Note that the results are essentially the same, with a few very
minor differences (as would be expected due to minor differences in floating point arithmetic).

6.2. Blast in room

The second example is the compressible flow resulting from a blast in a room (Table I). The
geometry, together with the solution, can be discerned from Figure 2.

The compressible Euler equations are solved using an edge-based FEM-FCT technique
[43, 47, 48]. The initialization was performed by interpolating the results of a very detailed

Copyright � 2011 John Wiley & Sons, Ltd.

325SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

Figure 2. Blast in room: pressures and velocities. (a) pressure; (b) velocity.

Figure 3. NACA0012: surface pressures.

1D (spherically symmetric) run. The timing studies were carried out with the following set of
parameters:

• Compressible Euler.
• Ideal Gas EOS.
• Explicit FEM-FCT.
• Initialization From A 1D File.
• 1.0 million elements.
• Run for 60 steps.

6.3. NACA0012 wing

The third example is a classic aerodynamics example: steady inviscid compressible flow past a
NACA0012 wing. The geometry, together with the solution, is shown in Figure 3. The incoming
Mach number and angle of attack were set to M∞ =0.3 and �=15◦, respectively. The Euler

Copyright � 2011 John Wiley & Sons, Ltd.

326 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

Table II. NACA0012 (100 time steps).

Nelem CPU/GPU Mvecl Time (s)

1.0 M Core i7 940 (1) 32 184
1.0 M Core i7 940 (2) 32 104
1.0 M Core i7 940 (4) 32 60
1.0 M Core i7 940 (8) 32 52
1.0 M GTX 285 51 200 32

Figure 4. Pipe: velocities and temperature. (a) velocity; (b) temperature.

equations were integrated using a three-stage Runge–Kutta scheme with local timestepping and
residual smoothing. The approximate Riemann solver was HLLC. The solution was obtained after
3000 steps (Table II).

The timing studies were carried out with the following set of parameters:

• Compressible Euler.
• Ideal Gas EOS.
• Explicit RK3, HLLC, nlimi=0.
• Steady state.
• Local timestepping.
• Residual damping.
• Ma=2, AOA=15◦.
• 1.0 million elements.
• Run for 100 steps.

6.4. Pipe

This example considers the laminar inlet flow of a cold fluid into a pipe with hot walls. The
incompressible Navier–Stokes equations are solved used a projection technique for pressure incre-
ments [43, 49]. Therefore, a large portion of the compute time is consumed by the diagonally
preconditioned conjugate solvers of the pressure increments. Additionally, the energy equation for
the temperature is integrated simultaneously with the velocities and pressures. Figure 4 shows
typical results obtained. The timing studies were carried out with the following set of parameters
(Table III):

• Incompressible Navier–Stokes + Heat transfer.
• Advection: RK3, Roe, nlimi=2.
• Pressure: Poisson (Projection), DPCG.
• Steady state.
• Local timestepping.
• Re=100.

Copyright � 2011 John Wiley & Sons, Ltd.

327SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

Table III. Pipe.

Nelem CPU/GPU Mvecl Time (s)

0.6 M Core i7 940 (1) 32 300
0.6 M Core i7 940 (2) 32 179
0.6 M Core i7 940 (4) 32 126
0.6 M Core i7 940 (8) 32 121
0.6 M GTX 285 25 600 115

Figure 5. Dam break: free surface and pressure. (a) free surface; (b) pressure.

• 0.6 million elements.
• Run for 100 steps.

6.5. Dam break

This example considers the classic dam break problem, where the wave impinges on a column
situated in the middle of the channel. The incompressible Navier–Stokes equations are solved using
a projection technique for pressure increments, together with a transport equation for the volume
of fluid fraction. Details of the technique may be found in [27]. Figure 5 shows typical results
obtained. The timing studies were carried out with the following set of parameters (Table IV):

• Incompressible Navier–Stokes.
• VOF for free surface.
• Advection: Explicit RK3, Roe, nlimi=2.
• Pressure: Poisson (Projection), DPCG.
• Transient.
• 0.7 million elements.
• Run for 100 steps.

