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Adverse weathers are well-known to impact the operation of transportation systems, including taxis. �is paper utilizes taxi GPS 
waypoint data to investigate the quantitative impact of rainfall on taxi hailing and taxi operations to help improve service quality on 
rainy days. �rough statistical analysis, the study proves that it is more di�cult to hail taxis on rainy days, especially during morning 
peak hours. By modelling the di�erence value of factors for rainfall and nonrainfall conditions in a multivariate regression model 
and attaining the signi�cance and elasticity of each factor, passenger demand, taxi supply, search time and velocity are proved to be 
the signi�cant factors that lower the taxis’ level of service on rainy days. Among them, the number of passengers and taxis are two 
factors that have the greatest impact. It is also shown that there is no signi�cant di�erence in the total taxi supply and passenger 
demand between rainfall and nonrainfall conditions, but a dramatic change in the spatial distribution is discovered. �e results 
suggest that instead of simply providing more taxis on rainy days, optimally dispatching taxicabs to high demand regions can be a 
more e�ective solution.

1. Introduction

Taxi services play a crucial role in transporting travelers in 
urban areas across the globe. It is an essential complement to 
public transit owing to its great convenience and wide availa-
bility [1]. In China, taxis carried about 35.17 billion passengers 
in 2018, which was 27.86% of the total urban passenger trans-
port volume [2]. Such a huge volume highlights the impor-
tance of taxis and draws wide academic attention, and studies 
into factors a�ecting taxi operations have received consider-
able attention. Multiple factors have been studied in existing 
works, and they can be categorized into either endogenous 
factors (i.e., re�ecting drivers’ personal characteristics) such 
as operation region preferences, passenger search patterns, 
route choice behaviour, and delivery e�ciency [3–6], or exog-
enous factors, such as varying tra�c conditions, alternative 
transit options, online car booking, taxi prices, fuel costs, and 
regional land use [7, 8].

Nevertheless, the impact of adverse weather events, espe-
cially rainfall, can critically a�ect taxi supply and travel demand, 
but receives little to no attention. It is common sense in cities 
of high dense populations (e.g., Asia-Paci�c cities, New York, 
etc.) that to hail a taxi become much harder in rainy days. 
Kamga et al. [9] investigated temporal and weather-related 

variations in taxi ridership patterns in New York City from the 
perspective of a supply-demand equilibrium. Chen et al. [10] 
demonstrated that rainfall is a key in�uencing factor on the 
taxi service demand. As rain intensity increases, demands for 
evening rush hour and nonrush hour periods on workdays 
show opposite trends. However, most studies neglected the 
di�erences in spatial distribution and did not consider the 
causes of those variations. �e other few related studies are 
almost all descriptive analyses under some proposed assump-
tions, but it lacks quantitative analyses of the performance of 
taxi operations [11, 12].

In contrast, tremendous attention has been placed on 
research into the impact of rainfall on other modes of trans-
portation, such as the bus and subway systems [13–15]. �eir 
�ndings suggest that rainfall can decrease the number of both 
regular and occasional travelers of subways in urban areas. 
Compared to the pre-de�ned schedules or routes, taxis have 
more �exibility than buses by providing a door-to door ser-
vice. In adverse weather such as rainfall, some travelers would 
prefer taxis to avoid walking in rainfall to subway station. 
�us, it is likely that the taxi demand would instead increase 
during rainfall. Due to distinct supply-demand structures, the 
analysis procedure used for those transportation modes can-
not be directly transferred to studies into taxi operations. A 
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thorough study into rainfall’s impact on taxi operations is 
therefore needed.

For this reason, we intend to utilize massive amounts of 
taxi GPS data to investigate the impact of rainfall on taxi hail-
ing and reveal its quantitative impact on the performance of 
taxi operations to help improve taxi service quality on rainy 
days. Specifically, we first segment the study area into small 
cells and define a taxi level of service (TLOS) index to denote 
the difficulty of hailing taxis for each cell. �e TLOS indices 
are then clustered into several levels and the spatio-temporal 
TLOS differences are explored. A�erwards, we identify the 
factors that may affect the TLOS indices and test the statistical 
differences of these factors between rainy and nonrainy days. 
Moreover, a novel method is proposed to quantify the distri-
bution difference of supply and demand between rainy and 
nonrainy days. Lastly, we propose a regression model that 
correlates the TLOS and the impacting factors, and we obtain 
the significance of each factor’s impact on the TLOS indices. 
To provide taxi regulators with quantitative advice on how to 
improve TLOS on rainy days, an elasticity analysis is con-
ducted as well.

�ree major contributions are made in this paper. First, 
we establish the TLOS indexing as a measure of the difficulty 
of hailing taxis and perform a specific spatio-temporal analysis 
of level changes between rainy and nonrainy days. Second, we 
thoroughly study the taxi operation factors affected by rainfall 
and quantitatively analyse the variation of spatial supply-de-
mand distributions between rainy and nonrainy days. �ird, 
we develop a multivariate regression model to find significant 
factors and conduct an elasticity analysis to quantify the con-
tribution of each factor, which can provide quantitative values 
for regulators to take into account in order to improve taxi 
service quality on rainy days.

�e rest of this paper is structured as follows. �e next 
section discusses studies related to taxi services and the impact 
of rainfall. Section 3 describes the study area of interest and 
the data preparation process. Section 4 presents the method-
ology. Section 5 documents the results and discussion. Section 
6 concludes the paper.

2. Literature Review

Due to the lack of existing research into the impact of rainfall 
on taxi services, this section will review literature that refers 
to the two most relevant study topics that are partly connected 
to this study. �e studies of assessment of the taxi service and 
factors affecting taxi operations are introduced in the first part, 
and the impact of weather on transportation systems is 
reviewed in the second part.

