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Abstract During the early stages of gastrulation in Drosophila embryo, the epithelial cells 

composing the single tissue layer of the egg undergo large strains and displacements. These 

movements have been usually modeled by decomposing the total deformation gradient in an 

(imposed or strain/stress dependent) active part and a passive response. Although the influence of 

the chemical and genetic activity in the mechanical response of the cell has been experimentally 

observed, the effects of the mechanical deformation on the latter has been far less studied, and 

much less modeled. Here, we propose a model which couples morphogen transport and the cell 

mechanics during embryogenesis. A diffusion-reaction equation is introduced as an additional 

mechanical regulator of morphogenesis. Consequently, the active deformations are not directly 
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imposed in the analytical formulation, but they rather depend on the morphogen concentration, 

which is introduced as a new variable. In this work, we show that similar strain patterns to those 

observed during biological experiments can be reproduced by properly combining the two 

phenomena. Additionally, we use a novel technique to parameterize the embryo geometry by 

solving two Laplace problems with specific boundary conditions. We apply the method to two 

morphogenetic movements: ventral furrow invagination and germ band extension. The matching 

between our results and the observed experimental deformations confirms that diffusion-reaction 

of morphogens can actually be controlling large morphogenetic movements.  

1 Introduction 

During the development of multi-cellular organisms there is a combination of a 

biochemical pattern [17] and mechanical movements that shape the embryo [24]. 

The interdependence of these two contributions adds an enormous difficulty to the 

complete understanding of the essential developmental phases. The Drosophila 

embryo is an interesting biological model, which has been amply studied in the 

last decades from both the experimental and the numerical points of view. 

Furthermore, biologists have been able to observe the genetic control of the 

successive steps of embryogenesis [16], which has been often related to the 

expression of specific genes for each morphogenetic movement [29].  

In the embryo, cells do not act alone but rather collaborate with neighboring cells 

and rearrange their configuration in order to maintain the highly organized 

structure of the system. This is a fascinating scientific aspect because it requires 

having a multiscale approach: at the cellular scale (microscopic) and at the tissue 

scale (macroscopic).  

While active cells deform locally under genetic signalling, their interaction and 

activity are mediated and globally transferred to their neighboring cells. The stress 

state of the cell has been hypothesized as a potential source of communication 
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[35, 42, 52]. However, diffusion patterns have been observed in developing 

systems such as the zebra fish [26], the fly wing [23] or in Drosophila syncytial 

embryo [19]. It has been noticed that the morphogen diffusion has an effect in 

gene expression, with subsequent implication in embryogenesis at the tissue level. 

In the Drosophila embryo, the Dorsal morphogen has been reported to have an 

immediate effect on the expression of the important genes twist and snail [47, 29]. 

These are responsible of the main large deformations that take place during 

embryo gastrulation such as ventral furrow invagination (VFI) and germ band 

extension (GBE) [29]. The aim of the present work is to verify whether the 

coupling of the cell mechanics and the diffusion process may yield the observed 

deformations during the development of the Drosophila embryo.  

Recently, numerical modeling in embryo biomechanics has played an important 

role. A major step has been the use of a deformation gradient decomposition [44, 

46]. This method couples the large active and the passive deformations occurring 

to the cells. The former is usually considered a purely local kinematical process 

proper to each cell and therefore directly introduced into the formulation 

according to the experimental observations. The latter is instead a (visco)elastic 

response of the surrounding tissue, which requires then a mechanical analysis. 

Nevertheless, recent biological experiments have shown that the active 

deformations may depend on the passive deformations or on the stresses as a 

feedback mechanism [7, 16], and some numerical models have introduced 

phenomenological laws in order to take into account this potential aspect [35, 42, 

52]. 
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1.1 Morphogens activity 

Despite the important progresses and the results obtained in the context of the 

embryogenesis, there is still a relevant aspect that has not been so much explored 

from a numerical point of view: the process by which the active individual 

deformations of the cells take place. This is actually a complex process, which has 

been experimentally studied by analyzing the presence inside the cells of specific 

morphogens. 

Morphogens are proteins that may regulate the expression of target genes. They 

are believed to also provide positional information to specialized cell types within 

a tissue [2]. From experimental observations, it has been found that they spread 

from a localized source and form a concentration gradient across a developing 

tissue [19, 23, 26]. Morphogens are able to induce or maintain the expression of 

different target genes at distinct concentration thresholds. Consequently, cells 

close to the source of morphogens will show high gene expression depending on 

the concentration threshold of the target gene. Moreover, after the gene expression 

has taken place, the cell activity may induce active deformations that in turn may 

modify the concentration levels. As we show in the results section, this feedback 

mechanism is relevant for the control of the observed cell deformations. 

The presence of diffusion phenomena in pattern formation of biological systems 

has already been investigated [53, 55] and it has led to a fruitful research line on 

the formation of diffusion-reaction geometrical pattern (see for instance a review 

in [31] and [36]. In these studies though, the concentration affects indeed the 

deformation pattern, but the influence of the latter on the concentration profile is 

rather low. Hence, the biological systems consisted of tissues which were 

mechanically sensible to the chemical concentration, but where the diffusion-

reaction equations were unaffected by the resulting deformations.  
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In the last decades a series of numerical models that combine growth and pattern 

formation have been proposed in the literature by different authors. Among them 

we mention the general approaches of Crampin [14] and Neville [37], and the 

more applied works of Oster [39], who uses mesenchymal cells and a substrate to 

model their motility through strain dependent diffusion, and Umilis [54], in which 

a large number of genes and product proteins is employed to simulate pattern 

formation during Drosophila segmentation process. Most of these studies deal 

with two-dimensional or one-dimensional pattern formation on a growing tissue. 

