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Abstract: The increasing need for repairs of polygonized wheels on high-speed railways in China
is becoming problematic. At high speeds, polygonized wheels cause abnormal vibrations at the
wheel-rail interface that can be detected via axle-box accelerations. To investigate the quantitative
relationship between axle-box acceleration and wheel polygonization in both the time and frequency
domains and under high-speed conditions, a dynamics model was developed to simulate the
vehicle-track coupling system and that considers both wheel and track flexibility. The calculated
axle-box accelerations were analyzed by using the improved ensemble empirical mode decomposition
and Wigner-Ville distribution time-frequency method. The numerical results show that the maximum
axle-box accelerations and their frequencies are quantitatively related to the harmonic order and
out-of-roundness amplitude of polygonized wheels. In addition, measuring the axle-box acceleration
enables both the detection of wheel polygonization and the identification of the degree of damage.

Keywords: high-speed railway; wheel polygon; axle-box acceleration; time-frequency
characterization; detection

1. Introduction

The high-speed train system is rapidly developing in China and, as a result of rolling contact
and vibration impact, wheel polygonization, which is a type of railway-wheel out of roundness
(OOR), is now a growing problem. Wheel-tread polygons have been detected with radial irregularity
wavelengths from 0.12 to 3.4 m (which is approximately equal to the circumference of a wheel) and
with 1to 25 harmonic orders around the wheel circumference.

In the early 1980s, Kreuzen described wheel polygons observed in the Dutch railway system [1].
Wheel polygons can be both dangerous and annoying: the serious Eschede accident of an Inter City
Express train in Germany in the summer of 1998, in which 101 people were killed and 194 injured,
was attributed to a fatigue crack in a wheel rim caused by a wheel polygon. In recent years, failures
in vehicle system components have appeared in the Chinese high-speed railway system, such as
gearbox cracks [2], bolt fracture at the axle-box cover and brake disk [3], and other fastener failures
that are caused by high-frequency impact due to wheel polygons. In addition, a periodic wheel
out-of-roundness leads to noise and vibration levels that annoy passengers, especially at certain
train speeds.
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The maximum vertical wheel-rail contact force is increased by wheel OOR, leading to fatigue
and reducing the life span of the track and vehicle components, such as wheelset bearings, gearbox,
bolts, fastenings, and sleepers [4]. Trained workers are required to analyze wheel polygons by means
of a roughness-measuring system such as m|Wheel, which is time-consuming and not particularly
precise. Thus, it is essential to develop procedures for real-time, on-line detection of OOR and to find
suitable countermeasures.

Different approaches for detecting OOR have been reported, including vibration-impact
measurement, displacement determination, image and ultrasonic telemetering, laser sensing, and
noise detection. For example, Lutzenberge and Wu [5] discussed the Müller-BBM wheel monitoring
system allowing for the detection of wheel tread damages. The system, with sensors installed at
several track sections to record rail vibration, can identify wheel flats or polygons of all approaching
vehicles in an early stage. Much research has been devoted to detect wheel defects based on wheel-rail
interaction and track response [6–8]. Lee and Chiu [9] compared three methods of predicting impact
force on a railway track-like structure using both finite element and experimental techniques. The
results indicated that measuring strain was an effective method of reconstructing dynamic impact
force, but that efficacy would be reduced as the impact force increased. Wei et al. [10] described a
real-time out-of-roundness wheel-defects monitoring system based on track strain response by using
Fiber Bragg Grating sensors. Wayside monitoring systems based on acoustic [11] and ultrasonic [12]
sensors have also been employed to detect wheel conditions. However, these sensors can be influenced
by electromagnetic interference under a railroad environment. Besides, polygonal-wheel or local
spall-wheel defects cannot be detected. Sensors based on Laser-PSD (Position Sensing Detector)
technology to measuring out-of-roundness wheel set on-line was reported in [13]. The system can
determine the size of wheel out-of-roundness by detecting the displacement of a light spot in PSD
based on track dynamics. However, the Laser-PSD sensor requires a precision setup, which is difficult
in practice. For most of these measurement systems, the sensors are positioned on rails or sleepers,
mainly for OOR detection at speeds below 200 km·h−1.