2.1. Assessment of Taxi Service and Operations.  �e taxi 
market, a heavily regulated industry, has received increased 
attention and has induced a number of studies. Studies 
into taxi services can be dated back to the mid-1970s [16, 
17]. To evaluate the level of taxi service, scholars present 
multiple standards from different perspectives. Xu et al. [18] 
developed a neural network model to evaluate level of taxi 
service based on accurate endogenous variables including 

passenger demand, waiting time, vacant taxi headway, average 
percentage of occupied taxis and taxi utilization. Yang et al. 
[19] used the average proportion of occupied taxis to reflect the 
utilization level and the average time headway between vacant 
taxis to reflect the availability of vacant taxis, thereby reflecting 
the level of taxi service. Shaaban and Kim [20] focused on 
passengers’ satisfaction and conducted a descriptive analysis 
relating the demographic, accessibility, and trip purposes to 
taxi users with overall service satisfaction. Wong and Szeto 
[21] introduced a six-level TLOS (level-of-service) standard 
to evaluate the service quality of urban taxis based on the 
numerical score of a customer satisfaction survey.

With the advent of GPS tracking of taxis, a series of diverse 
research studies on taxi operation condition utilizing these taxi 
trajectories emerged. Some research focused on pattern mining 
of taxi operations. For example, Zhan et al. [22] explored taxi 
cruising patterns, travel time estimation, and travel speed var-
iation. Li et al. [23] proposed spatio-temporal visualization 
analysis methods to quantify taxi operation patterns using GPS 
data. Other studies worked further to improve understanding 
of these taxi operation patterns, including taxi demand distri-
bution predicting in order to recommend the best queuing 
locations for taxi drivers [24, 25]. Aided by GPS data, Gao et 
al. [25] and Qin et al. [26] investigated the differences in driv-
ers’ operation strategies and revealed the top drivers’ strategies 
to help ordinary drivers increase their incomes.

To summarize, existing works to assess the level of taxi 
service rely on customer survey. GPS data has already become 
a necessary component in taxi studies. Its availability makes 
it possible to easily obtain cruising patterns, travel times, 
pick-up/drop-off locations, and the distribution of passengers, 
which are widely considered factors that affect the perfor-
mance of taxi operation. �erefore, it is intuitive to utilize GPS 
data to assess level of taxi service and further facilitate analysis 
of taxi performance when it rains.

2.2. Impact of Rainfall on Transportation Systems.  Weather 
conditions are important external factors that affect 
transportation systems. Singhal et al. [27] utilized a linear 
model based on a station type of transit trip to prove the 
significant effects weather can have on ridership patterns. 
Khattak [28] found that the competitive rankings of various 
transportation modes o�en need to be adjusted in response 
to weather changes. A survey found that 55% of respondents 
would change their travel patterns a�er receiving weather 
information from secondary sources [29]. By estimating 
separate ordinary least square regression models for each 
season, Stover and McCormack [30] proved that adverse 
weather conditions led to lower transit ridership. Studies also 
suggest that a small amount of morning peak-hour rain reduces 
bus ridership significantly for the whole day, and that rainfall 
is the most influential weather event that can lead to a 3% 
reduction of daily bus ridership [31]. Hofmann and O’Mahony 
[7] analyzed the effect of rainfall on public transit in terms of 
service frequency, travel time and ridership variability, and 
identified a strong negative relationship between them.

As mentioned above, most existing studies have focused 
heavily on mass transit modes by using smart card databases 
or daily and monthly GPS data, which lack detailed 
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information. In the meantime, public transit systems such as 
buses and subways have fixed schedules and routes, while taxis 
are demand-responsive, which makes the findings of public 
transit not necessarily transferrable to the taxi industry. 
�erefore, an exploration on how rainfall affects taxi opera-
tions using insights obtained from GPS data is needed.

3. Study Area and Data Preparation

3.1. Study Area.  Taxis play an especially important role in urban 
transportation within large cities. As the largest city in China, 
Shanghai is no exception, as taxis contribute to approximately 
12% of trips among public transportation modes [32]. Due 
to the intervention of Transportation Network Companies 
(TNC) such as Didi, the passenger sharing rate of cruise taxis 
has declined. However, the relative share of taxi hailing is 
still far ahead. As per 2017 Shanghai Transportation White 
Paper, the current share of taxis in Shanghai is 11% while it 
is 3% for TNC vehicles. Amongst taxi trips, roughly 70% are 
drawn from hailing. In the near future, it is foreseen that the 
share of taxi hailing will not drop since the percentage of elder 
passengers who are prone to TNCs is still growing. Besides, 
TNC service has been widely condemned due to numerous 
crimes or policy violations conducted by TNC drivers [33, 34]. 
Further, transportation authorities in Shanghai do have the 
right to dispatch taxis to certain regions due to taxi shortage 
because of extreme weather conditions. �erefore, this study 
takes taxi hailing as default.

In Shanghai, taxi trips are highly concentrated within the 
downtown area bounded by the Outer Ring Road, where about 
82.25% of taxi pickups are generated, which makes it an 
appealing choice for our study area [26]. To facilitate the inves-
tigation of spatial variations of taxi operations, we segment 
the study area into small square cells with dimensions of 
1 km × 1 km. As a result, the area of interest is divided into 744 
cells in total that cover longitudes from 121.35 to 121.65, and 
latitudes from 31.14 to 31.37.

3.2. Data Description and Preparation.  Qiangsheng, the largest 
taxi operator in Shanghai and even China, operates 25% of the 
taxis in Shanghai [35]. �e share of Qiangsheng in Shanghai 
is larger than any other taxi companies or TNCs. A set of 
taxi GPS data over two months retrieved from the Shanghai 
Qiangsheng Taxi Company was used in this study. �e data 
contains information of sequential trajectories and operation 
status from approximately 10,000 taxis. Attributes include taxi 
ID, date, time, longitude, latitude, speed, bearing, and operation 
status identifier (1 for occupied/0 for vacant). �e GPS data was 
collected every 10 seconds, and 631 million trajectory waypoints 
(including passenger search and delivery data) were recorded.