However, our main concern is to explore the influence of relatively simple 

chemical reactions equations on cells shape changes that occur in the three-

dimensional space as for the real embryo. 

The modeling of diffusion-mechanical coupled problems with large deformations 

and displacements during embryo development has been so far very little studied. 

We can point out some related and interesting works in the context of plant 

growth [5], where diffusion equations are also coupled with a growth process, 

wound healing [22], cardiac tissue with concentrations that depend on the electric 

intensity or the stresses ([10] and [41] respectively), or teeth growth [45]. In all 

these models, diffusion-reaction equations have an effect on the rest length, active 

stresses, or tissue growth. Our model is in fact related to the latter case, since the 

morphogen concentration mediates the cellular shape changes, but without 

actually considering any growth process. In addition, we emphasize that although 

we also resort to an underlying diffusion-reaction equation, the morphogen 

concentrations are in turn also highly affected by the model kinematics due to the 

presence of large deformations and displacements in the biological structure. 
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1.2  Interactions between morphogens activity and mechanics 

To accomplish our main objective mentioned above, an extension of our previous 

model [4] is introduced in order to include a diffusion-reaction as an additional 

mechanical regulator of morphogenesis, and to consider an evolution law that 

relates the active deformations and the morphogen concentration. We show that 

similar strain patterns to those observed during biological experiments can then be 

reproduced by properly combining the two phenomena.  

Additionally, we use a technique that we have recently proposed [3] to 

parameterize the embryo geometry. This method uses the solution of two Laplace 

boundary problems to define the parameters that will be employed in the 

definition of our active deformations. Such boundary value problem can be 

identified with an electrostatic problem, and although we do not directly couple 

such potential with our mechanical and diffusion-reaction variables, we note that 

the presence of the electric field may be additionally taken into account in future 

studies. Indeed, it has been shown that the electric field may strongly influence 

cell signaling [48]. We therefore believe that the coupling between our 

electrostatic problem and the chemical and mechanical fields has a large potential 

in embryo modeling. 

2. Harmonic parameterization of the embryo 

geometry 

The three-dimensional geometry of the Drosophila embryo has been constructed 

from an interior and exterior ellipsoid in order to obtain a realistic shape.  (Fig. 1). 

The major axis is 500µm long, while the cross axes CE and DF are respectively 



7 

175µm and 165µm long. The thickness is not constant, but it varies between 

15µm<h<40µm. Such variations have been also observed in real embryos. 

It will become useful in subsequent sections to accurately parameterize this 

geometry. We have therefore defined a local curvilinear coordinates system 

described by the three parametersVθ , Vz  and Vζ , as represented in Fig. 2a. Each 

one of them is computed by solving Laplace’s equation on the epithelium with 

appropriate boundary conditions [25]. Similar developments have been proposed 

in literature by Marchandise et al [32] who use the term harmonic which we find 

now more appropriate than electric as in our previous work [3]. In the next 

sections, we briefly describe how we numerically build the normal and the 

tangential coordinates. 

2.1 Normal and tangential variables 

Let ∂Ωe , ∂Ωi  and Σ0  be respectively the outer, the inner and the middle surface 

of the irregular ellipsoid Ω. An harmonic variable Vζ x, y, z( ) within the thickness 

of the membrane is defined as follows 

∆Vζ = 0 inside Ω

Vζ = +
h
2

on the external boundary ∂Ωe

Vζ = −
h
2

on the internal boundary ∂Ωi














      (1) 

where h is the thickness of the ellipsoid. As shown in Fig. 2b, the surface Vζ = 0  

provides in a good approximation of the middle surface Σ0 .  

From the calculated variable Vζ , the normal vector n0  to the shell middle surface 

Vζ = 0   can be estimated as follows 
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n0 ≅
∇Vζ

∇Vζ

 (2) 

To have a complete system of curvilinear coordinates, we need now to find the 

two tangential parameters, Vθ  and Vz . The latter one corresponds to the global 

cylindrical variable z, while we will compute Vθ  by using similar boundary value 

problems to the one defined in Eq. (1). However, since the hollow geometry of the 

embryo may have only two boundaries (the internal and external surfaces), special 

care must be taken when defining the boundary conditions for Vθ  [8][18]. We will 

introduce a fictive slit surface ∂Ωs θ
, defined by {z=0, y<0}, so that the coordinate 

which runs circumferentially around the membrane making a closed loop is 

assumed to be discontinuous at ∂Ωs θ
.  

More precisely, Vθ  is chosen to be the solution of the following Laplace’s 

equation and boundary conditions with •[ ] standing for the jump of the quantities 

across the slit: 

∆Vθ = 0 inside Ω0

[Vθ ] = 2π  across the cut ∂Ωsθ

∂Vθ

∂n
= 0 on ∂Ωe  and ∂Ωi  














 (3) 

where n is the normal vector to the inner and outer boundaries of the embryonic 

tissue. The boundary problems in (1) and (3) are solved using finite elements. The 

associated vectors  and  that complete the curvilinear basis are obtained, as 

similarly as for the normal vector n0   (Eq. (2)), as follows 

 (4) 
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2.2  Parameterization of the intermediate configuration 

Now that the system of curvilinear coordinates has been completed, any point 

 through the thickness of the embryo can be analytically located (Fig. 

