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Vehicle space headway, also called spacing, is an important and basic traffic parameter. Traditional space headway calculation
methods are facing the problems of large errors and high costs.)is paper presents a novel algorithm based onmeasurement point
pairs (MPPs) to estimate the real-time microcosmic vehicle space headway from single images in existing traffic surveillance
videos and images without any additional equipment. First, the camera is calibrated with road markings to obtain the relationship
between the image coordinates and the world coordinates. Second, vehicle pairs of two successive vehicles in the image are
established, measurement points on each vehicle are selected by video intelligence analysis technologies, and their world co-
ordinates are calculated by camera calibration results. Finally, the measurement points of the preceding and following vehicles are
matched to obtain the MPPs, followed by the calculation of the weighted space headway. By using the measurement point
information, one of the most difficult problems in image distance measurement, the lack of height information, is solved. )e
main factors causing estimation errors are fully addressed and the range and trend of errors under certain conditions are given by
virtual simulation. Two real-world experiments are used to prove the accuracy and usability of the MPP in common video scenes:
the simulation experiment indicates that the MPP algorithm achieves a high accuracy with estimation error less than ±0.1m and
the relative error within 1.1%; the application experiment shows that the MPP-based calculation is more accurate and stable than
the state-of-the-art distance measurement algorithm and that the convenience of the proposed MPP algorithm is higher than that
of traditional methods of space headway estimation.

1. Introduction

Vehicle space headway, also called spacing, refers to the
distance between successive vehicles in a traffic stream
measured from the same point on each vehicle (e.g., front
bumper and front axle) [1]. Vehicle space headway is an
important and basic traffic parameter and is the key value in
describing traffic states, driving behavior and road traffic
safety.)erefore, the estimation of space headways is an area
of much research in the traffic field because it is necessary to
obtain continuous space headway values in a real traffic
environment. Because the space headway changes quickly,
obtaining a correct and real-time space headway remains a
significant problem in current traffic information-collection

systems. At present, the space headway estimation algo-
rithms can be divided into three categories.

)e first category is time headway-based methods.
Generally, it is difficult to estimate the dynamic space
headway directly in real-time traffic scenes. )e traditional
method is to use an indirect estimation method based on the
vehicle time headway (TH) [2, 3]. )e time headway is the
time between successive vehicles as the same point on each
vehicle passes a point on a lane or roadway [1]. )e time
headway is typically acquired by human observation, de-
tectors [3, 4], or video detection [5–7]. )e space headway is
obtained from the product of the time headway and the
instantaneous speed of the vehicle. )e time-headway-based
method is easily applied; however, errors always exist due to
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continuous changes in vehicle speeds and frequent lane-
changing behaviors. )e greater the space headway, the
larger the possibility of larger errors. Furthermore, there is a
significant amount of work in human observation and high
costs in detector installation and maintenance. When video
detection methods are used, cameras generally need to be
installed at a high height directly above the lanes to avoid
intervehicle occlusion.

)e second category is sensor-based methods. With the
rapid development of information-collection technologies,
sensors are increasingly used to measure the space headway
on roads. Such sensors mainly include location devices (e.g.,
GPS [8, 9]) and distance-measuring devices (e.g., LiDAR
[10, 11], infrared [12], and radar [13, 14]). )e basic prin-
ciples of these devices are the same: the information on two
successive vehicles is collected by the sensors, and the
physical sizes of the vehicles and the installation locations of
the sensors are combined to obtain the real-time space
headway. Due to the low installation density of vehicular
sensors and the transient nature of the following relation-
ships between two vehicles in a real traffic environment,
sensor-based methods are commonly used only in experi-
mental situations.

)e third category is video-based methods. In recent
years, video-based space headway estimation methods have
become applicable as video surveillance products have
become more widely deployed. In ordinary road surveil-
lance videos, Houchin et al. manually labeled the positions
of vehicles in video frames when the vehicles stopped and
measured the distances between vehicles by using distance-
measuring software [3]. Yu and Shi calculated the accel-
eration, speed, space headway, and other parameters of
successive vehicles using a frame-difference method [15].
Lai et al. used image linear transformations to calculate the
distances between vehicles and vehicle speeds [16]. Schakel
et al. used cameras, pylons, tape measures, and other de-
vices to divide the vehicle distances into eight categories
[17]. Dubska et al. [18, 19] estimated the distances on the
roads, the length of vehicles, and the speeds of vehicles by
vanishing points of the cameras and 3D bounding boxes of
the vehicles. In general, the principle of video-based
methods is to transform the vehicle distances in images into
actual distances. Because imaging is a process of mapping
the vehicle perspective from 3D space to 2D space, simple
transformations will inevitably lead to calculation errors.
Additionally, some researchers estimated the space head-
way with high-altitude video (commonly captured by
unmanned aerial vehicles or high-altitude cameras with
approximate aerial views to acquire scenes with a wide
range of perspectives). For example, Zheng directly de-
termined the difference between two vehicles’ detected
positions [20], which causes large errors because the sizes
of the vehicles in the images are too small. )e space
headway can also be approximately estimated from the
reciprocal of the traffic density, which is calculated by
dividing the number of vehicles in the video by the lane
length or road area [21, 22]. However, this method yields
only the macro average space headway and not the precise
space headway of each vehicle.

Based on the above, the space headway estimation
methods remain limited by difficult measurements, large
errors, and high costs. Given the wide installation of sur-
veillance cameras on the main roads of cities and the ad-
vanced state of video intelligence analysis technologies that
can extract traffic parameters (e.g., traffic flow [23], vehicle
speed [18, 24, 25], and vehicle appearance features [26, 27]),
traffic states [28], and traffic incidents [29], estimating the
space headway from videos may be feasible. In this paper,
using existing traffic surveillance videos with no additional
equipment or funds, we propose a novel measurement point
pair- (MPP-) based algorithm to acquire the real-time space
headway between two individual vehicles. Simulations are
conducted to analyze the influences of different types of
noise and give the range and trend of the calculation error
under given conditions. Real-world experiments are per-
formed to evaluate the accuracy and practicability of the
presented method in actual traffic scenes and surveillance
videos.