Vehicle vibrations caused by wheel and track defects affect axle-box accelerations, so some research
has been done on using axle-box accelerations to identify short track defects, such as squats, rail
spalling, rail corrugation, and track irregularities in several wavelength ranges, and also for more
general track surveying. For example, in the late 1990s Coudert [14] described an easy-to-measure
method to detect track irregularity of short wavelength by using axle-box acceleration. Tanaka and
Furukawa [15] reported a cheap and robust method for estimating wheel load and lateral force caused
by short-wavelength track irregularity based on axle-box acceleration measurement, which is difficult
to detect with a track inspection car. In particular, they analyzed the relationship between the wheel
load, lateral force, and axle-box acceleration of the Shinkansen train. The study revealed that the
maximum values of the wheel load and lateral force can be estimated by the use of axle-box acceleration.
Molodova et al. [16] discussed the application of axle-box acceleration measurements to assess squats
and insulated joints, and determined the quantitative relationship between track defects and the
characteristics of excited axle-box acceleration through a finite element model. Salvador [17] detected
track defects and track singularities with the aid of axle-box acceleration measurement, and did
testing on the Metropolitan Rail Network of Valencia, Spain. The results determined the location
of accelerometers on the train and identified track singularities and diverse track defects. However,
little research has been reported on the quantitative correlation between wheel polygons and axle-box
acceleration. Although Li et al. [18] used axle-box acceleration to detect wheel flats and other wheel
damage, they could not assess the damage level of polygonized wheels. One promising, low cost, and
relatively simple technique to determine wheel conditions is by detecting axle-box acceleration, so
detecting axle-box accelerations for high-speed trains and their time-frequency characteristics merits
further study to develop a method to detect wheel polygons.

To detect wheel defects based on axle-box acceleration signal analysis, applying appropriate
vibration signal processing techniques is essential to determine the state of wheel polygons. Axle-box



Appl. Sci. 2020, 10, 1613 3 of 18

acceleration signals caused by polygonized wheels are non-stationary and nonlinear. In the past
decades, researchers have proposed several random vibration signal processing approaches, such
as short-time Fourier transform (STFT), wavelet transform (WT), Hilbert-Huang transform (HHT),
and the Wigner-Ville distribution (WVD). However, the constant time and frequency resolution of
STFT make it unsuitable for analyzing a non-stationary signal. In contrast, the time and frequency
resolutions of WT are adaptive. For example, Caprioli et al. [19] offered a wavelet survey applied
for track diagnosis based on acceleration signal analysis of a running train, discussed the advantages
and drawbacks of the discrete wavelet transform, the continuous wavelet transform and the wavelet
packets, with respect to the classical Fourier analysis. Jia and Dhanasekar [20] proposed the wavelet
local energy averaging approach and average signal wavelet decomposing application for rail wheel
flats onboard detection using train acceleration signals. The numerical simulation results demonstrated
that the proposed method was effective for monitoring localized rail wheel flats with sizes smaller
than predefined threshold. Nevertheless, it is difficult to choose the mother wavelet at present. HHT is
an adaptive method for time-frequency analysis, including empirical mode decomposition (EMD) and
Hilbert transformation. Li et al. [18] utilized HHT based method to analyze axle-box vibration signal
characteristics induced by railway out-of-round wheels. An energy principle algorithm was proposed
to suppress mode-mixing phenomenon. The study results show that the revised HHT can be adopted
to distinguish out-of-round wheels from normal wheels. However, the mode-mixing problem caused
by the intermittent signal in the sifting EMD process still requires attention. Wigner-Ville distribution
(WVD) is an ideal approach for a three dimensional representation of non-stationary signals in the
time-frequency-amplitude domain, which is effective for monitoring machinery under non-stationary
conditions [21]. Liang et al. [22] presented a mixed approach of adaptive noise cancelling (ANC)
and time–frequency signal analysis application for detection of wheel flat and rail surface defect.
The experimental results show that the combination of ANC technique and WVD can extract weak
signals and effectively suppress noises for fault diagnosis. Although the WVD is a valuable tool
for time-frequency signal analysis, the cross-term interference problem is the main limitation for its
application [23]. Based on the above discussion, a joint time-frequency method based on improved
EMD (called the “ensemble EMD”, or EEMD) and the WVD is proposed to extract characteristics
from axle-box acceleration signals. This approach minimizes cross-term interferences and permits an
adaptive time-frequency-amplitude representation.