2a). Actually, let  be a point on the middle surface of the ellipsoid such 

that Vζ x, y, z( )= 0 , then we can write 

 (5) 

As it will explained in the next section, and as a consequence of a morphogen 

concentration, each point where such concentration is different from zero moves 

from its initial position p to an intermediate position x , with a similar expression 

to (5) but using a modified parameterization :  

 (6) 

The relations between parameters  and  determine the shape 

of the active displacements from p to x , and will be specified in Section 4 for 

each morphogenetic movement. For later use in the analysis of the elastic 

equilibrium, it will become useful to derive the expression of the active 

deformation gradient Fa , which is given by [46]  

 (7) 

The vectors ∂x
∂Vθ

, ∂x
∂Vz

 and ∂x
∂Vζ

form the covariant basis at x , and are explicitly 

function of the covariant basis at p formed by the vectors ∂p
∂Vθ

, ∂p
∂Vz

 and ∂p
∂Vζ

. The 



10 

latter are in turn computed from the contravariant basis at p according to the 

following relationship 

∂p
∂Vθ

=
∇ pVz × ∇ pVζ

g p  (8)  

with g p = ∇ pVθ ,∇ pVz,∇ pVζ( ) the determinant of these three vectors. 

3. Coupled diffusive-kinematic model 

In this section we introduce the governing equations and the evolution law of our 

chemo-mechanical system. We consider the embryonic tissue as a continuum 

domain under large deformations. The decomposition of the deformation gradient 

is used in order to take into account both the active and the passive components. 

The latter is assumed elastic, whereas the former, contrarily to previous models 

[4, 34], depends here on the morphogen concentration. More specifically, the total 

observed deformation of the tissue is the result of the following steps: 

• An active deformation that depends on the morphogen concentration in a 

simple manner. The pattern of the active deformation is kept constant, 

whereas the rate of it its intensity depends linearly on the concentration 

level. Section 3.1 formalises this dependence. 

• A superimposed elastic deformation that resolves the kinematic 

incompatibilities of the active deformation. As described in Section 3.2, 

the amount of the latter is found using standard equilibrium of elastic 

continua. 
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3.1  Chemo-mechanical framework 

3.1.1. Definition of intermediate configuration 

During morphogenesis, some cells at specific regions of the embryo undergo 

transformations in shape, which are apparently not triggered by the stress state of 

the tissue. These individual strains, represented by the active deformation gradient 

Fa , change according to each morphogenetic movement, and may be 

kinematically incompatible (i.e., they lead to superposition of the cellular domains 

or discontinuities). If material compatibility is enforced at the final observed 

configuration, the active deformation Fa  must be complemented with the so-

called passive deformation Fm . As a result, the total deformation gradient of the 

tissue F  is decomposed according to the following multiplicative form: 

F = FmFa   (9) 

The passive deformation gradient Fm  is determined by the elastic stress response 

of the cells and the mechanical equilibrium, while Fa  is computed at each point p 

according to (6). In the present work, Fa  will be restricted to have the following 

form 

 (10) 

where  and α  are the deformation mode and the intensity active factor, 

respectively. They control the shape and the magnitude of the active deformation, 

respectively.  
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The specific form of  determines the actual imposed deformation. In general, 

this form will be defined through a set of relations between  and 

, which are now also dependent on the variable α :  

 (11a) 

 (11b) 

The actual expressions of these functions will be explicitly given for each 

morphogenetic movement in Section 4. In all cases, the evolution of factor α  is 

driven by chemical diffusion, as will be described in the next paragraphs. 

We note that this formulation is in contrast with other growth process suggested in 

the literature, where the active deformations depend on the Piola-Kirchhoff [30] 

or the Kirchhoff stresses [20]. In our case instead, the pattern of the active 

deformations remains prescribed, while its intensity is modulated with the 

morphogen concentration. By resorting to such prescribed patterns we are 

reducing the flexibility to model other potential cell shape changes. Nevertheless, 

we show in our results that by using suitable choices of these patterns we can 

reproduce the local cellular movements such as the apical constriction during the 

VFI or the intercalation process during the GBE, without having to explicitly 

model the cytoskeleton or the cell-cell contact at the membrane. 

3.1.2. Evolution law and diffusion-reaction equations  

The chemical and the mechanical fields are coupled with a simple linear 

relationship between the rate of the intensity active factor α  and the actual 

concentration per unit of deformed volume c as follows 

dα
dt

= β ⋅ c  (12) 
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where β  is a positive constant. This equation is motivated by the following three 

facts: i) at points with larger morphogen concentration the genes will be more 

likely to trigger the driving active forces, ii) we aim to achieve a homeostatic 

state, with c≈0, where no further active deformations are introduced, and iii) at the 

end of the morphogenetic movement, when c=0, the value of α must remain 

unchanged, i.e., the process will not be reversed. This latter fact has prevented us 

from setting a linear relationship between α and c. The parameter β controls the 

influence of the concentration onto the active deformations, which is a 

consequence of multiple factors. In the two morphogenetic movements analyzed 

here we have assigned a single value to β such that the deformed configuration 

resembles the observed one. This is of course a preliminary simple choice which 

can be modified in the future. 

We note that, since c≥0, α will always increase. However, its rate may increase or 

decrease according to the concentration rate itself. We recognize that as far as 

c≠0, α will keep increasing, which seems a priori unrealistic. In fact, equation 

(12) is a linear approximation of multiple concurrent complex phenomena that 

occur during a larger time-span than the duration of our analysis. Our model does 

not aim to fully reproduce all this myriad of processes with such a linear 

relationship, and consequently will become more approximated during the end-

time instants. We will limit our attention and conclusions to a subinterval of this 

whole period, where equation (12) seems better justified and better reproduces the 

experimental observations. 