)e remainder of this paper is organized as follows.
Section 2 presents the MPP algorithm. Section 3 describes
the simulation and real-world experiments for evaluating the
proposed method. Conclusions and future work are pre-
sented in Section 4.

2. Measurement Point Pair-Based Algorithm

Figure 1 presents a flowchart of the MPP algorithm. Two
stages are included: the off-line stage and the on-line stage.
In the off-line stage, camera calibration is the key step in
calculating the camera installation parameters and obtaining
the relationship between the world coordinates and image
coordinates by usingmarkings on the road.)e on-line stage
comprises three steps. In the first step, vehicle pairs are
established. )is step autolocates every vehicle in the image
and defines every two successive vehicles as a vehicle pair.
)e second step is measurement point selection. For each
vehicle pair, the measurement points are located, and the
world coordinates of the points on the preceding and fol-
lowing vehicles are calculated. In the last step, the space
headway of each vehicle pair is estimated. First, the mea-
surement point information from the measurement point
database is used to calculate the tip position of the vehicle.
Second, MPPs are created by choosing different measure-
ment points from the preceding and following vehicles, and
the tip distance of each MPP is estimated. Finally, each tip
distance is given a weight to calculate the space headway.

2.1. Camera Calibration. )e surveillance video-based space-
headway-estimating algorithm requires camera parameters. In
practice, it is not possible to know all or part of the installation
parameters of a traffic surveillance camera. Most traffic sur-
veillance cameras and image-capture devices, such as vehicle
image-capture systems and electronic police systems, are fixed,
and their installation parameters will not change. )erefore, it
is feasible to calibrate the camera manually in advance and to
estimate the space headway automatically. Once the camera
parameters are calibrated, the space headway can be calculated
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continuously as long as the position and pose of the camera are
unchanged or automatically return to their initial settings after
a change or if the changed parameters can be obtained through
a cloud platform.

To better record the road situation, most traffic sur-
veillance cameras view straight down the road or at a very
small angle to the direction of the road. Kanhere and
Birchfield experimentally showed that in this situation [30],
camera calibration based on VWL (i.e., a vanishing point in
the image and the width and length of a rectangle marked on
the road) as in the approach described by He and Yung [31]
can achieve a high calibration accuracy and better antinoise
performance than other methods. )erefore, method of He
and Yung [31] is used in this paper. In this model, xoy is the
image coordinate system, and XOY-Z is the world coordi-
nate system.

In practical application, the road surface is defined as the
XOY plane. Assuming that the road surface is planar, ve-
hicles travel parallel to the X-axis in the positive X-axis
direction, and the tip surface of a vehicle is a vertical plane
parallel to the YOZ plane. We also assume that there exists a
rectangular marking on the road surface. As shown in
Figure 2, rectangle ACDB is the calibration pattern in world
coordinates. Edges AB and CD are parallel to the X-axis, and
edges AC and BD are parallel to the Y-axis in world coor-
dinates. )e markings may be lane markings, a rectangular
object of known size, and a small height on the ground, or
some other available rectangular patterns. If there is no
marking on the road for a camera, we can place a rectangular
pattern in a safe area within the video shooting range
temporarily before the estimating process and remove it
after the calibration. Points a, b, c, and d correspond to
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points A, B, C, and D in the image coordinates. Variables L
and W are defined as the length and width, respectively, of
rectangle ACDB in world coordinates. Using L, W, and the
positions of points a, b, c, and d in the image coordinates, we
can use He and Yung method to calibrate the camera and
obtain the transformation of any point between the image
coordinate system and the world coordinate system [31].

2.2.VehiclePairEstablishment. After the camera calibration,
we need to locate in the images every vehicle that needs to be
measured to obtain a rough bounding box of the vehicle (for
videos, an image is one frame, which may be the frame in
which the vehicle arrives at the detection line or a frame
extracted by a fixed step). A vehicle autolocalization algo-
rithm is necessary for vehicle measurement point autoes-
timation. Vehicle localization algorithms are relatively
mature, and based on the characteristics of traffic surveil-
lance videos, Sochor et al.’s methods [32] are recommended
for vehicle autolocalization in videos and images. After the
vehicle localization, two successive vehicles are grouped into
a vehicle pair, and the preceding and following vehicles are
marked according to their motion direction.

2.3. Measurement Point Selection. )e space headway esti-
mation is essentially a problem of image distance mea-
surement. One of the most difficult problems in image
distance measurement is the lack of height information of
objects in the images. Considering that the vehicle is a rigid
body and the structures of the vehicles are roughly the same
(consisting of the tip face, windows, body, roof, tail, etc.), we
raise the concept of the measurement point to provide auto-
obtainable height information for the space headway esti-
mation. A measurement point is defined as a point on the
vehicle with a known height, a known distance from the tip
of vehicle, and significant vehicle appearance features and

semantic attributes. A measurement point database is built
off-line before the space headway estimation. )e mea-
surement point information that may be used on different
types of vehicles is recorded in the measurement point
database, including the type of measurement point (e.g., the
edges of the license plate, the upper or lower front edges of
the vehicle, or the upper or lower edges of the windscreen),
the height of the measurement point above the ground,
termed hM, and the distance from the measurement point to
the tip of the vehicle on the X-axis, termed dM. Figure 3
illustrates some of the recommended and commonly used
measurement points, and Figure 4 presents the definitions of
these variables. If we use pointM to present a measurement
point in world coordinates, the coordinates of point M are
(XM, YM, ZM), and hM equals ZM.

)e types of measurement points used can be included
or dropped according to the actual situation, such as dif-
ferent camera viewpoints or different image resolutions.
Regardless, the following conditions must be satisfied for
measurement point establishment:

(1) )emeasurement point variables hM and dMmust be
known.