7. CONCLUSIONS AND OUTLOOK

The development of automatic techniques to port a substantial portion of FEFLO, a general-purpose
legacy CFD code operating on unstructured grids, to run on GPUs, has been described. Owing to
the large size of FEFLO and the likelihood of human error in porting, as well as the desire for
continued development within a single codebase, a specialized Python script, based on FParser,
was written to perform automated translation from the OpenMP-parallelized edge and point loops

Copyright � 2011 John Wiley & Sons, Ltd.

328 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

Table IV. Dam break.

Nelem CPU/GPU Mvecl Time (s)

0.76 M Core i7 940 (1) 32 93
0.76 M Core i7 940 (2) 32 58
0.76 M Core i7 940 (4) 32 42
0.76 M Core i7 940 (8) 32 42
0.76 M GTX 285 51 200 42

to GPU kernels implemented in CUDA, along with GPU memory management, while integrating
with the existing framework for distributed memory parallelism via MPI.

To date, approximately 1600 of the flow solver(s) subroutines have been automatically ported
and tested on the GPU. These include:

• The ideal gas, explicit compressible flow solvers (FCT, TVD, approximate Riemann solvers,
limiters).

• The projection schemes for incompressible flow with explicit advection, implicit viscous terms
and pressure Laplacian.

• The explicit advection, implicit conductivity/diffusivity integrators of temperature and/or
concentration/

• Some simple turbulence models (e.g. Smagorinsky).
• Some of the diagnostic output options (global conservation sums, station time history points).
• Subroutines required throughout the code/solvers to apply boundary conditions for periodic
boundaries, overlapping grids, embedded surfaces and immersed bodies.

The results of verification benchmarks and performance tests were presented. In double precision,
speed-up factors of up to 1.7x were obtained for the compressible flow solvers on the Geforce 285
GTX over the quad-core Intel Core i7 940. These speed-ups are of the same order of magnitude to
those obtained from a small, hand-coded Finite Volume pilot code [50]. Given the relative ease of
handling GPU computing in this way, this is viewed as very successful. For incompressible flow
solvers, which are dominated by the conjugate gradient solvers of the pressure-Poisson equation,
there is only a minor performance gain. This is due to the incompressible flow solver being almost
completely memory bandwidth bound. While FEFLO has a variety of optimized numbering grid
numbering schemes optimized for CPUs, there is currently no option which is optimized for GPU
coalescing requirements. Therefore, future work will address this issue by employing numbering
schemes tailored to meet GPU coalescing requirements. Moreover, the GPU considered in this
work has limited double precision performance, and future work will employ the newer Fermi
architecture, which has full double precision performance.

The translator approach presented here should be of general interest, as how best to run on
GPUs is being presently explored for many so-called legacy codes.

Further developments will center on porting and debugging more FEFLO-options on the GPU,
using the Python script within a multi-GPU environment, and developing optimal renumbering
techniques for the GPU.

REFERENCES

1. NVIDIA Corporation. NVIDIA CUDA 3.1 Programming Guide, 2010.
2. NVIDIA Corporation. Fermi Compute Architecture White Paper, 2009.
3. Khronos OpenCL Working Group. The OpenCL specification: version 1.0 rev. 48, 2009.
4. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ. A survey of general-purpose

computation on graphics hardware. Computer Graphics Forum 2007; 26:80–113.
5. Brandvik T, Pullan G. Acceleration of a two-dimensional Euler flow solver using commodity graphics hardware.

Journal of Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering
Science 2007; 221:1745–1748.

6. Brandvik T, Pullan G. Acceleration of a 3D Euler solver using commodity graphics hardware. The 46th AIAA
Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA-2008-607, January 2008.

Copyright � 2011 John Wiley & Sons, Ltd.

329SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

7. Brandvik T, Pullan G. An accelerated 3D Navier–Stokes solver for flows in turbomachines. Proceedings of
GT2009 ASME Turbo Expo 2009: Power for Land, Sea and Air, Orlando, FL, June 2009.

8. Göddeke D, Buijssen SHM, Wobker H, Turek S. GPU acceleration of an unmodified parallel finite element
Navier–Stokes solver. High Performance Computing and Simulation, Leipzig, Germany, 2009; 12–21.

9. LeGresley P, Elsen E, Darve E. Large calculation of the flow over a hypersonic vehicle using a GPU. Journal
of Computational Physics 2008; 227:10148–10161.