We define an active region as the domain where α≠0, and therefore a region 

where some active deformations are present. We will assume an initial condition 

where the morphogen concentration is uniform on a restricted region. Due to Eq. 



14 

(12), such region will be subjected to active deformations, but due to diffusion-

reaction of this morphogen, the active region will vary its extension as a function 

of time. 

Let us consider the motion Ωp →Ωx  from the reference to the actual configuration 

and assume that the concentration c follows a diffusion-reaction equation at the 

instant t. Thus, if divx  and ∇x  are respectively the divergence and the gradient 

with respect to the actual position x, the balance of morphogen onto a control 

volume yields the following equation 

dc
dt

+ c divxv = divx kD∇xc( )+ kRc  (13) 

with v the velocity of the material, kD  the diffusivity scalar constant and kR  the 

chemical reaction coefficient.  

For large deformations problems, and with the aim of spatially discretizing the 

model with finite elements, we will express the above differential equation with 

respect to the reference configuration. Recalling that dJ
dt

= J divxv  (with J = det F ), 

and ∇xc = F −T∇ pc  , and according to Piola’s identity divxa =
1
J

divp JF −1 a( )( ) [33] 

where a  is any vector, we have that Eq. (13) turns into 

d(Jc)
dt

= divp J  kD  C−1 ∇ pc( )( )+ JkRc  (14) 

where C = F T F  is the Cauchy-Green deformation tensor. We emphasize that we 

are solving the reaction-diffusion equation onto a deformable domain, and 

therefore some additional terms have arisen with respect to diffusion-reaction 

equations on a fixed domain. We note that the effects of the medium deformation 

onto the concentration evolution are twofold. On one hand, the initial scalar 

diffusion term kD is now replaced by an anisotropic diffusion tensor J  kD  C−1 . 
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Thus, for highly deformed tissues, the diffusion term decreases along the principal 

direction of deformation. On the other hand, we can identify a reaction term equal 

to c JkR −
dJ
dt







. Consequently, if the material is compressed ( dJ
dt

< 0 ), we will 

observe that the morphogen concentration augments due to the increase of 

JkR −
dJ
dt







. 

Due to the diffusion-reaction process in Eq. (14) and to the evolution law in Eq. 

(12), we will observe a gradient of the active deformation. This is in contrast to 

our previous works [4, 34] where the intensity factor α  was assumed uniform 

throughout the active region. 

The corresponding weak form of Eq. (14) is obtained in the usual manner: by 

multiplying this equation by the test concentration c , so that, assuming vanishing 

concentration flux outside the embryo, we have 

c d Jc( )
dt

dV
Ωp
∫ = − JkD  C−1 ∇ pc( ),∇ pc( )

Ωp
∫ dV + JkRc

Ωp
∫ cdV  (15) 

where a, b( ) is the dot product of two vectors a and b. Equation (15) will be 

discretized by a standard finite element method on the initial configuration. 

3.1.3 Qualitative analysis of the model 

Before detailing the numerical simulation on the full embryo, let us consider from 

a qualitative point of view the influence of the diffusion coefficient kD  and the 

reaction coefficient kR . In order to illustrate and evaluate this specific aspect, we 

consider a one-dimensional domain ∞ < x < ∞ with an initial active region at the 

center ( −1 ≤ x ≤ 1) that has a morphogen concentration c = 1 at t=0s. The 

differential equation (15) and the evolution law in (12) with β=0.1 have been 

symbolically solved with Mathematica®. Figs. 3a-b show the evolution of c and α, 
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respectively, as a function of time t and space x, in the case without reaction 

(kR=0). As expected, it can be observed that morphogen concentration grows 

faster at the initial times, when c is higher. The region where the intensity active 

factor α≠0 spreads outside the initial active region and increases monotonously as 

mentioned above.  

It has been verified that when the chemical reaction is taken into account, kR ≠ 0 , 

there is a morphogen production (consumption) when kR  is positive (negative), 

and consequently we have that α grows at faster (slower) rate. Fig. 3c-d show the 

evolution of c and α when kR <0. In this case, c decreases much faster and the 

evolution of α is much slower. 

These preliminary results confirm that when the activation factor α is driven by a 

diffusion-reaction equation, the activity that initially was concentrated in specific 

areas is transferred to neighboring zones. This concentration will affect the 

mechanical response of the system, and as it will be shown in the next section, the 

converse will also be true: the mechanical deformation will affect the morphogen 

concentration, similar to the mechanotransduction phenomenon observed within 

the tissue.  

3.2 Mechanical equilibrium and behavior  

Let x stands for the actual position of a material particle and im  stands for a 

cartesian frame. Then the total deformation may be described by the deformation 

gradient 

 F =
∂x
∂pm

⊗ im
m=1,3
∑  (16) 
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We remind that this total deformation gradient may be decomposed in its active 

and passive part according to Eq. (9). It is illustrative to contemplate two extreme 

situations: a) when the cell is completely free, without any boundary condition 

imposed, Fm = I and F = Fa , i.e., the final deformation coincides with the active 

deformation itself, b) when the cell is fully constrained by other cells and by the 

boundary conditions, as in the case of the embryo, Fm is the actual response to the 

active deformation Fa . In general, the two situations are mixed to provide the 

suitable final consistent deformation imposed by the continuity of the material. 