(2) )e measurement point must be automatically lo-
cated in the images by algorithms. For example,
measurement points on the edges of license plates
can be obtained by methods of license plate locali-
zation [33], measurement points on the edges of a
windscreen can be obtained by methods of vehicle
segmentation [26], and measurement points on the
edges of a vehicle can be obtained by methods of
vehicle localization [32, 34].

(3) )e heights of the measurement points are the same
for vehicles of the same type.

After the measurement point localization, the image
coordinates of the measurement point are obtained. )en,
we need to recognize the type, model, and other appearance
features of this vehicle; we recommend Li et al.’s method [26]
for this purpose. )e measurement point information can
then be searched in the measurement point database based
on the vehicle appearance features, and the height of the
measurement point is obtained. Next, He and Yung method
[31] is used to calculate the world coordinates of the
measurement point using this information. In practical
applications, because of the previous development and
higher accuracy of license plate localization algorithms (a
localization accuracy of 99% is common [33]) compared to
other vehicle localization or segmentation algorithms, it is
recommended to use the points on the edges of license plates
as measurement points for space headway estimation.

2.4. Space Headway Estimation. As shown in Figure 4,
variable Xt refers to the coordinate of the tip of a vehicle in
world coordinates on the X-axis. For measurement point M
on a vehicle, the tip position of the vehicle in world coor-
dinates on the X-axis can be calculated by the following
equation:

X

Y

A(XA, YA, 0)

B(XB, YB, 0)

C(XC, YC, 0)

D(XD, YD, 0)

Calibration
patternL

W

O

Direction of 
vehicle motion

Figure 2: Calibration pattern and its endpoints A, B, C, and D in
world coordinates for the method of He and Yung [31].
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Xt � XM + dM. (1)

Errors will inevitably occur in license plate localization
(whether autolocated by algorithms or located manually);
using multiple measurement points to estimate the space
headway can reduce such errors to a certain extent.
)erefore, we capture multiple types of measurement points
on the two vehicles in a vehicle pair. Here, variableMpi refers
to the ith measurement point on the preceding vehicle, and
variable Mfj refers to the jth measurement point on the
following vehicle. Using equation (1), the tip position is
calculated for each vehicle in a vehicle pair. Variable Xt-pi
refers to the tip position of the vehicle in world coordinates
on the X-axis calculated by point Mpi, whereas variable Xt-fj
indicates the tip position of the vehicle in world coordinates
on the X-axis calculated by point Mfj.

Variable MPPpi-fj refers to an MPP consisting of measure-
ment pointMpi on the preceding vehicle andmeasurement point
Mfj on the following vehicle. According to our assumption
described in of Section 2.1, the tip distance of a vehicle pair is the
difference on the X-axis of two tip positions of vehicles in
world coordinates. )erefore, the tip distance corresponding
to MPPpi-fj is calculated by the following equation:

TDpi-fj � Xt− pi − Xt− fj. (2)

)erefore, the space headway of the vehicle pair is
calculated as follows:

SH � 􏽘
m

i�1
􏽘

n

j�1
αpi-fjTDpi-fj, (3)

where αpi-fj is the weight of MPPpi-fj, 􏽐αpi-fj, � 1, and var-
iables m and n are the numbers of measurement points on
the preceding and following vehicles, respectively. In
practical applications, the chosen measurement points
should cover the entire range in the horizontal direction of
the segment or the object where the measurement point is
located, and the weight αpi-fj is determined by the confidence
of the measurement point autolocalization algorithm.

3. Simulation and Experiment

)ree cases are described in this section. First, a virtual
simulated environment is designed to study the sensitivity of
the proposed method to measurement errors in detail.
Second, a real-world simulation experiment is performed to
prove the accuracy of the proposed method. Finally, an
application experiment is used to assess the applicability of
the proposed method in actual surveillance scenes.

3.1. Virtual Simulation. )e proposed method is ideal in
theory, but errors are caused by many factors in practical
applications. Some objective factors include uneven road
surfaces and vehicles not driving strictly along the road
direction. )ese errors cannot be corrected after imaging.
Subjective factors (or factors generated in the calculation
process) include locating errors for the calibration patterns,
measurement errors, and locating errors in license plate
localization, all of which can be reduced to a minimum by a
variety of means. To clearly grasp the effects of these factors
on the final space headway estimation results, we con-
structed a virtual ideal scene to analyze the errors that they
cause.

)e scene parameters we set are as follows. )e world
coordinates are given in meters, and the world coordinates
of the endpoints of the calibration pattern are (− 8, − 2, 0), (6,
− 2, 0), (− 8, 2, 0), and (6, 2, 0); that is, the calibration pa-
rameter L is 14m, and W is 4m. )e image resolution is
1600×1200 pixels. )e camera parameters [31] are height of
camera h� 8m, tilt angle t� − 10°, rotation angle s� 2°, pan
angle p� 87°, and focal length f� 6000 pixels, and the camera
viewpoint is the reverse direction of vehicle traveling; that is,
the vehicles are traveling toward the camera. )ere is only
one MPP in the simulation. )e world coordinates of the
measurement point on the preceding vehicle are (4, 0, 0.3),
and the distance from the measurement point to the tip of
the vehicle on the X-axis is 0.5m. )e world coordinates of
the measurement point on the following vehicle are (− 2, 0,
0.3), and the distance from the measurement point to the tip
of vehicle on the X-axis is 0m. Hence, the space headway of
this vehicle pair is 6.5m.

M6

M1

M2

M3

M4
M5

Figure 3: Some recommended measurement points. M1: back
upper edge of vehicle,M2: front upper edge of vehicle or upper edge
of windscreen (these two points are nearly identical inmost types of
vehicles), M3: lower edge of windscreen, M4: upper edge of license
plate, M5: lower edge of license plate, and M6: front lower edge of
vehicle.
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Figure 4: Definitions of measurement point and related variables.
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Next, we added offsets to different variables to simulate
measurement errors to observe the effects on the space
headway estimation results. Here, the error of the space
headway is defined as the difference between the estimated
space headway and the actual space headway. )e error is
positive when the estimated space headway is larger than the
actual space headway and negative otherwise.

