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,e stop/go decisions at signalized intersections are closely related to driving speed during signal change intervals. ,e speed
during stop/go decision-making has a significant influence on the dilemma area, resulting in changes of stop/go decisions and
high complexity of the decision-making process. Considering that traffic delays and vehicle exhaust pollution aremainly caused by
queuing at intersections, the stop-line passing speed during the signal change interval will affect both vehicle operation safety and
the atmospheric environment. ,is paper presents a comparative study on drivers’ stop/go behaviors when facing a transition
signal period consisting of 3 s green flashing light (FG) and 3 s yellow light (Y) at rural high-speed intersections and urban
intersections. For this study, 1,459 high-quality vehicle trajectories of five intersections in Shanghai during the transition signal
period were collected. Of these five intersections, three are high-speed intersections with a speed limit of 80 km/h, and the other
two are urban intersections with a speed limit of 50 km/h. Trajectory data of these vehicle samples were statistically analyzed to
investigate the general characteristics of potential influencing factors, including the instantaneous speed and the distance to the
intersection at the start of FG, the vehicle type, and so on. Decision Tree Classification (DTC) models are developed to reveal the
relationship between the drivers’ stop/go decisions and these possible influencing factors. ,e results indicate that the in-
stantaneous speed of FG onset, the distance to the intersection at the start of FG, and the vehicle type are the most important
predictors for both types of intersections. Besides, a DTC model can offer a simple way of modeling drivers’ stopping decision
behavior and produce good results for urban intersections.

1. Introduction

At signalized intersections in most cities of China, a 3 s green
flashlight (FG) indicator and a 3 s yellow light (Y) indicator
are the most common form of transition signal setting [1–3].
,e current practice shows that it is reasonable to set the
yellow light as 3 s for the intersection with a speed limit of
less than 50 km/h. Once the speed limit is higher than 50 km/
h, the vehicle will often fall into the dilemma zone (DZ) due
to the higher driving speed and insufficient yellow light
duration [4–8]. In most Chinese cities, the speed limit of
high-speed intersections in rural areas is generally larger
than 60 km/h. In comparison, in urban areas, the speed limit

of high-speed intersections is usually smaller than 60 km/h.
,us, for the above two intersections with different areas, the
setting of green flashlight (FG) can impose other effects on
the stop/go decision-making behavior of drivers.

Tremendous research efforts have done to study the
influence of FG on drivers’ decision-making behaviors as
well as to model such behaviors in response to signal change
intervals. However, few studies have compared the impact of
FG on the driver decision-making process at different types
of intersections. Furthermore, there is no study on the
specific combination of 3-second yellow light (Y) and 3-
second green flashlight (FG). ,is kind of signal combi-
nation is a unique feature of signalized intersections in
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Table 1: Characteristics and conditions of the investigated intersections.

Intersections Cao’an Rd. and
Jiasongbei Rd.

Cao’an Rd. and
Xiangjiang Rd.

Cao’an Rd. and
Caofeng Rd.

Siping Rd. and
Dalian Rd.

Rende Rd. and
Jipu Rd.

Speed limit 80 km/h 50 km/h
Observed
approaches East-bound East-bound West-bound and east-

bound East-bound North-bound

Lane layout L-T-T-T-R L-T-T-T-R L-T-T-T-R L-L-T-TR L-TR
Size 72m 72m 48m 64m 40m
Cycle length 161 s 160 s 104 s 200 s 86 s
Number of phases 4 4 3 4 2
Green time 38 s 45 s 45 s 77 s 45 s
FG 3 s 3 s 3 s 3 s 3 s
Y 3 s 3 s 3 s 3 s 3 s
All-red time 1 s 1 s 1 s 2 s 1 s
First-to-go vehicles 201 153 303 112 33
(Passenger cars/
trucks) (156/45) (119/34) (203/100) (103/9) (28/5)

Last-to-stop
vehicles 156 101 272 75 53

(Passenger cars/
trucks) (111/45) (77/24) (175/97) (68/7) (37/16)

Note: L� exclusive left-turn lane; T� through-ahead lane; R� exclusive right-turn lane; TR� shared through and right-turn lane.
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Figure 1: Continued.
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China. It provides a long time for the observation and
determination of the driver before stop/go decision-making,
i.e., 6 s. ,erefore, this paper mainly focuses on the research
gap.