The weak form of the mechanical equilibrium condition in the initial 

configuration Ωp is expressed through the first Piola Kirchhoff stress  as 

follows 

Tr πDpw
T( )dV = w, fs JF −T n( )( )dS

∂Ωp
∫Ωp

∫  (17) 

where  fs  indicates the pressures exerted on the inner and the outer surfaces of the 

embryo and w is a kinematically admissible displacement test function. 

The first Piola-Kirchhoff tensors is computed as   with . 

is the Second Piola-Kirchhoff tensor with respect to the intermediate 

configuration and it is defined as 

     (18) 

where   and are the Lamé material parameters, 

with E and ν the Young’s modulus and Poisson’s ratio, respectively. The Green-
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Lagrange strain tensor , with  , measures 

the elastic passive deformation.  

By using a purely elastic model we are disregarding any viscous dissipative 

phenomenon and the viscous forces. It must be noted though that some elastic 

contribution does exist, as the experiments in [49] and in [16] show, where the 

original shape of the embryo is recovered when an imposed deformation is 

removed. Indeed, the viscoelastic nature of embryo epithelia is still a controversial 

debated issue, and in fact, while some researchers have modeled the Drosophila 

embryo resorting to solely fluid equations [40], others use a purely elastic tissue 

[53].  

In our case, by considering a purely elastic material, the passive deformations that 

accommodate the kinematic incompatibilities of the active ones will induce some 

elastic stresses.   We are aware that these may be actually different from a 

representative stress state of the cell. We show in our numerical results that the 

actual value of the stresses is proportional to the material stiffness, which can be 

just estimated for embryo tissue [57]. None the less, we have also compared in 

Section 4.1 our stress values from those reported in other models. 

 More importantly, the active deformations of our model are independent of the 

material properties, and are those that largely contribute to the total deformation. 

The aim of the present work is reproduce the active deformations and to analyze 

the plausibility of a diffusion driven mechanism. We do not intend to match the in 

vivo stresses, which to the authors’ knowledge, have not been reported so far. 

The equilibrium equation in (17) must be complemented with the particular 

boundary conditions. In the Drosophila embryo, they correspond to the vitelline 
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membrane contact conditions and the internal yolk volume preservation. Due to 

the irregular shape of the ellipsoid, these conditions prevent any rigid body 

motion. They are modeled by including additional terms in Eq. (17) (see [4] for 

further details).  

In summary, mechanical and chemical phenomena are coupled according to the 

following dependences: 

• The elastic deformation on the morphogen concentration c: π  depends 

on Fa , which is mediated by the active intensity factor α  that depends 

on the morphogen concentration c; 

• The morphogen concentration c on the total deformation: the diffusion 

equation depends on C and J, reflecting the fact that compressed areas 

will increase their concentration c.  

The two equations in (15) and (17) are simultaneously solved through a multistep 

time integration and a Newton scheme for the displacement u and the morphogen 

concentration c at each time step. 

4. Morphogenetic movements 

The coupled mechanical-diffusion model and the parameterization of the active 

deformations developed in the previous sections will be here applied to two 

morphogenetic movements: the ventral furrow invagination (VFI) and the germ 

band extension (GBE).  

In the last decades, these two movements have been amply studied from both the 

experimental and the numerical points of view. In fact, some interesting computer 

models have been proposed in literature [1, 11, 12, 15, 21, 34, 40, 42, 51, 52, 56]. 

However, in all these references, the cell activity is either imposed or a function of 

the stress state of the cell. In the present work instead, motivated by the presence 
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of diffusion profiles of Dorsal morphogen that control the expression of the genes 

twist and snail during the VFI and the GBE [29, 47] or the concentration profiles 

of Fgf8 and Dpp in other developmental processes [23, 26], we will reproduce the 

VFI and the GBE according to the evolution law in (12), the diffusion-reaction 

equation in (15) and the mechanical equilibrium in (17).  

In all the following analyses we have assumed the constant representative values: 

E=100Pa [57], ν=0.45, kD = 10−9 m2s−1  and  β = 10−1 m3s−1mol−1 . However, due to a 

lack of experimental information, we have set kR=0, except for the simulation of 

the VFI where a parametric analysis has been done. 

4.1 Ventral furrow invagination (VFI) 

The VFI is an orthogonal invagination that takes place along the ventral 

embryonic midline. It extends between 6% and 85% egg length and it involves 

about 800 cells that will become internalized. The movement is highly controlled 

by two developmental genes: twist and snail. Additionally, the former induces the 

ventral expression of Fog and T48 [27], two proteins that recruit RhoGEF2 to 

constrict a contractile actin-Myosin II network that leads to the deformation of the 

active cells [38]. The VFI is triggered by a series of synchronized cell changes in 

shape that provide the final form of this furrow [1, 13, 28, 29, 50]. Similarly to 

our previous works [4], the apical constriction along the transversal section of the 

embryo is the only responsible of VFI. Apical constriction occurs primarily 

through the contraction of cytoskeletal elements and, specifically for the 

Drosophila embryo, the actin-myosin filaments. It consists in the contraction of 

the apical basis of the cells, which is in contact with the vitelline membrane, and it 

causes the cells to take a wedged shape.  
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Such deformation can be reproduced by applying the intermediate position in Eq. 

(6) and particularizing Eq. (11) to the following expressions:  

 (19a) 

   (19b) 

where m Vθ( ) is a periodic function that mimics the cell boundaries by 

appropriately modulating the intensity of the active deformation. Its explicit 

expression is: 

  (20) 

where  corresponds to the angular extension of a material cell and round is 

the classical step function which gives the integer number  of . 