The aim of this paper is thus to present an analysis of axle-box vibration acceleration using the
joint time-frequency method to determine the essential information relating to polygon wheel defects.
The first step of this study is to provide quantitative theoretical analysis of the relation between axle-box
accelerations and polygonal wheel defects. Then follows the simulation of dynamic responses of
axle-box acceleration due to wheel polygons. Based on the theory of vehicle-track coupling dynamics,
a dynamic numerical train-track coupling model is developed that considers both elastic wheelsets
and elastic tracks implemented in Universal Mechanism (UM) and finite-element analysis (ANSYS)
software. The results form a basis for detecting various polygon wheel defects for high-speed railways.
Finally, the signal processing of axle-box acceleration signals is performed based on improved EMD
and WVD joint time-frequency approaches.

2. Theoretical Analysis

Figure 1 illustrates a parameter-lumped simple wheel-track model that considers wheel OOR to
analyze the axle box vibration caused by wheel polygons. In this model, v is the vehicle velocity, m1 is
the unsprung mass, z1 is the vertical displacement of the wheelset, k1 is related to the vertical stiffness
of the primary spring, m2 is the mass of the track, k2 is the vertical stiffness of the track, c2 is the track
damping, and z2 is the vertical displacement of the track. The downward direction is positive.
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Using Equation (5) in Equation (6) gives 
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Figure 1. Parameter-lumped simple wheel-track model after introducing wheel out-of-roundness.

Based on conservation of energy, a track may be conceptually modeled as an infinite beam with
dampers on an elastic foundation. The track model allows for deflections and forces in the z direction.
The parameters of the elastic foundation beam are converted into equivalent mass, equivalent damping,
and an equivalent spring attached to each wheel. For a train with a polygonal wheel of a given
OOR amplitude a rolling along the track at speed v, the vertical dynamic equations for the wheel-rail
system are {

m1
..
z1 + k1(z1 − a− z2) = 0

m2
..
z2 + c2

.
z2 + k2z2 − k1(z1 − a− z2) = 0

(1)

The solution to the numerical ordinary differential Equation (1) is
..
z1
ω2

1
+ z1 − z2 = a

..
z2
ω2

2
+ c2

k1

.
z2 +

( k1+k2
k1

)
z2 − z1 = −a

(2)

where ω1 =
√

k1/m1, ω2 =
√

k1/m2, and
..
z1 is the axle-box acceleration.

The initial irregularity of the wheel polygon is defined by a harmonic displacement function

a(t) = a sin(ωt + ϕ) (3)

where a(t) is the time-dependent OOR amplitude, ω is the frequency corresponding to the harmonic
orders of the OOR, and ϕ is the phase angle between the two wheels on the same axle.

The Laplace transform of Equation (3) is

a(s) =
a(s sinθ+ω cosθ)

s2 +ω2 (4)

To obtain transfer functions of z1 and
..
z1 induced by a(t), we use{

z1(s) = Hz1(s)a(s)
z2(s) = Hz2(s)a(s)

(5)

where z1(s) and z2(s) are the Laplace transforms for z1 and z2, respectively. Hs1(s) and Hs2(s) are the
transfer functions corresponding to z1 and z2 under excitation a(t).

When the initial state is zero, we get the Laplace transform of Equation (2):
(

s2

ω2
1
+ 1

)
z1(s) − z2(s) = a(s)

z1(s) −
(

s2

ω2
2
+ c2s

k1
+ k2

k1
+ 1

)
z2(s) = a(s)

(6)
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Using Equation (5) in Equation (6) gives

Hz1(s) =

s2

ω2
2
+ c2s

k1
+ k2

k1

s4

ω2
1ω

2
s
+ c2s3

k1ω
2
1
+

[
1
ω2

2
+

( k2
k1
+ 1

)
1
ω2

1

]
s2 + c2s

k1
+ k2

k1

(7)

When the initial state is zero, the Laplace transform of
..
z1 is
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z1(s) =
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+
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where Ai, pi, B, and C are all constants related to ω1, ω2, c2, k1, k2, and ω.
Thus, the inverse Laplace transformation is given by

..
z1 =

4∑
i=1

Aie−pit + D cos(ωt + ϕ) (11)

For Equation (11), the first item is an exponential attenuation function independent of frequency,
and, after a long time (pit << 1), the second term gives

..
z1 for zero phase angle between the two wheels

on the same axle (ϕ = 0).
Based on Equation (11), it can be concluded that the frequency of the axle-box acceleration

..
z1 is

the same as the characteristic frequency of the wheel polygon, which shows that it is reasonable to
analyze and identify wheel polygon defects based on axle-box vibration.