March and June, identified as the months with the most 
rainfall by the weather data, are selected as the study period. 
It is intuitive that it is more difficult to hail a taxi during peak 
hours when demand overwhelms. �erefore, we mainly focus 
on the morning peak hours (7 AM–9 AM) and evening peak 
hours (5 PM–7 PM) on weekdays. Off-peak periods (10 
AM–11 AM and 2 PM–3 PM) are also considered for com-
parison purpose.

Weather information was collected from the weather ser-
vice Weather Underground. �e data contains date, time, 
events (e.g., rain, thunderstorms, none), and weather condi-
tions (e.g., clear, mostly cloudy, overcast, rain, showers, thun-
derstorms, etc.). However, it is mostly light rain if there is any 
precipitation in Shanghai. Rain showers or heavy rain are both 
rare cases (occur roughly 1% of the entire time period), which 
is difficult to support the investigation on the severity of rain-
falls. �erefore, in order to ensure sufficient observations for 
each weather category, we map the weather condition for the 
corresponding time period into either rainfall or nonrainfall, 
where a condition without any precipitation (e.g., cloudy, over-
cast) is tagged as nonrainfall. Since the weather data was col-
lected every 30 minutes, we split the study period into 
30-minute intervals and assume the weather conditions 
remain unchanged within the same time interval. With data 
cleaning, 41 days (in total 246 hours) of data are valid for use.

4. Methodology

In this study, we intend to first confirm the impact of rain on 
taxi operations and hailing by meticulously investigating the 
relationship between the change of difficulty in hailing taxis 
and rainfall conditions both temporally and spatially. We then 
aim to propose several factors that affect taxi operations to 
explain how rainfall impacts taxi operations and to quantify 
the change in the spatio-temporal distribution of taxi supply 
and demand in the rain. Lastly, we combine the difficulty 
measure and factors affecting taxi operations into a regression 
model to reveal which factors affect taxi operations and how 
they affect the difficulty in hailing taxis in the rain, which 
would provide taxi regulators with a better understanding of 
the relationship between taxi operations and weather.

4.1. Impact of Rain on the Difficulty of Hailing Taxis.  In this 
section, we intend to explore the taxi GPS data to find out 
answers to the following three questions:

(1) � Is it more difficult to hail taxis when it rains? �is 
question targets the difference of difficulty in hailing 
taxis between rainfall and nonrainfall conditions.

(2) � Does it become more difficult to hail taxis in the rain 
for regions where it was already difficult to hail them? 
�is question requires us to investigate Question 1 
from a more detailed perspective.

(3) � Is there a significant difference in the impact of rain 
on the difficulty of hailing taxis across different peri-
ods? �is question calls for mining spatio-temporal 
patterns of the change in difficulty of hailing taxis to 
achieve a comprehensive understanding of the impact 
of rain on taxi operations and hailing.

4.1.1. Difference in Difficulty of Hailing Taxis between Rainfall 
and Nonrainfall Conditions.  Prior to analyzing the difference, 
we need to first define an appropriate measure of difficulty 
in hailing taxis. To make the following expression concise, 
we use the term taxi level of service (TLOS) to reflect the 
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not only indicates the taxi supply level from a temporal 
perspective, but also re�ects the di�culty in hailing taxis. �e 
lower the RETT is, the harder the potential passenger could 
hail a taxi. RETT is mathematically stated as follows,

where ��� denotes the elapsed vacant time of taxi i in the kth 
cell, ��� the total duration of taxi i in the kth cell, and n the taxi 
number of the kth cell.

(1)RETT� =
∑��=1���
∑��=1���
× 100%,

di�culty of hailing taxis (the terminology of level of service 
was also adopted in Wong and Szeto [21]. In terms of TLOS, 
a straightforward index is the waiting time of passengers. 
However, passenger demand is di�cult to retrieve via raw 
data or by estimation. �us, we use vacancy rate, an e�ective 
and frequently-used index to measure the performance of taxi 
operation, to re�ect the TLOS instead [36]. If the vacancy rate 
runs low, it indicates that there are less vacant taxis cruising 
to search passengers and that passenger wait time could 
potentially be long. �e time vacancy rate can be calculated 
using the Ratio of Empty/Total Time (RETT), where RETT 

Table 1: Global Moran’s I summary for speci�c periods.

Index
Morning peak Evening peak Normal

Nonrainy Rainy Nonrainy Rainy Nonrainy Rainy
Moran’s I 0.3285 0.3818 0.3967 0.3849 0.2640 0.2642
� Score 17.157 19.935 20.694 20.093 13.793 12.875
�-value 0.001 0.001 0.001 0.001 0.001 0.001
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Figure 1: �e distribution of mean RETTs during di�erent time periods on nonrainy and rainy conditions respectively. �e values during peak 
hours decrease signi�cantly, while the di�erence during o�-peak periods is not that signi�cant. (a) Morning peak, nonrainfall. (b) Morning 
peak, rainfall. (c) Evening peak, nonrainfall. (d) Evening peak, rainfall. (e) O� peak, nonrainfall. (f) O� peak, rainfall.
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easy, easy, fair, di�cult, and very di�cult. Table 2 presents 
the outcome of the cell clusters a¸er applying the �-means 
algorithm. �e gap between the mean of two adjacent levels is 
13%. Such a di�erence between di�erent levels is distinct. For 
example, compared with taxis in TLOS C, the operation time 
of taxis in TLOS E will decline by 50%. �e area of regions 
with TLOS D and E account for about 45.82% of the study 
area (approx. area: 316 km2), which indicates passengers in 
nearly half of the study area face considerable di�culty when 
hailing taxis.