3.1.1. Errors in Localizing Calibration Patterns. )e cali-
bration pattern position is one of the main factors affecting
the calibration results. Here, the localization errors of the
calibration pattern endpoints are used as an example to
analyze the effects of calibration pattern location errors on
the space headway estimation. In this section, points A, B, C,
and D are the endpoints of the calibration rectangle in world
coordinates, as shown in Figure 2. Figure 5 shows the
corresponding endpoints a, b, c, and d in image coordinates.
Variables Δx and Δy are used to describe the location offsets
of a point on the x- and y-axes, respectively, in image co-
ordinates. Figure 5 illustrates the case of point a, where point
a′ refers to the actual location result of point a in image
coordinates. In our simulation, we changed the Δx and Δy of
each endpoint in turn over the range [− 20, 20] pixels. When
the locating error of one endpoint was examined, the lo-
calization results of the other three endpoints remained
unchanged, as did the width and the height of the calibration
pattern; that is, the calibration variable L was 14m, and W

was 4m. Finally, the proposedmethod is used to estimate the
space headway; its error distribution is shown in Figure 6,
and its error characteristics are shown in Table 1.

As shown in Figure 6, the error distribution charac-
teristics between points a and c and between points b and d
are approximately the same, and the variation of the error is
roughly symmetrical along the vertical middle line of the
calibration pattern. Moreover, the distributions of the stripes
of points a and c are relatively horizontal, whereas those of
points b and d are generally inclined along an angle. )at is,
the errors caused by point a or c largely change in the vertical
direction, whereas the errors caused by point b change from
the upper right to the lower left and upper left to lower right
of point d. )e width of the stripe of point a is narrower than
that of point c, and the width of point b is narrower than that
of point d. )us, for the same offset in endpoint localization,
the rate of change of the error of point a is larger than that of
point c, and the rate of change of the error of point b is larger
than that of point d.

Additionally, as Table 1 illustrates, the variances of the
errors caused by points a and c are 0.0260m2 and 0.0184m2,
which are somewhat greater than those of points b and d
(0.0083m2 and 0.0051m2, respectively); additionally, the
range of errors caused by points a and c is greater than that of
points b and d. )us, the offsets of points a and c are likely to
cause greater errors than those of points b and d. In par-
ticular, as shown in Figure 6(a), a shift to the upper right
corner of the localization result of point a results in a sharp
increase in the calculation error. For points a and c, as the
offset in the middle-upper direction of the calibration
pattern becomes larger, the estimated space headway

becomes smaller than the actual space headway; otherwise,
the estimated space headway becomes larger than the actual
space headway. For points b and d, as the offset becomes
closer to the middle of the calibration pattern, the estimated
space headway becomes larger than the actual space head-
way; otherwise, the estimated space headway becomes
smaller than the actual space headway. In general, the
sensitivity of the calculated localization results to the offset of
the endpoints follows the order A>C>B>D.

)is simulation leads us to the following conclusion
when we are locating endpoints in an image. For more
accurate results, the localization accuracy of point a should
be as high as possible. Moreover, the localization accuracy
must be as high as possible in the vertical direction for points
a and c, from the upper right to lower left for point b and
from the upper left to lower right for point d.

3.1.2. Errors in Measurement Point Localization. To estimate
the space headway in videos and images automatically, a
measurement point autolocalization method is generally
adopted for an image. )e errors in the measurement point
localization will have a significant impact on the calculation.
In this section, we consider the location errors between the
actual localization result and the theoretical positions of the
measurement point on the x- and y-axes in image coordi-
nates. )ese errors are changed on the measurement points
of preceding and following vehicles, with a range of change
of [− 20, 20] pixels. When a location error of a measurement
point of a preceding (or following) vehicle is considered, the
position of the measurement point on the following (or
preceding) vehicle remains unchanged, and the heights of all
measurement points remain the same. Finally, the proposed
method is used to estimate the space headway; its error

x

y

o

a c

d

Δy

Δx
a′

b

Figure 5: Calibration pattern in image coordinates and the actual
localization result of one endpoint: case of point a.
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distribution is shown in Figure 7, and its error characteristics
are shown in Table 2.

As shown in Figure 7, the error distribution is ap-
proximately horizontal, and the influences of the mea-
surement point localization offsets are relatively even; that
is, offsetting the measurement point to the top or bottom
of the image has approximately the same effect on the
space headway estimation in addition to the sign of the
error. Due to the effects of the camera rotation angle and
pan angle, the bands have specific angles with the hori-
zontal direction. For the preceding vehicle, the offset of
the measurement point position to the top of the image
will result in a smaller value of the calculated space

headway than the actual value, whereas a downward offset
will result in a larger value of the calculated space
headway. )e situation is reversed for the following ve-
hicle. )is is consistent with our intuitive understanding:
the preceding vehicle is below the following vehicle in the
image, and when the measurement point on the preceding
vehicle is shifted upwards in the image or when the
measurement point on the following vehicle is shifted
downwards in the image, the measured separation is
smaller than the real separation between the two vehicles,
leading to a smaller calculated result.

Table 2 illustrates that the variance of the error caused by
a measurement point on a following vehicle is 1.7 times that
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Figure 6: Distribution of space headway estimation errors when the locating offset of only one calibration pattern endpoint is changed: (a)
endpoint a, (b) endpoint c, (c) endpoint b, and (d) endpoint d)e four subfigures are placed in the order of their corresponding points in the
calibration pattern in the image; that is, point c is the endpoint at the upper right corner, and point b is at the lower left corner.

Table 1: Characteristics of space headway estimation errors when the locating offset of only one calibration pattern endpoint is altered.