3. Modeling and Signal Analysis Method

3.1. Vehicle-Track Rigid-Flexible Coupling Dynamics Model

In order to simulate the dynamic responses of axle-box acceleration to polygonal wheel defects,
consider as an examplea high-speed electric multiple unit vehicle and a China Railways Track Structure
(CRTS) II slab ballastless track of the Chinese high-speed railway lines [24]. Based on the mechanical
model of the vehicle-track coupled system shown in Figure 2a, a numerical model of a vehicle-track
coupling system was developed, representing a passenger car running on a slab track. The simulation
is implemented by using both Universal Mechanism (UM) and ANSYS software.
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Figure 2. Vehicle-track rigid-flexible coupling dynamics system for UM-ANSYS simulation:(a)
Mechanical model of train-vehicle coupling system; (b) Enlarged view of flexible wheelsets and tracks.

The vehicle model consists of one rigid car body, two rigid bogies, and four elastic wheelsets.
The car body, bogies, and wheelsets are connected by linear springs and viscous dampers representing
the primary and secondary suspensions. The vehicle can have vertical, lateral, and longitudinal motion.
The polygonized wheels are suspected of producing vibrationsin the middle- and high-frequency
ranges [25]. Therefore, a finite-element model in the ANSYS environment is used to calculate the
model wheelset parameters by treating the wheelsets as flexible bodies. The wheel tread is of LMA
worn type, and the wheel polygonsaredescribed by sinusoidal functions to determine the harmonic
deviation of the wheel radius from a constant value [4]. For the flexible-track model, we transform the
CRTS II slab ballastless track finite-element model into UM. The finite-element model of the CRTS II
slab ballastless track is composed of two CHN60 rails, a concrete slab layer, a concrete-asphalt (CA)
mortar filling layer, and afoundation, which are all represented by three-dimensional solid elements in
ANSYS. The fasteners connecting the rails and the concrete slab layer are modeled as spring elements.
The connections between the three layers (i.e., concrete slab layer, CA mortar layer, and the foundation)
are modeled as contact elements. Figure 2b shows an enlarged view of the flexible wheelsets and
tracks, and Table 1 lists the parameters of the vehicle and track systems [24].
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Table 1. Parameters of vehicle and track systems.

Component Parameter Value

Carbody

Mass (kg) 4.0× 104

Moments of pitch inertia (kg·m2) 2.0× 106

Moments of roll inertia (kg·m2) 1.0× 105

Moments of yaw inertia (kg·m2) 2.0× 106

Bogie

Mass (kg) 2.0× 103

Moments of pitch inertia (kg·m2) 2.5× 103

Moments of roll inertia (kg·m2) 1.5× 103

Moments of yaw inertia (kg·m2) 3.5× 103

Wheelset

Mass (kg) 1.5× 103

Moments of pitch inertia (kg·m2) 120
Moments of roll inertia (kg·m2) 800
Moments of yaw inertia (kg·m2) 800

nominal rolling radius (m) 0.46

Axlebox

Mass (kg) 50.0
Moments of pitch inertia (kg·m2) 5.0
Moments of roll inertia (kg·m2) 1.0
Moments of yaw inertia (kg·m2) 5.0

CHN60 rail
Elastic modulus (N·m−2) 2.1 × 1011

Poisson ratio 0.3
Density(kg·m−3) 7800

Rail fastenings
Elastic stiffness(MN·m−1) 50

Damping coefficient (kN·s·m−1) 60
Longitudinal spacing(m) 0.65

Concrete slab layer

Elastic modulus(N·m−2) 3.9×1010

Poisson ratio 0.2
Length ×width × thickness (m) 6.45 × 2.55 × 0.20

Density(kg·m−3) 2500

CA mortar layer

Elastic modulus(N·m−2) 7.0×109

Poisson ratio 0.167
Thickness(m) 0.03

Density(kg·m−3) 2590

Foundation

Elastic modulus(N·m−2) 5.0×109

Poisson ratio 0.2
Width × thickness(m) 3.25 × 0.3

Density(kg·m−3) 2500

The vertical wheel-rail contact forces are calculated by using the Kik-Poitrowski model, which
considers the nonlinear contact mechanics between wheel and rail. Creep and tangential forces in the
contact area are calculated by using Kalker’s linearized theory.