In this study, the Decision Tree Classification (DTC)
models are applied to analyze how drivers’ stop decisions
relate to potential influencing factors for two different types
of intersections. Firstly, vehicle trajectory data, reflecting
stop/go decision behavior of five intersections, are collected
during the signal change interval. ,ree of which are high-
speed intersections with a speed limit of 80 km/h in the rural
area, and two of which are intersections with a speed limit of
50 km/h in the urban area. Secondly, we use these trajectory
data, and we also carried out statistical analysis to sum-
marize the general characteristics of the potential influ-
encing factors of the two types of the intersection, including

instantaneous speed, the vehicle type, and the distance to the
intersection at the beginning of FG signal. ,irdly, the DTC
model is built based on the description of the critical design
decisions and parameters. Next, the results of the DTC
model and the discussion of findings are given accordingly.
Finally, we summarize the findings of the study, point out
the contribution of this study, and suggest future directions
of related research.

2. Literature Review

Many previous achievements have focused on the influence
of FG on the driver’s decision behavior and DZ. ,ere are
both positive and negative conclusions about the effect of FG
in these kinds of literature studies. ,e positive results show
that FG can warn the driver that the phase of green light is
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Figure 1: Vehicle trajectory data of the investigated intersections. (a) Rural intersections (the speed limit is 80 km/h) and (b) urban
intersections (the speed limit is 50 km/h).

Table 2: Descriptive statistics for instantaneous speed at the onset of FG (unit: km/h).

Intersection types Sublevel Sublevel Sample size Mean Std. dev Min Max

Rural intersections

Stop
Passenger cars 363 61.8 19.1 16.7 118.9

Trucks 166 53.8 17.4 21.7 115.6
Overall 529 59.3 18.9 16.7 118.9

Go
Passenger cars 478 64.5 16.7 19.4 115

Trucks 179 56.1 15.6 5.6 100.6
Overall 657 62.2 16.8 5.6 115

Urban intersections

Stop
Passenger cars 105 39.2 8.9 16.4 64.5

Trucks 23 38.9 8.1 23.3 56.2
Overall 128 39.2 8.7 16.4 64.5

Go
Passenger cars 131 45.4 10.3 15.2 68

Trucks 14 46.6 8.7 21.4 57.2
Overall 145 45.5 10.2 15.2 68
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coming to an end, and the driver can reduce the incidence of
DZ by reducing the driving speed, to avoid red light vio-
lations [1, 2, 9]. FG signal essentially plays a role in pro-
longing the duration of yellow light. ,erefore, compared
with the intersections without FG, the proportion of drivers
running the red light at the intersections with FG is sig-
nificantly reduced [10–13]. Among the negative aspects, it
showed that FG could cause a significant increase in the

proportion of stop decisions [10, 11, 14]. Besides, although
FG can effectively reduce the DZ range caused by the yellow
light, it enlarges the indecision zone and enormously in-
creases the number of conservative stops and slightly en-
couraging aggressive passes slightly [13, 15]. Meanwhile, the
presentation of an FG indicator before the Y indicator
considered increasing the complexity of the driver’s stop/go
decision, leading to repeated decision-making [15, 16].
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Figure 2: Stop/go decision distribution based on speed intervals. (a) Rural intersections and (b) urban intersections.

Table 3: Descriptive statistics for distance to the intersection at the beginning of FG (unit: m).

Intersection types Sublevel Sublevel # Mean Std. dev Min Max

Rural intersections

Stop
Passenger cars 363 105.9 37.6 23.1 217.7

Trucks 166 102.5 36.5 23.6 197.5
Overall 529 104.8 37.2 23.1 217.7

Go
Passenger cars 478 56.4 26.4 3.2 132.9

Trucks 179 49.3 26.5 5.2 132.9
Overall 657 54.5 26.6 3.2 132.9

Urban intersections

Stop
Passenger cars 105 95.7 24.9 39.8 163.1

Trucks 23 96.7 35.5 40.4 155.6
Overall 128 95.8 26.9 39.8 163.1

Go
Passenger cars 131 46.2 19.5 7.5 95.2

Trucks 14 60.3 23.3 16.7 97.7
Overall 145 47.6 20.2 7.5 97.7
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Figure 3: Distributions of stop/go decisions for distance interval from intersections. (a) Rural intersections and (b) urban intersections.
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Notably, most of the studies listed above focused on the
comparative study of FG installation or not and DZ oc-
currence and/or stopping probability.