This function subdivides the embryonic tissue into several sub-domains 

corresponding to the real cells. By using this periodic function we can evaluate the 

individual cellular deformations. It depends on the hypothesized dimensions of a 

real cell of the embryo that have been set equal to 15µm along Vζ  and 10µm along 

Vθ  and Vz . In Fig. 4a, it is possible to observe the physical distribution of the 

pseudo-cells along the transversal section of the embryo. Each white domain 

represents a cell, while the black domains are triggered by the smoothing effect of 

the Heaviside function by which the material cells are obtained [4].  

The values of the intensity factor α are determined by the evolution law in Eq. 

(12). By inserting Eq. (19) into Eq. (6), the active deformation gradient Fa can be 

then computed according to Eq. (7). 

At the initial time, a uniform non-zero concentration is introduced in a restrained 

region of the embryo, as it is observed in reality. Fig. 5 shows this region with the 



22 

initial conditions for the concentration c. Such area is obtained using a Heaviside 

function that is equal to one in the region with non-zero concentration values and 

equal to zero everywhere else. The discontinuities of this function have been 

smoothed to ease the computations [4]. 

The successive steps of the VFI are shown in Fig. 6a, b and c. The embryonic 

tissue is more constricted in the area corresponding to the active region, due to the 

higher initial morphogen concentration. As the diffusion phenomenon takes place, 

the initial concentration decreases. Thus, at t = 0s  we have a concentration 

c = 1mol ⋅m−3  in the center of the active region (Fig. 6a), while at the end of the 

simulation ( t = 1s ) we find c = 0.36mol ⋅m−3  (Fig. 6c). The experimental values of 

Dorsal morphogen concentration in the embryo during the VFI are not detailed, 

and just the general profiles can be found in the literature [47]. Furthermore, the 

value of parameter β, which controls the influence of the concentrations on the 

active deformations, is hard to measure and has just been estimated in our 

simulations.  

The general trend of the strains due to the diffusion phenomenon agrees with the 

experimental observations. Indeed, while the morphogen concentration reduces 

during the simulation, the active intensity factor increases and consequently the 

final strain occurring to the cells (Fig. 7a). At the initial configuration (Fig. 4a), 

the cells show a columnar shape, while at t = 1s , once the furrow has formed (Fig. 

4b), the apical constriction is clearly evident, especially for the cells in the active 

region. Fig. 8 shows the value of the total stretching along Vθ , which is computed 

as the projection of the Cauchy-Green deformation tensor C along Vθ  as follows 

 (21) 
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We find that the final maximal stretching for the mechano-diffusion model at the 

apex of the invagination is equal to 0.74 (Fig. 8b), which is almost double 

compared to the one found in our previous simulation of the VFI with the imposed 

active deformations (0.32) (Fig. 8a) [3]. According to the chosen dimensions of a 

real cell, we can estimate that the maximal apical constriction at the apex of the 

furrow is equal to 7.5µm . In general, the final strain simultaneously depends on 

the initial position of the cell as well as on the diffusion phenomenon here 

implemented.  

Although no in vivo stresses have been reported in the literature, we have 

computed the stresses along the direction Vθ, that is, the value of (Sm (Vθ), Vθ) at 

point E in Fig.1b, and compared the values with those reported in [6]. From the 

expression of Sm in Eq. (18), we deduce that (Sm(Vθ),Vθ)= λTr[Em]+2μ((Em 

(Vθ),Vθ)-, which is directly proportional to the Young modulus E. We have plotted 

in Fig. 7a the evolution of (Sm(Vθ),Vθ). For the value employed in our model, 

E=100Pa, the stress value approaches 400Pa (Fig. 7c,d). In order to compare this 

value with the tractions reported in [6, Fig. 4a], we convert our stress value into a 

traction per unit of μm depth and applied onto a cell width (15 μm), which yields 

a force of 6 nN, This value is between one and two orders of magnitude higher 

than the one in [6], which as the authors in the reference recognise, is proportional 

to the viscosity, which in turn may vary in different orders of magnitude. It is also 

worth noting that our stresses and forces monotonically increase, while those in 

[6] have a parabolic trend. This is in agreement with the different material model 

considered, as discussed in Section 3.2: while the forces in [6] are proportional to 

the strain rate, ours are proportional to the accumulated elastic strain.  

We also remark that, as pointed out by [9], the elongation of the invaginating 

tissue on both sides of the furrow towards the midline could be the direct cause of 
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the antero-posterior tensile force deforming the germ band in the early fast phase 

of its extension. Therefore, the VFI, as well as other three morphogenetic 

movements (cephalic furrow formation, posterior midgut invagination and 

amnioserosa cell elongation), could be a good candidate to contribute to the cells 

shape changes leading to the GBE, which are then considered as a passive 

response to the mechanical forces occurring during the VFI. 

To conclude, we remark that the elastic deformations at any point in the initially 

non-active region of the tissue are originated by two contributions. For the regions 

where α=0, the deformations in active areas with α≠0 will induce global elastic 

deformations. On the other hand, due to the diffusion phenomenon, α may 

eventually be positive and consequently superimpose an additional active 

deformation. Therefore, the total deformation at each point is due to the activity at 

neighboring cells, plus the active deformations that this point may have. This is in 

contrast to our previous simulation where the active deformations were 

exclusively localized in the initial active zone [4].  