The vehicle-track rigid-flexible coupling dynamics model is validated in [26].

3.2. Joint Time-Frequency Method based on EEMD and WVD

In order to investigate the simulated axle-box acceleration signals in the time-frequency domain,
an efficient algorithm based on EEMD and WVD is proposed: by decomposing a noise-assisted
multi-component signal into a number of intrinsic mode functions (IMFs), and then analyzing by using
the Wigner-Ville transformation, one cannot only suppress cross-term interference but also exploit the
advantages of the WVD.

Figure 3 shows a flowchart describing the methodology to identify wheel polygons. First, to remove
additive noise or unwanted signals from the raw vibration signals, adaptive noise cancellation [22] is
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used to pre-process the raw signal. Vibration signals caused by rail irregularities are then filtered and
noise is reduced by using an adaptive filter.

Figure 3. Flow chart showing algorithm for joint time-frequency analysis based on Ensemble Empirical
Mode Decomposition (EEMD) and Wigner-Ville distribution (WVD).
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Next, add Gaussian white noise to the original vibration signal x(t) and decompose the conditioned
signal by EEMD into a series of IMFs and a residual:

x(t) =
n∑

i=1

ci(t) + rn(t) (12)

where ci(t) is an IMF, i is the number of modes, and rn(t) is the corresponding residual. The stopping
criteria for terminating the sifting process in Figure 3 are: (1) that the number of extrema and the
number of zero-crossings must differ at most by one, and (2) that the mean between the upper and
lower envelopes can be considered to be zero. The disadvantage of EEMD is that the signatures overlap
in both time and frequency because the extremes identify x(t). The correlation coefficient method [25]
is thus used to eliminate false IMFs by a sifting process.

Third, the remnant IMFs are analyzed by using the WVDas follows:

WVDx(t, f ) =
∫
∞

−∞

c(t + τ/2)c∗(x− τ/2)e− j fτdτ (13)

where f is the frequency, τ is the integration variable, and the asterisk (*)indicates complex conjugation.
Finally, the WVDs are summed together to reconstruct the WVDs of the original signal:

WVDx(t, f ) = WVDC1(t, f ) + WVDC2(t, f ) + . . . . . .+ WVDCn(t, f ) =
n∑

i=1

WVDCi(t, f ) (14)

4. Results and Discussions

4.1. Results of Axle-Box Vibration Acceleration Caused by Wheel Polygons in Time-Domain

4.1.1. Effect of Wheel Polygon

In the section, we present some numerical results showing how the axle-box vibration is related to
types of wheel polygons, and examine the time dependence of the vertical acceleration of the axle-box
induced by wheel polygons, as derived from the numerical model in Section 3.1.

Figure 4 shows the time dependence of the vertical axle-box acceleration caused by wheel polygons
of various harmonic orders and OOR amplitudes at a vehicle speed of 350 km·h−1. The harmonic orders
of the polygonal wheels range from 1 and 25 (i.e., the polygonized wheels have 1 to 25 wavelengths
around the circumference of the wheel). The OOR amplitudes range from 0.01 mm to 0.12 mm [27].
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Figure 4a shows that the axle-box acceleration increases approximately linearly with OOR
amplitude, with the slope for the highest-order polygonized wheel being several times greater than that
for the lowest-order polygonized wheel. Table 2 shows the increase of axle-box acceleration per unit
OOR amplitude (m·s−2

·mm−1) for the first 25 orders of polygonized wheels. For example, when the
velocity is 200 km·h−1, the growth in axle-box acceleration per unit OOR amplitude for the 25th-order
polygonized wheel is 1421 m·s−2