Meanwhile, numerous studies have focused on the
modeling of driver’s decision-making behavior at the end of
the green light [17–20], the most typical of which is the
GHM model proposed by Gazis, Herman, and Maraddin
[21]. A basic assumption of the GHM model is that the
driver decides whether to stop or pass the intersection
according to the relationship between the maximum passing
distance and the minimum stopping distance at the be-
ginning of the yellow light. Several notable variants have also
been reported in the literature [22–25]. ,e GHM model
assumes that all drivers will choose to stop, if possible. But
Olson and Rothery [26] found that the yellow light is often
used as an extension of the green time phase in the decision-
making process. Research conducted by May [27] showed
that some drivers avoid DZ by accelerating or decelerating.
,e study of Liu et al. andWei et al. [23, 28] showed that the
theoretical hypothesis could lead to differences in driving
behavior. In general, the primary defect of the GHM model
is the lack of description of the randomness of driving
behavior. Because of this disadvantage, some other re-
searchers have attempted to explain DZ behavior through
stochastic approaches [15, 29, 30].

Many studies [12, 16, 17, 23, 31–34] believe that the
decision-making behavior of drivers is random and obeys a
specific probability distribution. ,e stopping probability,
which is described as a function of the speed of the vehicle,

the distance to the intersection, or the travel time to the stop-
line at the beginning of the yellow light, the type of vehicle,
etc., is expressed as binary logit model or Bayesian model.
Meanwhile, other researchers, such as Rakha et al. [35],
Hurwitz et al. [36], Kuo et al. [37], andMoore et al. [38], used
fuzzy logic theory to analyze decision-making behavior. It
should further point out that the behavioral parameters
closely related to decision-making behavior may vary due to
the influence of location conditions, driver behavior char-
acteristics, vehicle performance, etc. Also, various potential
influencing factors are often related to each other. Some
research studies [16, 29, 30, 39–41] carried out in recent
years have found that the distribution of decision-making
areas may be dynamic, rather than the certainty described by
traditional theories.

3. Data Collection and Reduction

3.1. Site Descriptions. Five intersections in Shanghai were
selected to collect the necessary data, which were a 3 s FG signal
and a 3 s Y signal. ,ese intersections are divided into two
categories, one with a speed limit of 80 km/h and the other with
a speed limit of 50 km/h. ,e former is mainly located on the
roads connecting the urban area and the suburban area, such as
Cao’an highway, etc., which has a large traffic flow and a high
proportion of large trucks in peak hours. ,e latter is mainly
located in the urban area, and the traffic composition is mostly
cars. ,e main characteristics and conditions of the investi-
gated intersections are shown in Table 1.

Table 4: Analysis of variance table for speed and distance of FG onset.

Variables Source Sum of square df Mean square F Sig.

Speed

Stop/go 5816.2 1 5816.2 17.9 0.000
Vehicle type 7172.9 1 7172.9 22.1 0.000
Area type 78365.9 1 78365.9 283.8 0.000

Time of the day 52384.1 1 52384.1 179.2 0.000

Distance

Stop/go 895878.7 1 895878.7 958.8 0.000
Vehicle type 0.0 1 0.0 0.0 0.998
Area type 10098.6 1 10098.6 6.5 0.011

Time of the day 4374.2 1 4374.2 2.8 0.093

Table 5: Precision of models for rural intersections and urban intersections.