�e spatial distribution for di�erent TLOS levels in non-
rainy condition is visualized in Figure 2. It is worth noting 
that the LOS shown in the �gure is an aggregated value for 
the entire cell it associates with. It does not imply the LOS on 
certain roads but the entire cell. �e area of the region with 
TLOS A is relatively small. Regions with TLOS D and E are 
mainly bounded within the Middle Ring Road, and the region 
with TLOS D is concentrated along the Huangpu River, where 
there is considerable land development. Meanwhile, regions 
with TLOS B and C are scattered around the perimeter. To 
test the di�erence of each TLOS level between nonrainfall 
and rainfall conditions, an independent sample �-test is per-
formed and the results show that all levels have signi�cant 
di�erences between rainy and nonrainy days, except for TLOS 
A. �is indicates that rainfall has a signi�cant impact on 
regions of low TLOS on nonrainy days. As such, we choose 
to focus on regions with TLOS B, C, D and E as we conducted 
the following study.

Mean RETT is calculated for each cell for each time 
period with and without rainfalls respectively. RETT for spe-
ci�c periods are illustrated in Figure 1. It can be seen that 
RETTs during peak hours decrease signi�cantly because of 
rainfall, while the di�erence during o�-peak periods is not 
that signi�cant. One could also tell that RETT are potentially 
spatially correlated, with reds concentrated in the center 
while greens allocated in the periphery. In order to test 
whether there is spatial autocorrelation and its magnitude, 
we refer to Global Moran’s I, a spatial autocorrelation coe�-
cient commonly used in spatial statistical analysis. �e for-
mula is stated as follows:

where N denotes the number of cells, xp and xq is the RETT of 
pth cell and qth cell, � is the average of all cells, ��� is the 
spatial weight matrix between cells, which is used to measure 
the relationship between regions.

The values of Global Moran’s I are within [−1, 1]. A 
larger absolute value represents the more significant spatial 
correlation. Table 1 presents the Moran’s test results for 
specific periods. Moran’s I of all results are greater than 0 
with P-value less than 0.05 and Z score more than 1.65, 
indicating that RETT presents a positive spatial correlation, 
that is, the distribution has internal correlation, which is 
not scattered and random distribution. Besides, the corre-
lation magnitude varies in different periods. The larger 
Moran’s I during peak hours indicates a higher spatial 
dependence. Note that the local Moran’s I is not analysed 
here since the spatial aggregation of TLOS has been shown 
in Figure 1.

To verify if there is a marked change of the TLOS level of 
between rainy and nonrainy days, we test the changes in RETT 
between rainy and nonrainy days with an independent sample 
�-test. �e test returns a �-value of 0.002, which is lower than 
0.05 and indicates that there is a marked change of di�culty 
in hailing taxis between rainy and nonrainy days. �e average 
RETT of nonrainy days is 47.61%, while it is 45.45% for rainy 
days, indicating a lower TLOS and increased di�culty in hail-
ing taxis when it rains. �e data corroborates the notion that 
it is generally more di�cult to hail a taxi on rainy days than 
on nonrainy days.

4.1.2. Spatial Discrepancy of TLOS Changes in the Rain. Taxi 
services possess a degree of randomness as a response to 
random demand, which leads to taxi operations typically not 
being subject to a speci�c route or region at any given time. To 
reduce randomness and obtain useful and detailed patterns, 
we aim to cluster the cells into multiple regions where RETTs 
are similar to each other. To this end, we cluster cells by their 
TLOS in nonrainy condition into �ve levels (A, B, C, D, and 
E) using the �-Means algorithm. �e �-Means algorithm is 
one of the most e�ective unsupervised learning algorithms 
that can solve the well-known clustering problem. In terms of 
di�culty in hailing taxis, these �ve levels correspond to very 

(2)� =
�∑�∑����(�� − �)(�� − �)

(∑�∑����)∑�(�� − �)
2 ,

Table 2: Outcomes of TLOS clustering.

TLOS Counts
Average RETT �-value

Rainy Nonrainy
A (very easy) 16 (2.15%) 97.61% 97.41% 0.273
B (easy) 168 (22.58%) 66.82% 63.59% ≤0.001
C (fair) 217 (29.32%) 52.82% 50.65% ≤0.001
D (di�cult) 224 (30.27%) 39.51% 36.88% ≤0.001
E (very 
di�cult) 115 (15.54%) 27.61% 25.54% ≤0.001

A
B
C
D
E

Figure 2: Spatial distribution of regions with di�erence TLOS on 
nonrainy days. Regions with TLOS D and E are mainly bounded 
within the Middle Ring Road, and TLOS B and C are scattered around 
the perimeter.
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in the evening peak hours, which indicates that rainfall has a 
greater impact on taxi operations in the morning peak hours. 
In contrast, it becomes easier to hail taxis in most of the 
regions with TLOS D during o�-peak hours. As travel demand 
during o�-peak hours can be adjusted in most cases, many 
optional trips may be cancelled, which leads to a better level 
of service.

4.2. Factors A�ecting Taxi Operations. �e statistical results 
above imply that rainfall generally deteriorates the TLOS of 
taxis. Such a consequence is essentially a manifestation of 
the negative impact of rain on taxi operations. �erefore, 
understanding the mechanism of how rainfall a�ects taxi 
operations can help operators develop measures to mitigate 
the negative impact of rain. Prior to this, we need to discuss 
which speci�c factors may a�ect the performance of taxi 
operations. In this section, we will focus on the regions with 
relatively poor TLOS (i.e. C, D, E) and explore factors a�ecting 
the RETT values between rainfall and nonrainfall conditions.