·mm−1, which is 7.2 times the growth per unit OOR amplitude for a
4th-order polygonized wheel. The growth rate increases gradually as the speed increases, reaching 285
m·s−2

·mm−1 and 2115 m·s−2
·mm−1 for the 4th and 25th orders, respectively, at a speed of 350 km·h−1,

which is 1.44 and 1.49 times greater than at 200 km·h−1. When the vehicle speed is 350 km·h−1, the
growth per unit OOR amplitude of the axle-box acceleration with OOR amplitude for the 23rd-order
polygonized wheels is 2034 m·s−2

·mm−1, which is 4.9 times that for a 6th-order polygonized wheel.
Thus, high-order polygonized wheels more strongly affect the axle-box vibration than do low-order
polygonized wheels.

Table 2. Growth per unit OOR amplitude of axle-box acceleration due to polygonized wheels, in
m·s−2

·mm−1.

Train Speed(km·h−1)

200 225 250 275 300 325 350
Harmonic Order Growth Rate (m·s−2·mm−1)

1 108 122 156 170 192 233 242
2 123 155 171 184 224 248 261
3 173 199 214 225 246 255 275
4 198 206 216 229 234 267 285
5 205 221 242 256. 268 294 327
6 213 222 266 301 315 336 415
7 251 258 298 336 355 389 452
8 295 310 316 378 406 446 510
9 324 337 340 434 446 480 542

10 349 398 394 471 465 556 642
11 374 438 456 519 599 675 757
12 426 472 493 651 749 788 936
13 472 519 583 708 872 936 1100
14 491 566 635 804 958 1091 1257
15 520 645 793 904 1009 1215 1447
16 553 672 883 940 1020 1264 1452
17 580 698 898 1063 1090 1289 1475
18 626 755 938 1196 1211 1345 1602
19 744 870 1071 1296 1302 1468 1699
20 829 1012 1240 1450 1483 1619 1832
21 996 1180 1350 1498 1511 1692 1899
22 1023 1354 1467 1611 1685 1721 1975
23 1155 1413 1556 1756 1792 1821 2034
24 1302 1522 1621 1796 1803 1875 2089
25 1421 1611 1743 1882 1901 1968 2115

Figure 4b shows that the axle-box acceleration increases with increasing harmonic order and
that the growth per harmonic order (m·s−2) increases substantially with increasing OOR amplitude.
Table 3 lists the growth per harmonic order of axle-box acceleration for different OOR amplitudes.
These results reveal that, for anOOR amplitude in the range 0.01 to 0.12 mm, the growth per harmonic
order increases from 0.38 to 6.12 m·s−2, at 200 km·h−1, and from 1.05 to 10.22 m·s−2 at 350 km·h−1. It’s
concluded that the growth per harmonic order of axle-box acceleration due to polygonized wheels
increases gradually with increasing velocity at all OOR amplitudes.
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Table 3. Growth per harmonic order of axle-box acceleration due to polygonized wheels, in m·s−2
·order−1.

Speed(km·h−1)

200 225 250 275 300 325 350

OOR Amplitude (mm) Growth Rate (m·s−2)

0.01 0.38 0.45 0.62 0.75 0.97 0.99 1.05
0.02 0.63 1.15 1.31 1.45 1.58 1.64 1.97
0.03 1.51 1.75 1.82 1.97 2.17 2.64 3.73
0.04 2.01 2.43 2.55 2.75 3.12 3.20 4.14
0.05 2.94 3.12 3.52 3.78 4.40 4.98 5.28
0.06 3.22 3.67 4.49 5.28 5.80 5.89 6.24
0.07 4.06 4.38 4.87 5.58 6.34 6.92 7.13
0.08 4.43 4.58 5.25 5.90 6.60 7.05 7.78
0.09 5.01 5.73 6.29 7.08 7.84 8.20 8.68
0.10 5.45 6.25 6.98 7.55 8.11 8.86 9.35
0.11 5.84 6.77 7.11 7.89 8.76 9.13 9.87
0.12 6.12 7.31 7.94 8.34 9.15 9.94 10.22

The above analysis indicates that the axle-box vibrations caused by polygonized wheels are almost
the largest in the entire vehicle system, a result attributed to the axle-box being directly connected
without damping to the axle through a bearing. On Chinese high-speed trains, the axle-box and its
related parts commonly suffer from vibration fatigue, which destroys end covers and loosens bolts.