10. Cohen JM, Molemaker MJ. A fast double precision CFD code using CUDA. Parallel CFD, Moffet Field, CA,
2009.

11. Phillips EH, Zhang Y, Davis RL, Owens JD. Rapid aerodynamic performance prediction on a cluster of graphics
processing units. The 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, Reno, NV, AIAA 2009-565, January 2009.

12. Thibault J, Senocak I. CUDA implementation of a Navier–Stokes solver on multi-GPU desktop platforms for
incompressible flows. The 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, Reno, NV, AIAA 2009-758, January 2010.

13. Jacobsen D, Thibault J, Senocak I. An MPI-CUDA implementation for massively parallel incompressible flow
computations on multi-GPU clusters. The 48th AIAA Aerospace Sciences Meeting Including the New Horizons
Forum and Aerospace Exposition, Orlando, FL, AIAA-2010-522, January 2010.

14. Antoniou AS, Karantasis KI, Polychronopoulos ED, Ekaterinaris JA. Acceleration of a finite-difference WENO
scheme for large-scale simulations on many-core architectures. The 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, AIAA-2010-0525, January 2010.

15. Jespersen DC. Acceleration of a CFD code with a GPU. Technical Report NAS-09-003, NAS, November 2009.
16. Patnaik G, Obenschain KS. Using GPUs on HPC applications to satisfy low-power computational requirements.

The 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,
Orlando, FL, AIAA-2010-524, January 2010.

17. Klöckner A, Warburton T, Bridge J, Hesthaven JS. Nodal discontinuous Galerkin methods on graphics processors.
Journal of Computational Physics 2009; 228:7863–7882.

18. Markall GR, Ham DA, Kelly PHJ. Towards generating optimised finite element solvers for GPUs from high-level
specifications. Proceedings of the 10th International Conference on Computational Science, Amsterdam, The
Netherlands, June 2010.

19. Corrigan A, Camelli FE, Löhner R, Wallin J. Running unstructured grid-based CFD solvers on modern graphics
hardware. International Journal for Numerical Methods in Fluids 2010; DOI: 10.1002/fld.2254.

20. Dahm JPS, Fidkowski KJ. Employing coprocessors to accelerate numerical solutions to the Euler equations,
2009. Available from: http://www.johanndahm.com/research.php.

21. Asouti VG, Trompoukis XS, Kampolis IC, Giannakoglou KC. Unsteady CFD computations using vertex-centered
finite volumes for unstructured grids on graphics processing units. International Journal for Numerical Methods
in Fluids 2010; DOI: 10.1002/fld.2352.

22. Kampolis IC, Trompoukis XS, Asouti VG, Giannakoglou KC. CFD-based analysis and two-level aerodynamic
optimization on graphics processing units. Computer Methods in Applied Mechanics and Engineering 2010;
199(9–12):712–722.

23. Ramamurti R, Munday D, Gutmark E, Liu J, Kailasanath K, Löhner R. Large-eddy simulations of a supersonic
jet and its near-field acoustic properties. AIAA Journal 2009; 8(47):1849–1864.

24. Löhner R, Goldberg E, Baum JD, Luo H, Feldhun A. Application of unstructured adaptive moving body
methodology to the simulation of fuel tank separation from an F-16 C/D fighter. AIAA Aerospace Sciences
Meeting, Reno, NV, AIAA-1997-0166, January 1997.

25. Löhner R, Yang C, Pelessone D, Baum JD, Luo H, Charman C. A coupled fluid/structure modeling of shock
interaction with a truck. AIAA Aerospace Sciences Meeting, Reno, NV, AIAA-1996-0795, January 1996.

26. Mestreau E, Löhner R, Pelessone D, Baum JD, Luo H, Charman C. A coupled CFD/CSD methodology for
modeling weapon detonation and fragmentation. AIAA Aerospace Sciences Meeting, Reno, NV, AIAA-1999-0794,
January 1999.

27. Yang C, Löhner R, Oñate E. Simulation of flows with violent free surface motion and moving objects using
unstructured grids. International Journal for Numerical Methods in Engineering 2007; 53:1315–1338.

28. Camelli F, Löhner R. Vles study of flow and dispersion patterns in heterogeneous urban areas. AIAA Aerospace
Sciences Meeting, Reno, NV, AIAA-2006-1419, January 2006.