Altered endpoint Maximum error (m) Minimum error (m) Average error (m) Variance of error (m2)
a 0.2693 − 0.3662 − 0.0023 0.0260
b 0.1866 − 0.1897 0.0008 0.0083
c 0.2642 − 0.2877 0.0068 0.0184
d 0.1520 − 0.1525 0.0012 0.0051
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of the preceding vehicle. )e error caused by a measurement
point on the following vehicle is within the range of ap-
proximately ±1m, and that on the preceding vehicle is
approximately ±0.8m. Hence, a measurement point on the
following vehicle has a greater effect. Figure 7 also shows that
in the designed range, with the same offset, the error caused
by the locating offset of the measurement point on the
following vehicle is greater than that of the measurement
point on the preceding vehicle. In the world coordinate
environment, the following vehicle is farther from the
camera than the preceding vehicle and thus has a lower
resolution than the preceding vehicle in image coordinates;
consequently, the actual length represented by one pixel on
the following vehicle is longer than that for a pixel on the
preceding vehicle. )erefore, in practice, the localization
accuracy of a measurement point on a following vehicle
needs to be higher.

3.1.3. Selection of Measurement Points. )ere are typically
several measurement points on a vehicle. )e measurement
errors of the measurement points at different positions and
heights will have different effects on the results. In this
section, the same measurement offsets are added to mea-
surement points in different positions on the vehicle in
world coordinates to observe the space headway error
distribution. In the simulation, the range of dM is [0, 5]m,
and the range of hM is [0, 2]m. Section 2 concludes that for
the same offset, the error caused by the locating offset of the
measurement point on a following vehicle is greater than
that of the measurement point on a preceding vehicle, and
the offsets of the measurement point toward the top or

bottom of the image have approximately equal effects on the
space headway estimation. )erefore, in this section, the
offsets of the measurement point on the following vehicle in
image coordinates are set to − 1 and − 20 pixels. )at means
that the localization result shifts to the top of the image by 5
and 20 pixels, as well as toward the tail direction of the
vehicle.

As shown in Figure 8, the error distribution is a stripe
with a very small angle vertically; that is, the height of the
measurement point has a relatively small effect on the
result, while the distance from the measurement point to
the tip of the vehicle (variable dM) contributes more to the
result. As the locating offset of the measurement point
increases, the angle of the error strip increases, and the
widths of the error strips change little. In other words, as
the measurement point localization error increases, the
influence of the measurement point height on the result
increases, while the influence of the measurement point
height on the result remains almost unchanged. In Table 3,
when the offset increases from − 5 to − 20 pixels, the space
headway results decrease on the whole, but the range of the
errors is almost unchanged. We can observe from Figure 8
that as dM increases, the calculated result is initially larger
than the actual result but then gradually decreases and the
“zero-error-line” appears. )is is because the error com-
ponents caused by the measurement point locating errors
in hM and dM cancel each other out, which leads to a
“seemingly correct” result. )en, as dM is gradually in-
creased, the calculation result becomes increasingly
smaller than the actual result.

In summary, in practical applications, to ensure the
accuracy of the measurement point localization, under the
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Figure 7: Distribution of errors in space headway estimation when the locating offset of a measurement point on a different vehicle is
altered: (a) altering a measurement point on the preceding vehicle; (b) altering a measurement point on the following vehicle.

Table 2: Characteristics of space headway estimation errors when the locating offset of the measurement point on a different vehicle is
altered.

Location of altered measurement point Maximum error (m) Minimum error (m) Average error (m) Variance of error (m2)
On the preceding vehicle 0.7703 − 0.7995 − 0.0047 0.2003
On the following vehicle 1.0437 − 1.0004 0.0070 0.3389
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premise of ensuring the positioning accuracy, more points
near the tip of the vehicle and more lower points should be
selected as measurement points, or the weights of the
measurement points near the tip of the vehicle and the lower
measurement points should be increased to reduce the error.

3.1.4. Errors of the Measurement Point Height Measurement.
A measurement point generally corresponds to a physical
point on the vehicle body. Due to factors such as the vehicle
manufacturing process and tire pressure, the heights of
measurement points of the same type on different vehicles
of the samemodel or even measurement points on the same
vehicle at different times may not be identical. Addition-
ally, there is a certain error in the height measurement of
the measurement points in world coordinates. )ese fac-
tors will lead to errors in the final space headway calcu-
lation results. In this section, the variable ΔhM is used to
describe the height measurement errors of a measurement
point in world coordinates; the range of ΔhM is [− 0.2, 0.2]
m. When analyzing the height measurement errors of the
measurement points, other variables, including the local-
ization of the measurement points in image coordinates,
remain unchanged. We then use the proposed method to
estimate the space headway; its error distribution is shown
in Figure 9, and the error characteristics are shown in
Table 4.

As illustrated in Figure 9, there is a linear relationship
between the measurement point height measurement error
and the space headway estimation error.When considering a

measurement point on the preceding vehicle, higher-than-
actual measurement point height values result in larger-
than-actual estimation values.)e situation is reversed when
measurement point height errors occur on the following
vehicle. Figure 10 diagrams the cause of this behavior.
Because the measurement point localization result in image
coordinates is unchanged during the calculation process,
when the height measurement of a measurement point is
considered, the measurement point corresponding to the
point M actually adopted in the calculation process is point
M′, leading to an error of the measurement point locating
result in world coordinates on the X-axis. )is error is
described as ΔXM, referring to the distance between pointM
and pointM′ on the X-axis in world coordinates. When ΔhM
is positive, ΔXM is positive; that is, the calculated vehicle
position is further ahead, and vice versa.

We can also observe that in the same height-measure-
ment-error range, the absolute value of the error caused by
the height measurement offset of a measurement point on a
following vehicle is larger than that on a preceding vehicle.
For example, a height measurement error of − 0.2m on a
measurement point causes an error with an absolute value of
1.0729m when located on the preceding vehicle but an error
of 1.2288m when located on the following vehicle. )is
discrepancy also reflects the lower resolution of the fol-
lowing vehicle in an image compared to the preceding ve-
hicle; the same height in world coordinates corresponds to
fewer pixels on the following vehicle than on the preceding
vehicle. However, the height measurement accuracy of a
measurement point on the preceding vehicle cannot be
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Figure 8: Distribution of errors in space headway estimation when different locating offsets are added to measurement points at different
positions and different heights of the following vehicle: (a) offset of − 5 pixels and (b) offset of − 20 pixels.