4.1.2. Effect of Vehicle Speed

Figure 5 shows the maximum vertical axle-box accelerations as a function of OOR amplitude for a
polygonal wheel with four waves and with 24 waves around its circumference and for train speeds
from 200 to 350 km·h−1. Figure 6 shows the calculated axle-box acceleration as a function of harmonic
order of polygonized wheel and for different vehicle speeds and an OOR amplitude of 0.10 mm.
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Figure 5. Vertical axle-box acceleration as a function of OOR amplitude at different speeds for (a) a
4th-order polygonized wheel and (b) a 24th-order polygonized wheel.

Figure 5 shows that the growth per unit OOR amplitude of the vertical axle-box acceleration
increases monotonically with vehicle speed. The calculated results shown in Figure 6 indicate that the
maximum vertical axle-box acceleration is linear in harmonic order of the polygonal wheel and that
this growth rate also increases with increasing train speed. However, the harmonic order has much
less effect on the growth rate than does the OOR amplitude. At high speeds, the OOR amplitude of
polygonal wheels is what most affects the axle-box acceleration.
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4.2. Time-Frequency Analysis of Axle-Box Accelerations based on EEMD and WVD

In this section are presented some results of the calculated axle-box acceleration analyzed by using
the EEMD-WVD combined method described in Section 3.2, and comparison with the results calculated
from WVD time-frequency representation. Figure 7 shows the time domain acceleration of the axle-box
induced by a 24th-order wheel polygon with OOR amplitude of 0.02mmand a train speed of 300
km·h−1. Figure 8 shows the time-frequency spectrograms of the acceleration. The result of the WVD
time-frequency analysis in Figure 8a reveals a clear horizontal band at about 690 Hz, which corresponds
to the theoretical characteristic frequency of 691.9 Hz caused by the 24th-order polygonized wheel, as
per the wavelength-fixing mechanism f = v/λ = nv/2πR = 24× (300/3600)/(2π× 460) = 691.9Hz.
However, unwarranted characteristic information also appears at other frequencies, which is due to
the WVD crossterm and leads to an incorrect estimation. Figure 8b shows the time-frequency analytic
spectrogram produced by the EEMD-WVD combined method. The most prominent characteristic
frequency is again at 690 Hz, which represents information about abnormal vibration caused by the
24th-order wheel polygon. Furthermore, no other noticeable characteristic frequencies appear, unlike
in Figure 8a. These analytic results show that the EEMD-WVD combined method suppresses the
crossterm of the WVD but does not reduce the time-frequency resolution.
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Figure 8. Spectrogram corresponding to the signal shown in Figure 7: (a) WVD time-frequency analytic
spectrogram; (b) EEMD-WVD time-frequency analytic spectrogram.

Figure 9 shows partial EEMD-WVD time-frequency-energy spectrograms of calculated axle-box
acceleration caused by a 24th-order wheel polygon with OOR amplitudes varying from 0.01 to 0.12
mm. Note that the largest-power amplitudes in the spectrograms appear around 690 Hz, produced by
the 24th-order wheel polygons. The frequency band at zero amplitude is narrow (690–700 Hz), which
reflects a high frequency resolution. In addition, the peak amplitude (i.e., peak acceleration) of the
simulated axle-box increases with increasing OOR amplitude (see Figure 10). These results imply that
the presence of wheel polygons is clearly reflected in the spectrogram as a narrow band whose frequency
depends on the harmonic order of the polygonized wheels and on the train speed. Furthermore, the
peak amplitudes of the EEMD-WVD time-frequency-energy spectrogram are approximately linear
in the OOR amplitude of the polygonized wheels. Thus, given the power amplitude of the axle-box
acceleration, the train speed, and the harmonic order, the OOR amplitude of a polygonized wheel can
be determined.
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Figure 9. EEMD-WVD time-frequency-energy spectrograms corresponding to the axle-box acceleration
caused by 24th-order polygonized wheels and for different OOR amplitudes: (a) OOR amplitude of0.04
mm; (b) OOR amplitude of0.06 mm; (c) OOR amplitude of0.08 mm; (d) OOR amplitude of0.10 mm; (e)
OOR amplitude of0.12 mm.
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4.3. Comparision with Other Author Results