29. Löhner R, Putman CM, Appanaboyina S, Mut F, Cebral JR. Computational fluid dynamics of stented intracranial
aneurysms using adaptive embedded unstructured grids. International Journal for Numerical Methods in Fluids
2008; 5(57):475–493.

30. Mavriplis D. Three-dimensional unstructured multigrid for the Euler equations. AIAA-91-1549-CP, 1991.
31. Peraire J, Peiro J, Morgan K. A three-dimensional finite element multigrid solver for the Euler equations. AIAA

Aerospace Sciences Meeting, Reno, NV, AIAA-92-0449, 1992.
32. Kaushik DK, Keyes DE, Anderson WK, Gropp WD, Smith BF. Achieving high sustained performance in an

unstructured mesh cfd application. Supercomputing 1999. IEEE Computer Society: Silver Spring, MD, 1999.
33. Becker K, Heinrich R, Roll B, Galle M, Kroll N, Gerhold T, Schwamborn D, Aumann P, Barnewitz H, Franke

M. Megaflow: parallel complete aircraft cfd. Parallel Computing 2001; 27:415–440.
34. Ito Y, Nakahashi K, Togashi F. Some challenges of realistic flow simulations by unstructured grid cfd. International

Journal for Numerical Methods in Engineering 2008; 43:769–783.

Copyright � 2011 John Wiley & Sons, Ltd.

330 A. CORRIGAN ET AL.

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

35. Corrigan A, Camelli F, Löhner R, Mut F. Porting of an edge-based CFD solver to GPUs. The 48th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, FL, AIAA-2010-522,
January 2010.

36. Bell N, Garland M. Implementing sparse matrix-vector multiplication on throughput-oriented processors. SC
’09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. ACM:
New York, NY, U.S.A, 2009; 1–11.

37. NVIDIA Corporation. NVIDIA CUDA 3.1 Best Practices Guide, 2010.
38. Hoberock J, Bell N. Thrust: a parallel template library, 2009; Version 1.2.
39. Peterson P. F2PY: a tool for connecting Fortran and Python programs. International Journal of Computational

Science and Engineering 2009; 4:296–305.
40. The Portland Group. PGI Fortran & C Accelerator programming model, 2009.
41. Lee S, Min SJ, Eigenmann R. OpenMP to GPGPU: a compiler framework for automatic translation and

optimization. PPoPP ’09: Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, February 2009.

42. Govett M. F2C-ACC Code Translator, 2009; Version 2.3.
43. Löhner R. Applied CFD Techniques. Wiley: New York, 2008.
44. Löhner R. Renumbering strategies for unstructured-grid solvers operating on shared-memory, cache-based parallel

machines. Computer Methods in Applied Mechanics and Engineering 1998; 163:95–109.
45. Ramamurti R, Löhner R. A parallel implicit incompressible flow solver using unstructured meshes. Computers

and Fluids 1996; 5:119–132.
46. Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matrices. Proceeding of ACM National

Conference, 1969; 151–172.
47. Löhner R, Morgan K, Peraire J, Vahdati M. Finite element flux-corrected transport (FEM-FCT) for the Euler

and Navier–Stokes equations. International Journal for Numerical Methods in Fluids 1987; 7(10):1093–1109.
48. Luo H, Baum JD, Löhner R. Edge-based finite element scheme for the Euler equations. AIAA Journal 1994;

32(6):1183–1190.
49. Cebral JR, Camelli F, Soto O, Löhner R, Yang C, Waltz J. Improving the speed and accuracy of projection-

type incompressible flow solvers. Computer Methods in Applied Mechanics and Engineering 2006; 23–24(195):
3087–3109.

50. Corrigan A, Camelli FE, Löhner R, Wallin J. Running unstructured grid-based CFD solvers on modern graphics
hardware. AIAA Fluid Dynamics Meeting, Austin, TX, AIAA-2009-4001, June 2009.

Copyright � 2011 John Wiley & Sons, Ltd.

331SEMI-AUTOMATIC PORTING OF A FORTRAN CFD CODE TO GPU

DOI: 10.1002/fld
Int. J. Numer. Meth. Fluids 2012; 69:314–331