Models Observed
Predicted

Stop Go Hit ratios (%)

Rural intersections

Training
Stop 213 49 81.30
Go 47 287 85.90
Total 43.60% 56.40% 83.90

Test
Stop 199 68 74.50
Go 49 274 84.80
Total 42% 58% 80.20

Urban intersections

Training
Stop 61 7 89.70
Go 2 76 97.40
Total 43.20% 56.80% 93.80

Test
Stop 52 8 86.70
Go 7 60 89.60
Total 46.50% 53.50% 88.20
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3.2. Field Surveys and Vehicle Trajectory Extraction. We
select the sunny weekdays to carry out data collection,
trajectory data of vehicles collected by video recording.
Two high-definition cameras are required to record syn-
chronously. One of the cameras is installed on the high
building near the intersection, which can cover the 80m

long area upstream of the stop-line, to record the move-
ment trajectory of the whole decision-making process.
Another camera is set at the intersection to record traffic
signals synchronously. ,e acquisition of travel trajectories
relies on image processing software. It is located by the
global coordinates of five related points in the shooting
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Figure 4: DTC analysis results for rural high-speed intersections (training model).
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lens. ,rough residual analysis and t-test, it ensured that
the accuracy error is not more than 0.15m and 0.1 s. ,e
time interval of the software-controlled is 0.1 s. ,erefore,
matching the trajectory data with the signal change timing,
driving behavior parameters such as the speed, accelera-
tion, and deceleration of vehicles, and the position of each
step are obtained.

To avoid the influence of preceding vehicles, only the
last-to-stop and first-to-go vehicles after the onset of FG are
selected for analysis. ,e last-to-stop vehicle refers to the
vehicle selected to stop in front of the stop-line before the
start of the red light.,e last means that the vehicle is the last
vehicle tomake a decision in the study period.,e first-to-go
vehicle refers to the first vehicle passing through the stop-
line during the study period (i.e., from the end of green light
time to the end of yellow light).

Eventually, the trajectories of 1,459 vehicles including 1,186
vehicles (345 trucks and 841 passenger cars) at the rural in-
tersections and 273 vehicles (37 trucks and 236 passenger cars)
at the urban intersections were obtained for use in subsequent
statistical analysis and model development. As shown in
Figure 1, the 1,186 vehicle trajectories collected at the rural
intersections included the trajectories of 529 vehicles selected to
stop and 657 vehicles selected to pass. In comparison, the 273
trajectories obtained from the urban intersections included the
trajectories of 128 vehicles selected to stop and 145 vehicles
selected to pass.

4. Statistical Analysis of Potential
Influencing Factors

Past research has indicated that drivers’ stopping decisions
at signalized intersections may be influenced by the speed

and distance to the stop-line immediately before the phase
transition period as well as the vehicle type and time of day
[14, 21, 22]. ,erefore, statistical analysis was performed to
explore the variability of these potential influencing factors
as well as their relationships with stop/go decisions in re-
sponse to the onset of FG.

4.1. Instantaneous Speed at the Start of FG. A statistical
analysis of vehicles’ instantaneous speeds at the observed
approach lane at the start of FG is provided in Table 2.
Comparisons between the rural and urban areas indicate
that in both areas, the mean velocities of vehicles making
go decisions are higher than those of vehicles making stop
decisions. Besides, passenger cars typically have higher
rates than trucks in both rural and urban areas. Figure 2
illustrates the distributions of the stop/go decisions rel-
ative to various FG-onset speed intervals in rural and
urban areas. It finds that in a rural area, if the driver’s
speed is 60 km/h, the probabilities of stop and go decisions
are equal. ,e same situation occurs in an urban area
when the speed is 50 km/h, meaning that more truck
drivers decide to stop than passenger car drivers given the
same approach speed. In Figure 2(b), the situation is
similar, with more truck drivers choosing to cross the
intersection at a lower speed, which may be safer for large
vehicles.

4.2. Distance to the Intersection at the Start of FG. Table 3
presents a statistical summary of distance to the intersection
at the start of FG. It is found that the mean value of distance
for crossing drivers is shorter than that for stopping drivers.
Figure 3 illustrates the distributions of the stop/go decisions
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relative to various FG-onset distance intervals in rural and
urban areas. ,is figure shows that it is more likely for a
driver to make a go decision if he or she is farther from the
stop-line, and vice versa. In rural areas, for drivers located in
a distance interval of 60–100m from the stop-line, the
probability of stop decision or pass decision is close to 50%.
,e same situation is found for a distance interval of
60–80m in urban areas. In these distance intervals, it is
difficult for drivers to decide whether to stop or go.
Moreover, among all drivers who make stop decisions, more

truck drivers than passenger car drivers are inclined to stop
when the distance to the intersection at the start of FG is
shorter than 100m.