4.2.1. Factors A�ecting Taxi Operations between Rainfall and 
Nonrainfall Conditions. Rainfall has a negative impact on taxi 
operations, which further impacts the TLOS of taxis. We aim 
to understand the mechanism of this impact as shown in an 
illustration in Figure 4. For any cell in the study area, the TLOS 
can be a�ected by either vacant (green taxis) or occupied (red 
taxis) taxis driving across that cell. �e number of vacant taxis 
re�ects the usable supply in those cells, while the number 

In general, 487 square kilometers of area out of the entire 
study area became more di�cult to hail taxis on rainy days, 
accounting for 70.5% of the total area (a large portion of cells 
may still maintain the same TLOS but drop to lower RETT 
when it rains). More in-depth results are presented in Table 3. 
A portion of the area maintains its TLOS in the rain, while the 
other areas have even worse levels once it rains. Moreover, taxi 
hailing becomes proportionately more di�cult in regions that 
originally had worse TLOS.

4.1.3. A Temporal Analysis of TLOS Changes. In the previous 
sections, we have clustered cells into regions by TLOS and 
clari�ed that the rainfall has varying impacts on regions with 
di�erent TLOS at aggregated level. Next, we will investigate the 
spatio-temporal changes in TLOS between rainy and nonrainy 
days. �e objective is to isolate certain time periods of interests 
and investigate the impact of rainfall if it rains within di�erent 
time periods.

�e key study area where there are signi�cant changes 
between rainy and nonrainy days is extracted according to the 
�-test results. It consists of the regions with TLOS C, D, and 
E in the morning peak, TLOS D in the o�-peak, and TLOS C, 
D, and E in the evening peak. Focusing on these regions, we 
investigate the scale of each TLOS on rainy days. As illustrated 
in Figure 3, it becomes more di�cult in hailing taxis in most 
regions when it rains, which is consistent with our previous 
�ndings. Furthermore, for regions with TLOS C and D, the 
TLOS su�ers a greater decline in the morning peak hours than 

Table 3: �e proportion of area and level change in regions with TLOS B, C, D, and E.

TLOS �e proportion of area harder to hail
�e proportion of level change

Better level Equal One level worse Two or more levels worse
B 53.74% 1.69% 70.07% 27.68% 0.56%
C 66.22% 7.41% 73.61% 18.98% 0.00%
D 70.82% 4.02% 76.78% 19.20% —
E 74.67% 2.68% 97.32% — —
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Figure 3: Percentage of TLOS change in each level on rainy days. �e downgrades during morning peak is relatively larger compared to 
evening peak. �e TLOS even slightly improved during o�-peak when it rained.
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where time(⋅) is the duration of trajectory �.

where speed(⋅) is the average speed of trajectory �.
Next, we analyze the characteristics of each factor. Figure 

5 illustrates the values of each factor between rainfall and non-
rainfall conditions during the morning and evening peaks 
respectively. �e le¸-hand side (green) represents nonrainy 
days, while the right-hand side (yellow) represents rainy days. 
P1 is the result of the independent sample �-test, which esti-
mates whether the changes of the mean value are signi�cant. 
Furthermore, we are concerned about whether the corre-
sponding cell changes between rainfall and nonrainfall, which 
re�ects the spatial distribution of the indicators. �e paired 
di�erence �-test is then performed, and the result is recorded 
as P2. In addition, the distribution characteristics of data 
including the mean, the spread, the asymmetry, and the out-
liers are also displayed.

As for passenger and taxi counts in Figure 5(a), rainfall 
leads to increase in demand and decrease in supply a¸er rain-
fall, but the change is minor and there is no signi�cant di�er-
ence between rainy and nonrainy days in general. �e average 
passenger count for one cell is 89, and the taxi count is 135, 
which is 1.52 times of passenger count. Nevertheless, the 
results of the paired di�erence �-test are signi�cant, which 
means that the spatial distribution of passengers and taxis 
changed dramatically. In Figure 5(b), if it rains, the average 
cruising time decreases from 123.81 s to 112.48 s in the morn-
ing peak, while there is no signi�cant change observed in the 
evening. On the other hand, the average delivery time increases 
dramatically by at least 48 seconds if it rains, and more 
long-duration trips are observed. As shown in Figure 5(c), the 

(7)��occupied =
∑�∈���speed(�)�����

�
�
����
,

(8)��vacant =
∑�∈���speed(�)�������

�

�
������
,

of occupied taxis re�ects how much supply is occupied by 
demand in this cell or other cells. For this reason, we consider 
the number of taxis as well as passengers. �e number of 
passengers here represents the demand that has been satis�ed, 
re�ecting the overall demand to a certain extent. In addition 
to this, it is necessary to consider the operational factors 
including travel time, speed, and distance for either vacant 
or occupied taxis, since these factors will re�ect how long a 
vacant taxi can approach passengers in a searching process 
as well as how long it takes an occupied taxi to complete its 
current trip and return to being a vacant taxi.

In light of this illustration, we formulate the factors a�ect-
ing taxi operations, including taxi number, passenger number, 
trip distance, travel time, and speed of vacant and occupied 
taxis respectively.

To state the factors concisely and clearly, we de�ne two 
sets, �� and ��,which respectively re�ect the entire occupied 
and vacant trajectories that start from/end in/travel through 
cell � during a given time interval. ��� and ��� are the trajectories 
of �� and �� in the cell k. For distance, we focus on the average 
trip length while cruising or delivering, which is trip-based. 
Travel time and speed are calculated for the average taxi in the 
cell, which is cell-based. �e speci�c mathematical expressions 
are as follows:

where dist(⋅) is the distance of trajectory �.