Table 3: Characteristics of space headway estimation errors when different locating offsets are added to measurement points at different
positions and heights of the following vehicle.

Offset (pixels) Maximum error (m) Minimum error (m) Average error (m) Variance of error (m2)
− 5 0.3174 − 4.7067 − 2.1947 2.2011
− 20 1.2952 − 3.8073 − 1.2564 2.0490

Journal of Advanced Transportation 9



neglected; in practice, the height measurements of the
measurement points on both vehicles should be as accurate
as possible.

3.2.Real-WorldSimulationExperiment. Considering that in
actual surveillance scenes, it is extremely difficult to obtain
the precise values of the actual space headway and vehicle
measurement values, we design a real-world simulation
experiment to simulate common traffic surveillance scenes
to verify the accuracy of the proposed MPP method.

At present, the two main types of video road surveillance
systems are Vehicle Image Capture (VIC) systems and Road
Video Surveillance (RVS) systems. Examples of scenes from
these two systems are shown in Figures 11(a) and 11(c). A
VIC system is typically a camera that monitors a limited
number of lanes (typically 1–3 lanes). When a vehicle passes,
the vehicle detector is triggered and transmits a signal to the
camera to capture an image. )erefore, the scene in the
image is small, the resolution of the vehicle is high, and the

parts and features of the vehicle can clearly be seen.)e RVS
system generally views a large scene and captures continuous
images of a section of the road with a long range; the res-
olutions of the vehicles in the images are low.

In our experiment, as shown in Figures 11(b) and 11(d),
the VIC and RVS scenes were simulated using a NIKON
D7200 model camera (all areas of private data are masked).
)e resolution of these images was 2992× 2000 pixels. For
the VIC scene, the focal length was 35mm, and the
equivalent focal length was 157mm. In the RVS scene, the
focal length was 58mm, and the equivalent focal length was
87mm.We tried our best to ensure that the size and depth of
the scenes and the ratio of the vehicle size to image in these
two scenes are roughly the same as those in the actual
surveillance VIC and RVS systems.

During the experiment, the calibration rectangle was
demarcated using objects on the ground. )e rectangle
formed by the marker connection appears in Figure 12 and
the image coordinates of them are obtained manually.
Distances and heights were measured by a laser rangefinder
(model: Suwei S40) or a tape measure, and multiple mea-
surements were averaged to reduce the errors. )e mea-
surement results were as follows: the height of the camera
h was 5.940m, the calibration rectangle was 9.679m×

3.933m, and the vehicle distance (defined as the distance
from the tail of the preceding vehicle to the tip of the fol-
lowing vehicle) was 4.514m in the VIC scene and 8.855m in
the RVS scene. From the vehicle production information,
the length of the preceding vehicle was 4.598m. )erefore,
the real space headway in the VIC scene was 9.112m, and
that in the RSV scene was 13.453m.

As recommended in this paper, the points on the edges
of the license plate were used as measurement points. A laser

Table 4: Characteristics of space headway estimation errors with height measurement offset of themeasurement points on different vehicles.

Location of altered measurement point Maximum error (m) Minimum error (m) Average error (m) Variance of error (m2)
On the preceding vehicle 1.0729 − 1.0729 0.0000 0.3982
On the following vehicle 1.2288 − 1.2288 0.0000 0.5223

X

Z

hM The real measurement point (point M)

O

The actual measurement point considered 
with height measurement error (point M’)ΔhM

Camera

ΔXM

Figure 10: Space headway error caused by measurement point
height measurement error.
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Figure 9: Distribution of errors in space headway estimation when a height measurement offset of a measurement point on a different
vehicle is introduced: (a) measurement point on the preceding vehicle and (b) measurement point on the following vehicle.

10 Journal of Advanced Transportation



rangefinder was used to measure the heights of the mea-
surement points, and the results were as follows: the heights
of the upper and lower edges of the license plate on the
preceding vehicle were 0.490m and 0.331m, and the cor-
responding heights on the following vehicle were 0.581m
and 0.440m. )ese heights were located manually as well.
Ten measurement points were captured on each vehicle,
including five on the upper edge and five on the lower edge
of each plate. For each scene, eachmeasurement point on the
preceding vehicle and every measurement point on the
following vehicle form an MPP. )erefore, there are a total
of 100MPPs in each image. Because all measurement points
adopted in this experiment were points on the edges of the
license plates, their confidences should be identical, that is,
αij � 0.01. Using equations (1)–(3), we calculated the
weighted space headway for the scene; those of the VIC and
RVS were 9.014m and 13.455m, respectively. )e error

statistics for this experiment are given in Table 5 and
Figure 13. )e relative error is the value of the absolute error
divided by the actual space headway value.

As shown in Figure 13, the error distributions of both
scenes exhibit bilateral symmetry similar to mountains with
a peak in the middle. In addition, the width of the error
range in the RVS scene is much wider than that in the VIC
scene, indicating that the error distribution is relatively
concentrated in the VIC scene and relatively disperse in the
RVS scene. )e error variances in Table 5 illustrate this
situation as well. )ese results provide good confirmation of
the conclusion of Section 3.1.2: the further the measurement
point is from the camera, the greater the space headway error
will be for the same measurement point error. Moreover,
Table 5 shows that the accuracy in the RVS scene is higher
than that in the VIC scene. We believe that this discrepancy
does not contradict the conclusion above but arises because

(a) (b)

(c) (d)

Figure 11: Examples of scenes in the two main traffic video road surveillance systems and the simulation experiment in our paper. (a) A
common VIC scene. (b) A simulated experimental VIC scene. (c) A common RVS scene. (d) A simulated experimental RVS scene.

(a) (b)

Figure 12: Calibration rectangle in the simulation experiment in our paper. (a) VIC scene. (b) RVS scene.
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the results of the VIC scene overall are smaller than the
actual value, as shown in Figure 13. )e difference may be
caused by the pattern endpoint localization error in the
calibration process in the VIC scene.