4.3. Analysis of Variance of Potential Influencing Factors.
Table 4 shows the analysis of variance (ANOVA) results for
the speed and distance at FG onset, where this analysis is
conducted to investigate the differences between every pair of
factors.,e ANOVA results show that multiple traffic factors,
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Figure 6: DTC analysis results for urban intersections (training model).

8 Journal of Advanced Transportation



including stop/go decisions (p< 0.01), vehicle type (p< 0.01),
and area type (p< 0.01), exhibit significant effects with respect
to the approach speed of the vehicles at the onset of FG, but
only the stop/go decisions (p< 0.01) exhibit significant effects
with respect to the distance to the stop-line.

5. Development of Decision Tree
Classification Models

5.1. Decision Tree Models. Because of its nonparametric
nature and straightforward interpretation, DTC is proved in
the field of traffic engineering [42]. For example, in the traffic
safety evaluation, Abellán et al. [43] use DTC to analyze the
relationship between stop/go decision, red light violation,
and traffic parameters. Some researchers [44, 45] have used
DTC methods to explore the relationship between the rel-
evant traffic rules and accident severity.

In this study, the SPSS software package is used for the
classification tree analysis. Based on the CART approach, a
classification tree model was established, and the Gini cri-
terion (or index) is used as the measure for splitting decisions.
Because the data volume is not large, theminimumnumber of
cases for the parent nodes was set to 30, and the minimum
number of instances of the child nodes was set to 10. Besides,
the cross-validation method (with ten folds) was used to
evaluate how to extend the tree structure to a larger pop-
ulation.,e three variables were expected to be closely related
to the driver’s stop/go decision, i.e., distance, speed, and
vehicle type. ,e distance variable represents the distance
from the vehicle to the stop-line at the start of FG, and the
speed variable represents the vehicle’s speed at the beginning
of FG. Vehicle type variables are divided into two categories:
passenger cars and trucks (0� passenger cars and 1� trucks).

Table 5 shows the precision of the two developedmodels.
For the rural area model, the training and test accuracies are
83.9% and 80.2%, respectively, and the prediction of cross
behavior is more accurate than that of stopping the behavior.
For the urban area model, the training and test model ac-
curacies are 93.8% and 88.2%, respectively. ,e model is
correctly fitted.

5.2. Result Analysis at Rural High-Speed Intersections.
Figure 4 shows the classification tree diagram used for
training the stop/go decision model for rural areas.

Figure 5 shows the corresponding partitions, which are
much finer-grained than those in Figure 4. When the dis-
tance to the stop-line is shorter than 44.3m or more pro-
longed than 116.4m, most of the vehicles make the same
decision. When the distance is between 44.3m and 116.4m,
the approach speed effects on the stop/go decision.

(i) For vehicles at FG-onset distances of less than
44.3m, 97.7% of drivers will cross the intersection,
as shown in Zone 1.

(ii) By contrast, for vehicles at FG-onset distances of
more than116.5m, the percentage of drivers that
will cross the intersection is only 2.2%, whereas
most drivers (97.8%) will stop, as shown in Zone 6.

(iii) For vehicles at FG-onset distances between 44.3m
and 68.9m, the most critical factor affecting the
drivers’ stop/go decisions is speed. For vehicles with
FG-onset rates higher than 48.9 km/h, most drivers
(87.3%) will cross the intersection. By contrast, for
vehicles with FG-onset speeds below than 48.9 km/h,
the vehicle type plays an essential role in the stop/go
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decision. Trucks are more likely to stop than pas-
senger cars. ,ese behaviors above and below
48.9 km/h correspond to Zones 2 and 4, respectively.

(iv) Finally, for vehicles at FG-onset distances between
68.9m and 116.5m, the approach speed again
plays a critical role. For vehicles with FG-onset
rates higher than 66.8 km/h, most of the drivers
(71.4%) will cross the intersection. However, for
vehicles with FG-onset speeds below than
66.8 km/h, most drivers (72.8%) will stop, as in-
dicated in Zone 5.