(3)��occupied =
∑�∈��dist(�)������
����
,

(4)��vacant =
∑�∈��dist(�)������
����
,

(5)��occupied =
∑�∈��� time(�)
�����
�
�
����
,

(6)��vacant =
∑�∈��� time(�)
�����
�
�
����
,
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Figure 4: De�ning factors that a�ect taxi operations based on search and delivery scenarios.
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9Journal of Advanced Transportation

4.0

3.5

3.0

2.5

2.0

D
ist

an
ce

 (k
m

)

1.5

1.0

0.5

0.0
Dvacant–Morning Doccupied–MorningDvacant–Evening Doccupied–Evening

p
1 

= 0.926, p
2 

= 0.897
μnonrainy = 1.41, μ

rainy 
= 1.40

p
1 

= 0.197, p
2 

= 0.002
μnonrainy = 1.43, μ

rainy 
= 1.47p

1 
= 0.771, p

2 
= 0.589

μnonrainy = 1.25, μ
rainy 

= 1.26
p

1 
= 0.000, p

2 
= 0.000

μnonrainy = 1.28, μ
rainy 

= 1.16

nonrainy 

rainy 

(c)
80

70

60

50

40

Ve
lo

ci
ty

 (k
m

/h
)

30

20

10

0
Vvacant–Morning Voccupied–MorningVvacant–Evening Voccupied–Evening

p
1 

= 0.000, p
2 

= 0.000
μ

nonrainy 
= 10.54, μ

rainy 
= 7.29

p
1 

= 0.000, p
2 

= 0.000
μ

nonrainy 
= 8.21, μ

rainy 
= 7.44

p
1 

= 0.357, p
2 

= 0.000
μ

nonrainy 
= 22.07, μ

rainy 
= 21.49

p
1 

= 0.002, p
2 

= 0.000
μ

nonrainy 
= 22.21, μ

rainy 
= 20.84

nonrainy 

rainy 

(d)

Figure 5: Data structures and test results of each factor on rainy and nonrainy days. (a) Data distribution of �passenger and �taxi. (b) Data 
distribution of �vacant and �occupied. (c) Data distribution of �vacant and �occupied. (d) Data distribution of �vacant and �occupied.
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cells in this level increases with rainfall, VRD = 1. On the other 
hand, when the quantity of all areas decrease, VRD = −1. 
Furthermore, VRD > 0 indicates that passengers or taxis shi¸ 
to the area in general, and VRD < 0 indicates that passengers 
or taxis shi¸ out of the area in general. �e greater the absolute 
value of VRD is, the greater the variation of the distribution 
is.

As noted above, the quantity of taxis for one grid is about 
� (� = 1.52 in our study) times that of the number of passen-
gers. �en the variation di�erence between the supply and 
demand (de�ned as VD) is calculated as follows:

�e variation ratio and the di�erence between supply and 
demand is summarized in Table 4. One can tell that the taxis 
drive out of regions with TLOS D and E in the morning peak. 
Moreover, the decrement during the evening peak is greater 
than that during morning peak. Since there is no signi�cant 
change in the total amount of all level regions, taxis likely 
transfer from regions of TLOS C, D, and E to regions of TLOS 
A and B. 2.7% of taxis shi¸ from regions with high demand 
to peripheral areas during the morning peak hours. Moreover, 
5.5% of taxis drive out during the evening peak hours.

However, for passengers VRDpassenger, the quantity in 
regions of TLOS C increases during both the morning and 
evening peaks. In regions with TLOS D, the ridership rises in 
the morning peak and declines in the evening peak. In the 
hardest-hit areas of regions with TLOS E, ridership always 
decreases. Passengers may travel using underground public 
transport, which is smoother by contrast.

�e variation di�erence between the supply and demand 
(VD) re�ects the balance change of supply and demand. �e 
di�erence being less than zero means that the change in pas-
senger demand is greater than the change in supply. Due to 
the huge quantitative di�erences in taxis and passengers, there 
is a natural shortage in supply. Once it rains, such inherent 
imbalance of supply and demand is aggravated, and it becomes 
more di�cult to hail taxis. �e imbalance of the morning peak 
is larger than that of the evening peak, and as the di�culty 
increases, this imbalance is further accentuated.

4.3. Quantitative Impact of Rain on Taxi Operations. �e 
previous section illustrated the relationship between each 
proposed factor and RETT as either positive or negative, 
which completes a qualitative study into the individual 
impact of each factor on the TLOS. To inspect deeper and 
provide more quantitative insights for taxi regulators, a further 
study is performed in this section to quantify the impact 
and contribution of each factor on the TLOS. Multivariate 

(10)VD = � × VRDtaxi − VRDpassenger.

e�ect of rainfall on distance is not as remarkable as on other 
variables. �e distance of cruising is shortened from 1.28 km 
to 1.16 km in the morning peak and is maintained at around 
1.25 km in the evening peak. �e travel distance of the delivery 
�uctuates slightly between 1.40 km and 1.47 km during peak 
hours. In Figure 5(d), a spatial redistribution of velocity 
appears in peak hours. Such di�erences in terms of cruising 
velocity are greater during the morning peak. �e velocity 
during morning peak hours decreases from 10.54 km/h to 
7.29 km/h. �e changes in delivery velocity are less pro-
nounced. Velocity remains constant at around 21 km/h during 
the morning peak and decreases slightly in the evening peak.

In general, the data distribution of factors during cruising 
and delivering are quite di�erent, while the di�erence between 
the morning and evening peaks is small. For �passenger, �taxi, 
and �occupied, a spatial redistribution occurs even though the 
average value remains unchanged.

4.2.2. Redistribution of the Supply and Demand between Rainfall 
and Nonrainfall Conditions. As the analysis above indicates, 
taxi supply and passenger demand should be a�ected by rainfall 
but result in no signi�cant statistical di�erence. A further 
paired di�erence test shows that the spatial distributions 
of these two factors signi�cantly change despite essentially 
unchanged total numbers. �is implies that the rainfall has 
an impact in spatially redistributing the taxi supply and 
passenger demand. To have a deeper understanding of how 
the distributions are relocated, we apply a matrix operation to 
measure the spatial change with the following method.