To verify the validity of the joint time-frequency analysis method, we used the proposed
EEMD-WVD combined method to obtain the time-frequency characterization of vertical axle-box
acceleration caused by areal polygonized wheel, as reported in [27]. The results (Figure 11a) reveal
three thin horizontal lines in the spectrogram at the characteristic frequencies of 31, 710, and 740
Hz. Furthermore, axle-box vibration caused by a random polygonal wheel is also reflected in the
time-frequency-energy spectrogram (Figure 11b), with the highest amplitude occurring around 740 Hz,
the second highest occurring around 710 Hz, and the third highest occurring around 31 Hz. These
results imply that the random polygonized wheel is dominated by harmonics 1, 23, and 24 around the
wheel circumference, which is consistent with the field measurements reported in [27].

As mentioned above, Liet al. [18] based their research on detecting railway out-of-round wheel
defects on the Hilbert-Huang transform (HHT). However, the HHT cannot assess the severity of
wheel defects. The analytic results presented herein illustrate that EEMD-WVD allows us to detect
wheel polygons not only by suppressing the WVD crossterms but also by retaining the time-frequency
concentration and resolution.

4.4. Limitation and Futherwork

Although the numerical simulation has been performed considering the presence of track
irregularity PSD of Chinese high-speed railway, there are many other nonlinear factors influencing the
calculated axle-box acceleration responses, such as parameters of primary and secondary suspension
systems, the stiffness and viscous damping parameters of the ballastless track model, and others. In
this regard, experimental tests are under the plan to carry out on a real track, which allows considering
the non-linearity of the vehicle-track coupled system and the environmental influences that cannot be
easily predicted in the modeling process.

Future work will involve measurements in the laboratory and on a running train to prove the
effectiveness of the proposed wheel-polygon detection method based on axle-box vibration. This will
be followed by the design and development of a real-time system to monitor the development of
wheel polygons.
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wheels [27]: (a) time-frequency spectrogram; (b) time-frequency-energy spectrogram.

5. Conclusions

This paper proposes the use of axle-box acceleration to detect railway-wheel polygons of high-speed
trains. A dynamics model of a vehicle-track rigid-flexible coupled system was designed to capture the
dynamic features of axle-box acceleration associated with polygonized wheels. The time-frequency
representation of axle-box accelerations obtained by using the EEMD-WVD combined method clearly
reveals the presence of polygonized wheels. The main conclusions are as follows:

(1) The quantitative relationship between the characteristics of axle-box acceleration and wheel
polygon defects is determined based on a parameter-lumped simple wheel-track model that
accounts for wheel out-of-roundness. The frequency of the axle-box acceleration coincides with
the characteristic frequency of polygonized wheels, which underpins the detection of wheel
polygon defects based on axle-box vibration.

(2) A dynamic model of a vehicle-track coupled system with flexible wheelsets and tracks is
presented to determine the relationship between wheel polygon defects and axle-box acceleration.
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The results indicate that the maximum amplitude of the vertical axle-box acceleration is linear
in both the harmonic order and in OOR amplitude of the polygonal wheel. Furthermore, the
growth rate of acceleration increases monotonically with vehicle speed.

(3) The EEMD-WVD combined method is used to make a time-frequency analysis of the axle-box
acceleration. The frequency and corresponding amplitude of axle-box acceleration are
quantitatively related to wheel polygon defects. It’s concluded that EEMD-WVD can be applied
for wheel polygons detection and severity assessment.

(4) The analysis shows that axle-box acceleration measurements can be used to detect and assess
polygon wheels. When the characteristic frequency f 1 ofaxle-box acceleration and the maxima
magnitude aaxlebox at a given train speed v1 are determined, the wheel polygonal defects can be
detected, provided f 1 does not coincide with the axle-box vibration frequency f 2 excited by round
wheels. If f 1, f 2, the harmonic order n of the polygon wheel can be determined by comparing f 1

with the characteristic frequencies corresponding to the first 25 harmonics of a polygon wheel at
the train speed v1.Based on the peak amplitude and the frequency of axle-box acceleration from
the joint time-frequency analysis, the degradation due to wheel polygon defects can be evaluated.
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