As a final and qualitative test, we have introduced the reaction term into Eq. (14) 

with kR=0.1s-1. The main objective of this specific simulation is to show that, as 

similarly as in Sec. 3.1.3, the reaction term may influence the global behavior of 

the biological system. Let us consider the point E of the ventral furrow as 

represented in Fig. 1. As expected, since kR>0, we have a morphogen production 

which leads to an increase of the morphogen concentration c, as observed in Fig. 

7b. This in contrast with the previous case (Fig. 7a) with kR=0 and where c 

globally decreases due to the diffusion. For what concerns the evaluation of the 

active apical constriction, we remark that the final invagination is smaller than the 

model with kR=0. Although further studies may be necessary, we believe that the 

proposed analysis can be considered as a first step to investigate the 
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mechanotransduction phenomenon. So far we have introduced a linear reaction 

term (kR c), even though we are aware that for chemical analyses a non-linear term 

is usually involved ( kRcn ). 

4.2 Germ band extension (GBE) 

The germ band is located at the ventral region of the embryo and it starts to extend 

at the end of gastrulation [24]. This event leads to an elongation of the germ band 

of about 2.5 times its initial length. It is due to a convergent-extension movement 

of a population of cells at the central-lateral region of the embryo. This process is 

triggered by an intercalation of the cells that interpose themselves between their 

dorsal or ventral neighbors, resulting in a decrease of the number of cells along 

the dorsal-ventral axis and in an increase of the number of cells along the anterior-

posterior axis [24]. Recently, it has also been shown that during the fast early 

phase, the GBE depends on cell shape change in addition to intercalation and that 

these changes in shape are a passive response to the mechanical forces caused by 

the invagination of the ventral tissue [43].  

Here, since the cells are not individually modeled, we do not precisely simulate 

the intercalation process. Instead, we propose a continuous movement of 

compression-extension tangential to the middle surface of the blastoderm. Like in 

the VFI, the active deformations are introduced on a limited region of the embryo 

(Fig. 9a): the germ band at ventral region where the initial morphogen 

concentration is not zero. The intermediate position in Eq. (6) uses now the 

following particular expressions for  and   : 

 (22a) 

 (22b) 
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The active deformation gradient Fa may be then computed by inserting these 

expressions into  in Eq. (6) and evaluating Eq. (7). 

The results for this simulation are plotted in Fig. 9b. As we can observe, the 

convergence-extension movement is evident even though the amplitude of the 

uniform compression from the dorsal to the ventral region is not so pronounced as 

in our previous work [4]. We can still notice the vortex movements forming 

towards the AP and the PP. Additionally, we have been able to evaluate the 

maximal value of the two active strains by projection of the Cauchy-Green 

deformation tensor along Vθ  (shortening, ) and along Vz  (extension, 

). We find respectively 0.06 for the convergence and 0.21 for the 

extension. Thus, if we consider the dimensions given in Section 4.1. for a single 

cell, we may observe an extension of each cell along Vz  of about 2.1µm and a 

shortening along Vθ  equal to 0.6µm .  

Like in the VFI simulation, the morphogen concentration decreases during the 

diffusion phenomenon. Consequently, at t = 0s  we find an initial maximal value 

of  in the active region (Fig. 10a), while at the end of the simulation 

( t = 1s ), we have c = 0.08mol ⋅m−3  (Fig. 10c). 

In Fig. 11, the trends of the intensity active factors, the two active strains, and the 

morphogen concentration at point E of Fig. 1 are reported as a function of t. As 

we can observe, the concentration c decreases while α  progressively increases, 

which affects the tendency of the active deformations. The absolute value of the 

stretching in the directions of  and  increases, but of course in the former 

case it is negative (shortening) while in the latter it is positive (lengthening). 

c =1mol ⋅m−3



27 

5. Conclusions 

We have coupled the diffusion-reaction equations on a deforming domain with the 

equilibrium equation of an elastic domain subjected to active deformations, which 

are in turn dependent on morphogen concentration. Additionally, a novel 

technique to parameterize the embryo geometry and obtain a set of covariant basis 

has been employed, which has allowed us to deduce the expressions of the 

concentration dependent active deformations. We have applied the model to 

simulate ventral furrow invagination and germ band extension in the Drosophila 

embryo. 

Despite an increasing number of experiments analyzing the diffusion of 

morphogens, their effect onto the biological developing tissue has not been taken 

into account. Here, we couple these diffusion profiles with the mentioned two 

morphogenetic movements. The promising results show that the employed set of 

equations reproduces the trend of the active deformations observed during 

morphogenesis. Clearly, in order to obtain more realistic strains, the reaction term 

and the initial morphogen concentration should be regulated, especially for a 

consistent comparison with the experimental observations and values. Also, 

additional non-linear source terms are probably needed. 

We recognise that by using a purely elastic material, some errors in the resulting 

stresses and the actual timing of the cellular response may have been introduced. 

We have though compared our stress values to those in [6], and remarked their 

good agreement. The lack of in vivo measurements, similar to those described for 

other morphogenetic movements in [19, 23, 26], does not allow us to give further 

rigorous quantitative analyses. Qualitatively, it is worth pointing out that the usual 

smooth profiles encountered in diffusion process may have sudden mechanical 

effects, as in the case of the FVI modeled here. These severe folds in the 
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epithelium may in turn drastically change the concentration profile, triggering 

non-smooth evolutions of the concentrations and strains, as shown in Fig. 6-7. 

We note that due to the presence of the vitelline membrane in the Drosophila 

embryo it is not possible to measure stresses at the embryo epithelium. However, 

the development described here are easily extensible to other embryos such as the 

Zebrafish, where this data can be measured. We intend in future works to test our 

model in these embryos.  