�e distributions across nonrainy and rainy days are 
described by matrix P and Q respectively. �e value of row i 
and column j in the matrices (���, ���) represents the quantity 
of taxis or passengers in the region of longitude i and latitude 
j. To obtain the change between two weather conditions, a 
judgment matrix F is implemented. �e values in the matrix 
F are determined by the following rules: if ��� > ���, then ��� = 1
, if ��� < ���, then ��� = −1, and otherwise ��� = 0. �e variation 
ratio of each region’s distribution (VRD) can be de�ned as:

where VRD denotes the variation ratio of distribution in TLOS 
C, D or E. m and � are the counts of longitude and latitude. 
More speci�cally, VRDpassenger denotes the variation ratio of 
passengers, and VRDtaxi denotes the variation ratio of taxis.

�e values of the elements in VRD are within the range of 
[−1,1]. When the quantity of the passengers or the taxis in all 

(9)VRD =
∑��=1∑

�
�=1��� ⋅ ��� +∑

�
�=1∑
�
�=1��� ⋅ ���

∑��=1∑
�
�=1��� +∑

�
�=1∑
�
�=1���

,

Table 4: �e variation of the spatio-temporal distribution of supply and demand.

TLOS
Morning peak Evening peak

VRDtaxi VRDpassenger VD VRDtaxi VRDpassenger VD

C 0.0097 0.5094 −0.4947 −0.0497 0.2246 −0.3001
D −0.2902 0.1759 −0.6170 −0.5962 −0.2912 −0.6150
E −0.8381 −0.6082 −0.6657 −0.9253 −0.8320 −0.5745
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supply-demand ratio on taxi operational characteristics but 
not the spatial geographic information. �erefore, a linear 
regression model is adopted herein instead of spatial model.

Models are developed for two peak periods (i.e., the morn-
ing evening peak hours) of low TLOS (i.e., C, D, E) regions. 
Also, since the model should consider the impact of the 
changes in each factor between rainy and nonrainy days on 
the RETT, it becomes straightforward to regress the di�erences 
in the RETT against the di�erences in each factor.

4.3.1. Regression Model Speci�cation. �e analysis performed 
above was all cell-based, which provides us with a speci�c 
spatial analysis of the TLOS. However, the TLOS is also 

regression analysis, a statistical model for estimating the 
relationships between variables, is perfect for this purpose, 
especially as it helps us understand the quantitative impact 
these factors have by exploring how TLOS changes when any 
one of them is varied, while the others remain �xed.

Speci�c regression models such as linear regression [30, 
31], and logistic regression [26, 37], are widely applied in stud-
ies of impact of weather on transportation system operations. 
Other complicated regression models, such as ridge and lasso 
regression are rarely, but still occasionally, used. �e depend-
ent variable RETT in this study is a continuous variable, so a 
logistic model that considers discrete dependent variables is 
not suitable. �is section aims to investigate the impact of 

Table 5: Model results for peak hours.

Variables
Morning-peak Evening-peak

Coe�cient Sig. Tolerance VIF Coe�cient Sig. Tolerance VIF
(Constant) 1.672 .000 / / 1.049 .000 / /
Δ�passenger −0.060 .000 .821 1.217 −0.325 .000 .725 4.101
Δ�taxi 0.022 .000 .776 1.289 0.240 .000 .822 4.473
Δ�vacant / / / / 40.361 .000 .970 1.331
Δ�occupied −1.708 .019 .833 1.200 −4.585 .003 .811 2.448
Δ�vacant 14.790 .000 .410 2.441 2.115 .000 .613 3.192
Δ�occupied −10.188 .000 .387 2.582 / / / /
Δ�vacant 1.159 .000 .803 1.246 1.319 .000 .745 2.106
Δ�occupied −0.077 .017 .856 1.169 −0.398 .000 .647 2.236
Adjusted R squared 0.674 0.823
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Figure 6: Variation of RETT caused by a single factor.

Table 6: �e adjustment of each factor for a 5% increment in RETT.

Δ�passenger Δ�taxi Δ�vacant Δ�occupied Δ�vacant Δ�occupied Δ�vacant Δ�occupied
Morning-peak 83 227 / 2.927 0.338 0.491 4.314 64.935
Evening-peak 15 21 0.124 1.091 3.364 / 3.791 12.563
Maximum-adjustable 78 103 0.349 0.200 0.020 0.062 4.210 6.725
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of commuting trips, which are hard to adjust. Compared with 
�passenger, �taxi, �vacant, and �vacant, the e�ects of other variables 
are negligible.

From the perspective of market regulators, measures to 
ease taxi shortages during rainfall, essentially maintaining a 
higher TLOS, is of interest. In order to achieve a 5% increment 
in RETT, a single factor is tested by keeping the other variables 
constant. Concretely, the quantities to be manipulated and the 
adjustable maximums are listed in Table 6.

Unfortunately, the adjustment required for Δ�occupied, 
Δ�vacant, Δ�occupied, and Δ�occupied exceeds the maximum 
adjustable threshold. It is di�cult to achieve a 5% RETT incre-
ment by manipulating these variables. �e other factors, 
namely Δ�passenger, Δ�taxi, Δ�vacant, Δ�vacant, should be adjusted 
in order to achieve the desirable outcomes. �rough model 
establishment and discussion, the following conclusions can 
be drawn:

(1)  �e number of passengers and taxis are factors 
of great importance that a�ect taxi operations. 
Moderate regulation of the quantity of taxis alone can 
relieve the tension felt during evening peak hours. 
On this basis, the situation in the morning peak is 
exacerbated by rainfall, and other public transpor-
tation options should be promoted to decentralize 
taxi ridership.

(2)  Distance, elapsed time and velocity of delivering 
in�uence taxi-hailing. Nonetheless, they have short 
controllable range, which can be easily exceeded and 
thus they are incapable of serving as e�ective regula-
tion measures.