Nevertheless, Table 5 demonstrates that the proposed
method has a high calculation accuracy for space headway
estimation in both the VIC and RVS scenes, with a mean
absolute error not larger than 0.1m and amean relative error
not larger than 1.1%. )us, the calculated results are very
close to the actual values. At present, the relative errors of the
mainstream image-based vehicle speed estimation algo-
rithms are approximately 1.90%–8.85% [18, 24, 25]. Even if
the estimation of the time headway were completely precise,
the error of the space headway calculated by the time
headway-based method would not be smaller than the error
of the vehicle speed estimation. )erefore, the accuracy of
our proposed method is higher than that of the traditional
method.

3.3. Real-World Application Experiment. )e previous sec-
tion has already proven that our MPP-based algorithm is
accurate and has a certain practical application value. Now,
we will verify the applicability of the MPP-based algorithm
in real-world scenes.

Our experimental data were collected in the northbound
direction on Gangwan Avenue in the city of Zhuhai, China.
As shown in Figure 14, the cameras of the VIC and RVS
systems are installed on the same pole above the road. )e
northbound direction of Gangwan Avenue consists of three
lanes, and there are three VIC cameras and one RVS camera
on the pole. )e VIC systems are triggered by loop sensors
on the road, and each VIC camera captures the vehicles on
one lane, while the RVS camera records video of the three
lanes in the whole northbound direction. )ere is a signal
control intersection approximately 500 meters upstream of
the camera position, and the green light phase is approxi-
mately 70 seconds. )erefore, we chose 70 seconds of

daytime on August 13, 2016, and the following data during
this period of time are collected:

(1) )e RVS video: the resolution is 1920×1080 pixels,
and the frame rate is 25 fps.

(2) )e VIC images of the three lanes: the number of
images is 63, and the resolution is 1600×1296 pixels.

(3) )e records of the VIC systems: the number of
records is 63. )ey are corresponding to the VIC
images and record the capture time of the vehicle
image (the accuracy is 1 second), the speed of the
captured vehicle (detected by the loop sensor, the
accuracy is 1 km/h), the plate number of the captured
vehicle (autorecognized by the VIC system), the lane
number the vehicle is driving on, etc.

In the RVS video, we extract the frames when the ve-
hicles reach the loops. Considering that the plate number
cannot clearly be seen in the RVS video, we compare the
vehicle subimage, vehicle color, vehicle type, and vehicle
appearance sequence of the extracted frames with the VIC
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Figure 13: Space headway error distribution: (a) VIC scene and (b) RVS scene.

VIC cameraVIC cameraVIC camera

RVS camera

Figure 14: )e camera systems in the experiment (from http://
map.qq.com).

Table 5: Error statistics in the experiment.

Scene VIC RVS
Mean of errors (m) − 0.098 0.002
Mean of relative error (%) 1.093 0.117
Range of error distribution (m) [− 0.130, − 0.071] [− 0.043, 0.043]
Variance of error (10− 4m2) 2.148 3.686
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images and the VIC records manually to identify every
vehicle in the extracted frames.

After doing so, at the specific moment when one vehicle
reaches the loop, the vehicle is presented by two images: one
is the VIC captured image, and the other is the corre-
sponding RVS extracted frame. We call this vehicle the
“captured vehicle” (also referring to the preceding vehicle in
the vehicle pair), the two images a “captured vehicle image
pair,” this moment the “trigger moment,” and this extracted
frame the “key frame.” Figure 15 shows a captured vehicle
image pair in this case. It should be noted that the following
captured vehicle image pairs will be excluded:

(1) When the captured vehicle can be seen in the key
frames, but the vehicle following it cannot be seen in
the key frames

(2) When in one captured vehicle image pair, the vehicle
following the captured vehicle in the key frame and
the vehicle in the VIC image are not the same vehicle.

After filtering, 55 valid captured vehicle image pairs
remain. As shown in Figure 16, we use road markings in one
of the key images as the calibration rectangle pattern. By
consulting the national standard and performing field
measurement using the tape measure, we can obtain that the
size of the rectangle is 15m× 3.8m. In the key frame, we
manually select points at the middle of the lower edge of the
license plates on the captured vehicles and the following
vehicles as the measurement points. Considering that the
main types of vehicles on the road during this period are cars
and pickup trucks, we set the height of the measurement
points to 0.44m by measuring large numbers of vehicles of
the same two types. )en, we use the proposed MPP al-
gorithm to estimate the space headway in each key frame.

To evaluate the performance of our algorithm, we cal-
culated the ground truths and compare our results with the
state-of-the-art distance measurement method.

(1) )e calculation of ground truth (GT): In this exper-
iment, it is hard to achieve the ground truth of the
space headway. )erefore, an indirect calculation
method is adopted. Variable TH is defined as the time
headway between the captured vehicle and the fol-
lowing vehicle and is calculated by the difference in
the capture time of these two vehicles according to the
records of the VIC systems. Variable v refers to the
speed of the following vehicle recorded in the VIC
system. We assume that the following vehicles are
moving at a uniform speed during the short period
from the trigger moment to the moment when it
arrives at the loop and that the sensitivity and accuracy
of the loop sensor and speed detector are high enough.
)erefore, the ground truth value of space headway at
the trigger moment is the same as the space headway
calculated by the following equation:

SHGT � TH × v. (4)

(2) )e calculation of space headway using 3D bounding
box (3DBB): We use the distance measurement

method based on 3D bounding box in [18] to cal-
culate the vehicle space headway. Vanishing points
and vehicle’s contours are required in [18], and we
use the methods described in [19, 35] to solve these
problems. In addition, we manually locate the pre-
ceding and following vehicles in the images, re-
spectively, and eliminate the noise contours near
them (such as the contours of the lane lines and road
markings). After that, we use the method of [18] to
construct 3D bounding boxes of all the preceding
and following vehicles in the 55 key frames. As
shown in Figure 17, since the camera is located above
lane 2, there will be different orientations of
bounding boxes when vehicles are on different lanes.
For the vehicles in lane 3, the left edges of the vehicles
may have higher confidences than the right edges do.
)e situation is reversed for vehicles in lane 1.
)erefore, the space headway by 3D bounding box
can be calculated by the following equation:

SH3DBB �

COR2− pCOR2− f

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X
λ

, when vehicle is in lane 3,

COR1− pCOR1− f

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X
λ

, when vehicle is in lane 1 or lane 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where |CORiCORj|X is the absolute difference be-
tween point CORi and point CORj along the di-
rection of the car motion, CORi-p means point CORi
on the preceding vehicles, CORi-f means point CORi

The vehicle following
the captured vehicle

The captured vehicle

(a) (b)

Figure 15: A captured vehicle image pair and the captured vehicle:
(a) the key frame in RVS video; (b) the VIC image.

Lane 1Lane 2Lane 3

Figure 16: )e calibration rectangle pattern in a key frame and the
definition of lane number.
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on the following vehicles, λ is the scene scale de-
scribed in [18] which is calculated by the length,
width, and height of the preceding vehicles in the 55
key frames, and the estimated value of λ is 0.086.

Figure 18 shows a comparison of the space headway
calculated by different algorithms with the ground truth in
the 55 valid captured vehicle image pairs. Considering that
the signs of the errors just mean the calculated results are

COR3

COR1 COR2

COR4

(a)

COR3

COR1 COR2

COR4

(b)

Figure 17: 3D bounding boxes on vehicles in different lanes. (a) Vehicle in lane 3; (b) vehicle in lane 1. )e definitions of some bounding
box’s corners in world coordinates are as follows: COR1 is the right-front-lower corner, COR2 is the left-front-lower corner, COR3 is the
right-rear-lower corner, and COR4 is the left-rear-lower corner. As can be seen, for a vehicle’s bounding box in lane 3, edge COR2COR4 is
visible while edge COR1COR3 is not. )e situation is reverse when the vehicle is in lane 1. )erefore, the edges of bounding boxes for
calculating the length, height, or space headway should be chosen differently for vehicles in different lanes.
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Figure 18: Comparison of the space headway calculated by the different algorithms with the ground truth. In this figure, “error” means
absolute error. )e lengths of the bars represent the values of the errors. One end of the bar is the GT, and the other end is the estimated
space headway.

Table 6: Errors of the space headway by different algorithms. )e first row for each item contains the results of the errors considering the
signs and the results of absolute values of errors are in the second row.

Average Range of error distribution
MPP 3DBB MPP 3DBB

Absolute error (m) − 0.402 1.869 [− 4.127, 6.473] [− 5.599, 16.135]
1.308 2.340 [0.153, 6.473] [0.006, 16.135]

Relative error (%) − 1.634 2.718 [− 8.766, 7.937] [− 13.288, 15.643]
2.916 4.182 [0.454, 8.766] [ 0.030, 15.643]
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larger or smaller than the ground truth, and that two errors
with same absolute values but different signs mean the errors
of the same size, we evaluate the absolute errors and relative
errors in two ways: considering the signs of the errors and
only considering the absolute values of the errors. Table 6
shows the errors between different algorithms.

As shown in Table 6, the proposed MPP algorithm
performs better than the 3DBB algorithm in this real-world
application experiment with increments of ±1.032m in
absolute error and ±1.266% in relative error. In addition, the
upper limit of the errors of MPP is 9.662m smaller than that
of 3DBB. As shown in Figure 18, as the ground truth of space
headway increases, the error of the calculated space headway
(no matter by which algorithm) tends to increase. We
speculate that is because the positions of the preceding
vehicles are nearly the same (all at the loop), so when the
actual space headway increases, the position of the following
vehicle gets farther, meaning a lower resolution of the fol-
lowing vehicles and larger location errors. Among these, the
increment of 3DBB is larger, which shows our MPP algo-
rithm is more stable.

From Figure 18 and Table 6, we can also see that gen-
erally the space headway obtained by the MPP algorithm is
smaller than the actual value, and that the difference between
the space headway by MPP and the ground truth is small,
with an average difference of ±1.308m, average relative error
of ±2.916%, and a maximum error not larger than ±8.766%.
)erefore, the MPP-based algorithm proposed in this paper
meets the practical needs.

In general, the proposed MPP algorithm is applicable for
real-world traffic surveillance practical scenes, and especially
when the actual space headway is not particularly large, the
MPP algorithm can get a better calculation result. Furthermore,
the proposed MPP algorithm does not require any additional
equipment for the roads, the vehicles, or the cameras, and it is
thus obviously superior to sensor-based or high-altitude video-
based methods in terms of convenience and cost of use.

4. Conclusion and Further Work

)is paper presents a precise space headway estimation
algorithm from a single image based on MPPs. In this
algorithm, considering the characteristics of the vehicle
body, we raise the concept of the measurement point and
use it to provide height information for the distance
measurement. By using the proposed algorithm, we can
estimate the real-time space headway of every vehicle using
only a single captured or extracted image from existing
traffic surveillance videos and thereby support the devel-
opment of research including that on traffic flow theory,
traffic congestion, and traffic safety. Furthermore, we an-
alyzed the factors that cause the estimation errors, and the
size and range of the errors were calculated by simulation.
On this basis, optimization suggestions are given for the
processing of the image calibration, measurement point
selection, and measurement point measurement. More-
over, two real-world experiments were conducted, and the
results showed that the proposed method achieves high
accuracy and has high practicability in space headway

estimation in common VIC and RVS scenes of existing
traffic surveillance videos. )e proposed method is more
accurate and stable than the state-of-the-art distance
measurement method and is more convenient and less
expensive than other common space headway estimation
methods.

Future work will be focused on the adaptability of the
proposed algorithm to various traffic states, such as free
traffic flow and congestion, in which situations of inter-
vehicle occlusion or partial missing measurement points
occur frequently.
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