We note, that in contrast to the stress field, which is transferred nearly 

instantaneously, the diffusion process allows to match the timing of the 

morphogenetic movement, without artificially imposing a set of incremental 

active deformations. This is one of the features that has motivated the present 

work: the coupling of the active deformation with a physical quantity that enables 

to successfully control the rate and magnitude of the cell shape changes. In this 

paper, we have verified that the diffusion process is a plausible mechanism, able 

to govern the driving forces of the invagination process. 

In our simulations, we have imposed a set of initial conditions for the 

concentrations, displacements, stresses and active deformations. We recognize 

that such conditions are certainly not always fully determined, and in fact 

correspond to the final conditions of other processes which we have not been 

modeled. For this reason, our comparisons have more a qualitative than a 

quantitative character. Nonetheless, the agreement between the observed 

deformations and our computations is certainly satisfactory. Furthermore, we 

point out that in our case, the active deformations are not directly imposed, but are 

a consequence of the morphogen diffusion and the evolution law proposed for the 

intensity factor α. 
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The simulations show that the dynamics of the diffusion process is compatible 

with an active genetic movement triggered by morphogens. The coupling between 

chemicals and mechanics through a diffusion-reaction in embryo development has 

not been attempted so far. The simulations presented here constitute then an 

original contribution for a better understanding of the whole three-dimensional 

problem. We are aware that the complex signalling process between mophogen 

concentrations and gene activity may further regulate the relation between embryo 

phenotype and its genotype. We have shown that without explicitly modeling the 

mechanotransduction path within the cells, morphogen activity may be included 

with simple rules that successfully match the complex synchronization between 

chemicals and mechanics during the embryo development.  
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Figures 

 

Fig. 1 The geometry of the Drosophila embryo which has been built from an anterior and an 

exterior ellipsoid retrieved from real embryo images. The major axis AB is 500μm, while the cross 

axes CE and DF are respectively 175μm and 165μm. The thickness of the embryo varies between 

15μm<h<40μm. 
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Fig. 2  (a) The curvilinear system of coordinates composed by Vθ ,Vz  and Vζ  that allows the 

parameterization of the Drosophila geometry. (b) Representation of the external (red), the middle 

(green) and the internal (blue) surface of the embryo (for sake of clarity, only half of the hollow 

geometry is reproduced). 

 

Fig. 3 Evolution of concentration profiles c and intensity factor α as a function of time t and space 

x for a one-dimensional problem. Initial conditions are: c=1 for -1<x<1, and α=0 everywhere. The 

values of α are governed by the evolution law in Eq (12): dα/dt=βc with β=0.1. (a-b) kD=1 and 
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kR=0 (c-d) kD=1 and kR

 

= -1. In the latter case, there is a morphogen consumption and 

consequently α grows at slower rate than in case (a-b). 

Fig. 4 Representation of the material cells by which the embryonic tissue is subdivided (Eq. (20)) 

during the VFI simulation. Each white domain represents a cell, while the black domains are 

triggered by the smoothing effect of the Heaviside function by which the material cells are 

obtained. (a) Initial configuration (t=0): the cells show a columnar shape (b) Final configuration 

(t=1s): the apical constriction has occurred and it is maximal at the apex of the furrow. 

 

Fig. 5 Isovalues of the concentration c at t=0 for the VFI simulation (ventral view of the embryo). 
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Fig. 6 (a-c) Isovalues of the concentration c during the successive steps of the VFI simulation. As 

we can observe, the morphogen concentration c decreases as long as the active deformation 

increases, so that the VFI occurs. 

 

Fig. 7 The trends of the morphogen concentration c (blue line), of the active intensity factor  

(red line) and of the total apical constriction defined as  (green line) over time t during 

the VFI simulation (the curves are traced for the point E of Fig. 1). In (a) kR=0 and the 

concentration c progressively decreases. In (b), kR=0.1s-1  which leads to an increase of the 

concentration c at the end of the simulation. In both cases, the initial condition at point E is c=1 

and α=0. As expected α always increases. (c) and (d): computation of the stress Sm along the 

direction Vθ (Sec. 4.1) for the case where kR=0 (c) and kR=0.1s-1  (d).  
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Fig. 8 Final deformation of the tissue during the VFI represented by the projection of the Cauchy-

Green tensor C along the tangential vector Vθ  (Eq. (21)). (a) Results when simulating VFI with 

imposed active deformations, as modeled in [3], yelding a maximal apical constriction equal to 

0.32. (b) Present mechano-diffusion simulation of the VFI with a maximal final stretch equal to 

0.74. 

 

Fig. 9 (a) Isovalues of the concentration c at t=0 for the GBE simulation. (ventral view of the 

embryo). (b) Frontal view of the embryo at the end of the simulation of the GBE (t=1s). The black 

arrows represent the displacement field. 
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Fig. 10 Frontal views of the embryo. From the top to the bottom, variation of the morphogen 

concentration c during the successive steps of the GBE simulation. The black arrows represent the 

displacement field. 
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Fig. 11 The trends of the morphogen concentration c (blue line), of the active intensity factor α  

(red line) and of the two active strains: convergence  (green line) and extension  

(purple line) over time t during the GBE simulation (the curves are traced for the point E of Fig. 1, 

kR

α
=0). As for the VFI, we observe that the concentration c progressively decreases (c(t=0)=1), 

while the active intensity factor  increases (α(t=0)=0). The active strains also increase (at t=0 

they are also equal to 0), but it has to be noticed that the convergence is negative while the 

extension is positive. 

 