6. Conclusion

In this paper, we aim to seek quantitative understanding of 
the impact of rain on taxi hailing and operations, thereby pro-
viding regulators with useful advice that can be used to 
improve the performance of taxi operations in the rain. First, 
we use GPS waypoints in Shanghai to con�rm that it is signif-
icantly more di�cult to hail taxis when it rains for most 
regions. A¸erwards, we cluster the cells in the study area into 
�ve levels according to their RETT and reveal the spatial and 
temporal di�erences in the di�culty of hailing taxis between 
rainfall and nonrainfall conditions. Next, we investigate eight 
factors that a�ect taxi operations to �gure out how the impact 
of rain takes e�ect. Lastly, we develop multivariate regression 
model for peak hours between rainfall and nonrainfall condi-
tions and obtain useful �ndings about how to improve the 
performance of taxi operations in the rain. �e conclusions 
are three-folded:

(1)  It’s revealed in our study that a large proportion of area 
has a declining TLOS (accounting for 70.5% of the 
total area) when it rains. �e TLOS declines remarka-
bly especially in regions with low TLOS to begin with 
in nonrainy condition. Also, such a decline in TLOS is 
more considerable during morning peak than during 
evening peak.

impacted by operation factors not only of one single cell but 
of other neighboring cells. Since we cannot �gure out the 
accurate impact of each cell, we take an average to eliminate 
spatial dependence. For each variable, we combine the spatial 
average with the temporal data and divide it into two sets, one 
for rainy days (set “R”) and the other for nonrainy days (set 
“N”). We then combine and subtract the data from the two sets 
to construct a new set “V,” and the di�erences are utilized for 
regression modeling. �e process can be expressed as follows:

As regions of TLOS C, D, and E during peak hours are inten-
sively a�ected by rainfall, we consider them as a whole when 
modeling, which can also expand the data volume. �e model 
speci�cation is as follows:

where �� denotes the change in response to the unit change in 
the independent variable, and Δ is the di�erence value of fac-
tors for rainfall and nonrainfall conditions.

�e results of the model are presented in Table 5. �e 
adjusted R square value for the morning peak is 0.674, and it 
is 0.823 for the evening peak, indicating that the results �t the 
observation well.

5. Results and Discussion

As re�ected in the model,Δ�passenger, Δ�occupied, Δ�occupied, and 
Δ�occupied are negatively correlated with the dependent variable. 
Increasing ridership and its corresponding factors of carrying 
passengers reduces the RETT, which means that it becomes 
more di�cult to hail a taxi. Meanwhile, Δ�taxi, Δ�vacant, Δ�vacant
, Δ�vacant have the same trend as ΔRETT. Increasing taxi count 
and its corresponding factors of cruising improves the RETT 
to ease the tension of hailing. For the same independent var-
iables, the e�ect of changing them has on the evening peak is 
greater than that from the morning peak.

While cruising, travel time plays an important role in 
impacting RETT during the evening peak hours, while dis-
tance and velocity are in�uential on the RETT for both morn-
ing and evening peak hours. Similarly, distance, elapsed time, 
and velocity of delivering also in�uence taxi-hailing.

To explore the magnitude of the impact caused by indi-
vidual factors, statistics are utilized to analyze the data. 
According to the judgment method of outliers in a box plot, 
we select the data of each factor in the interval from 
“Q1−1.5IQR” to “Q3+1.5IQR” as its adjustable range (Q1 and 
Q3 refer to the upper lower quartile of the data, and IQR equal 
to Q3 minus Q1). With the corresponding coe�cients taken 
into consideration, we obtain the adjustable range of depend-
ent variables caused by these factors. �e responsiveness is 
presented in Figure 6. It can be seen that the in�uence of these 
factors on evening peaks is much greater than for the morning 
peaks, since travel in the morning on weekdays mostly consists 

(11)� = {v|v = � − �, � ∈ �, � ∈ �}.

(12)

ΔRETT =�0 + �1Δ�passenger + �2Δ�taxi + �3Δ�vacant
+ �4Δ�occupied + �5Δ�vacant + �6Δ�occupied
+ �7Δ�vacant + �8Δ�occupied,
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(2) � �ere is no significant change of total taxi supply and 
passenger demand between rainfall and nonrainfall 
conditions, which is inconsistent with previous study. 
However, a dramatic change in the spatial distribution 
of the supply and demand can be found. Results show 
that taxis normally transfer from central regions to 
the periphery of our study area where hailing a taxi is 
relatively easier in the rain. It is revealed by field data 
that taxi drivers are relatively prone to return back 
to city center in rain. �at said, previous works on 
the taxi demand/supply patterns once it rains mainly 
focused on peak areas while omitting fringe areas, and 
conclude that the total demand may increase and the 
total supply may drop. Besides, since heavy rain rarely 
occurs in Shanghai, the commonly-seen light rains in 
Shanghai may not be severe enough to draw statisti-
cally significant change in total demand/supply.

(3) � Passenger demand, taxi supply, search time, and veloc-
ity are the significant factors that dominate contri-
butions to declining TLOS on rainy days. Since the 
urban traffic administration has the right to manage 
and dispatch taxis, rather than the coarse management 
of dispatching rush-hour taxis which is a costly and 
low-yielding choice, we suggest regulators to invest 
in taxi subsidies or pricing adjustments to redistrib-
ute taxis by recalling taxis from peripheral regions to 
central area. Furthermore, operators should consider 
the improvement of public transit services on rainy 
days to shi� excess passengers away from taxis and 
utilize surge pricing to give drivers incentives to head 
to certain regions.

In the future work, we expect to retrieve taxi hailing app 
data so that we can obtain passenger waiting time for taxis and 
have a more accurate estimation of the TLOS. Meanwhile, 
since passenger demand is also known from such a data 
source, we aim to design incentive-based management strategy 
to give drivers incentives and mitigate the difficulty in hailing 
taxis. Another worthwhile research direction is to explain the 
spatial and temporal correlation and random effects with con-
sideration of spatial and temporal independent variables in 
the regression model.
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