5.3. Result Analysis at Urban Intersections. Figure 6 shows
the classification tree diagram used to train the stop/go
decision model for urban areas. Similar to Figure 5, the
corresponding partitions for the tree in Figure 6 are drawn in
Figure 7. ,is graph is divided into six zones:

(i) As shown in Figure 7, all vehicle drivers in Zone 1
will choose to cross the intersection, while most

drivers (97.9%) in Zone 6 will stop, since the dis-
tance to the stop-line is more significant than a
particular threshold value, in this case, 67.4m.

(ii) A situation similar to that found for rural inter-
sections occurs in the classification tree for urban
intersections. ,e vehicle type plays a vital role in
the drivers’ stop/go decisions for vehicles in Zone 4,
where FG-onset distances are less than 57.1m, and
the FG-onset speeds are below 39 km/h.

(iii) For vehicles at FG-onset distances between 57.1m
and 67.3m with FG-onset speeds below 39 km/h, all
drivers will choose to stop (corresponding to Zone 5
in Figure 7).

(iv) For vehicles with FG-onset speeds higher than
47.8 km/h, there are two different situations: for
vehicles at FG-onset distances between 67.4m and
94m, 61.5% of drivers will cross the intersection,
while for vehicles at FG-onset distances greater than
94m, 100% of drivers will choose to stop, as indi-
cated in Zones 2 and 3, respectively.
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Figure 8: Comparison of the stop/go decision between rural and urban intersections.
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5.4. Comparisons of Rural High-Speed Intersections and
Urban Intersections. ,e percentages of stop decisions are
shown through a color scale in Figure 8. ,is figure il-
lustrates that drivers tend to make stop decisions when the
vehicle is farther from the stop-line, and the approach
speed is higher, whether the intersection is in a rural or
urban area.

However, there are some differences between rural high-
speed intersections and urban intersections:

(1) Truck drivers are more conservative at urban in-
tersections, especially when they are nearer to the
stop-line at modestly low speeds (below 39 km/h).
Because of the higher speed limit at rural high-speed
intersections, such conservative decision behavior
emerges at these intersections at greater distances of
44.3∼68.9m and speeds below 48.9 km/h.

(2) Due to the difference between the speed limits, most
drivers tend to stop rather than cross at urban in-
tersections when the distance exceeds 57.1m while at
rural high-speed intersections, this distance
threshold increases to 68.9m.

(3) When the vehicles are at a sufficiently far distance,
such as 116.5m from the stop-line at a rural in-
tersection, nearly all drivers choose to stop inde-
pendent of the approach speed. However, this
value is much smaller, specifically, 94m at an
intersection.

6. Conclusions and Future Works

,is study generated two models: the first illustrates the
conditions affecting stop/go decisions in rural areas, and the
other explains the corresponding requirements in urban
areas. ,e data analysis indicates that the vehicle speed and
distance to the stop-line when FG is on as well as the vehicle
type are the most significant factors affecting the driver’s
stop/go decision in both rural and urban areas. ,e nor-
malized importance of the distance variable is 100% for both
types of sites. In rural areas, the normalized importance of
speed is higher than that in urban areas. For vehicles at FG-
onset distances between 68.9m and 116.5m, the rate be-
comes the critical factor affecting drivers’ behavior. ,e
probability of stop decision is almost equal to that of pass
decision, both of which are close to 0.5. ,e corresponding
distance interval in urban areas is between 67.4m and 94m.
An interesting finding of this study is that under the same
conditions, regardless of whether the intersection is in a
rural or urban area, most truck drivers tend to park more
than car drivers.

,is study presents a novel way to analyze stop/go de-
cisions. ,e tree-based model provides a good verbal ex-
planation, which makes it easier to examine other
conditions. ,e classification tree provides a simple method
to model the driver’s behavior without any normal as-
sumptions. ,e stop/go decision-making model based on
DTC developed in this study can be used to improve the
driver behavior model embedded in microscopic traffic
simulation software.
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