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Here, we develop a new cellular automata-based tra�c model. In this model, individual vehicles cannot estimate global tra�c 
�ows but can only detect the vehicle ahead. Each vehicle occasionally adjusts its velocity based on the distance to the vehicle in 
front. Our model generates reversible phase transitions in the vehicle �ux over a wide range of vehicle densities, and the tra�c 
system undergoes scale-free evolution with respect to the �ux. We thus believe that our model reveals the relationship between the 
macro-level �ows and micro-level mechanisms of multi-agent systems for handling tra�c congestion, and illustrates how drivers’ 
decisions impact free and congested �ows.

1. Introduction

Tra�c jam theory is a well-studied type of collective behavior 
problem. In tra�c systems, all the vehicles or cars interact with 
each other, making decisions using simple rules based on local 
information. Despite the simplicity of both the information 
and rules used for decision-making, complex tra�c �ows can 
occur that mix congested and free �ow situations.

Many models have been used in tra�c jam theory studies 
[1–5]. In particular, microscopic cellular automata (CA)  models 
are widely used in computer simulations due to their simplicity 
and �exibility. CA models are able to capture  micro-level 
dynamics and illustrate their relationships to  macro-level tra�c 
�ows. Nagel and his colleagues pioneered the use of CAs for 
tra�c �ow modeling [4]. ­eir models, called NS models, have 
since been extended by several others [6].

It seems, however, that the system’s initial conditions deter-
mine the model’s dynamics; for example, tra�c jams appear 
to occur when the vehicle density exceeds a certain value, indi-
cating that they are generated by bottlenecks. By contrast, real 
tra�c systems can experience congested �ow situations with-
out bottlenecks [7, 8]. Furthermore, based on empirical stud-
ies, Kerner classi¢ed congested �ows into two di£erent phases: 
synchronized �ows and wide moving jams [9]. In this 

three-phase theory, phase transitions occur from free �ows to 
synchronized �ows and from synchronized �ows to jams. 
Classical two-phase CA models may not be able to explain 
these empirical results.

From the above, the most notable phenomena seen in traf-
¢c systems are phase transitions in the tra�c state. 
Consequently, it is essential to model the time evolution of 
system transitions from one phase to another if we are to 
understand the complex behaviors of real tra�c [10, 11]. In 
order to understand the mechanism by which tra�c jams 
occur, we need to establish models that can reproduce phase 
transitions at ¢xed vehicle densities [12–15]. Such models will 
hopefully capture realistic and complex tra�c patterns similar 
to those observed in real tra�c systems. ­ey deal with the 
e£ects of inertia in driving operations and the way drivers 
adaptively adjust their vehicles’ speed and spacing.

Previous models simply aimed to capture vehicle physics 
or drivers’ passive responses to brake lights, such as the slow-
start or braking propagation e£ects [16–20]. By contrast, these 
more recent models are based on the idea that vehicles auton-
omously coordinate their velocities by accelerating or decel-
erating, enabling them to simulate the spatiotemporal patterns 
and phase transitions seen in tra�c �ows [14, 15, 21–23]. 
Although there have been several competing approaches, 
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coordinating vehicle velocities in response to the tra�c  spacing 
appears to be an important factor in representing phase tran-
sitions and reversible/complex tra�c patterns [23–25]. 
However, few studies have investigated whether individual 
drivers use prior information to determine their chosen  vehicle 
velocity and tendency to accelerate or decelerate.

To address this question, we propose a new CA model in 
which the vehicles coordinate their responses to the current 
situation based on their prior experiences. In our model, each 
driver judges whether the nearby tra�c congestion is a global 
or local congested �ow and then responds based on 
information about prior events. ­us, each vehicle makes its 
own decision about whether to maintain or reduce the  distance 
to the car in front. With this model, we successfully induce 
the system to exhibit reversible tra�c �ows and produce com-
plex patterns by scale-free evolution.

2. Materials and Methods

Our model is de¢ned as a one-dimensional ¢eld of � sites with 
periodic boundary conditions, and each site is either empty 
or occupied by one vehicle. Each vehicle has a velocity between 
zero and the maximum velocity v

max
. Unless stated otherwise, 

each trial involves 10,000 time steps, and the vehicles initially 
have velocities of 1.0 and are distributed randomly.

Our model follows the NS model, in that it is a CA tra�c 
model that deals with natural vehicle motion with a set 
 maximum velocity. However, we also de¢ne three di£erent 
vehicle states: a “normal” state, in which the vehicle increases 
speed in the same manner as in the NS model; a “calm” state, 
in which the vehicle never increases its speed; and a “harsh” 
state, in which the vehicle increases speed sharply. In this way, 
each state’s acceleration behavior is di£erent. Note that all 
three states also have a “deceleration” function that applies 
when the vehicle is too close to the car in front. ­is model, 
which we call the multi-state NS model, does not consider 
collisions or vehicles passing each other. Each trial begins with 
all vehicles in a normal state.

2.1. Model Description. In the multi-state NS model, each 
iteration proceeds as follows.

Step 1.  Change state.
Step 2. Accelerate or decelerate.
Step 3.  Randomize velocity.
Step 4.  Limit current velocity.
Step 5.   Update position, increment time from � to � + 1, 

and return to Step 1.

Note that a given vehicle cannot both accelerate and decelerate 
during the same iteration, and that all vehicles update their 
positions synchronously.

2.2. Model Functions

Accelerate. Vehicle � updates its velocity v� as follows.

if v� < v
max

and��
nearest
< v� + 1,

��
accel
→ ��

accel
+ 1, (regardless of the current state).

if ������ = ������,
v
� → v

� + 1,
else if ������ = ℎ���ℎ,
if ��

nearest
> v� + 2,

v
� → v

� + 2,
else v� → v

�,
else if ������ = ����,
v
� → v

�.

Here, ��nearest is the distance to the nearest vehicle in front of 
vehicle � and ��accel is the number of times that vehicle � has 
accelerated.

We call the ¢rst two acceleration operations “normal accel-
eration” and “harsh acceleration,” respectively. ­e former 
corresponds to the usual NS model, while “harsh acceleration” 
only occurs if the vehicle is in a harsh state and the next vehicle 
is su�ciently far ahead. Finally, the velocity � never changes 
if the vehicle is in a calm state.

Decelerate. ­is function occurs if the following conditions 
are satis¢ed, regardless of the vehicle state.

if ��
nearest
≦ v� and ��

nearest
− 1 ≧ 0,

v
� → ��

nearest
− 1,

��slow → ��slow + 1.

Here, ��slow is the number of times that vehicle � has 
decelerated.

Randomize Velocity. ­is function occurs if the following 
 conditions are satis¢ed, regardless of the vehicle state.

if vk < 0,
v
� → v

� − 1with probability�.

Limit Current Velocity. If the updated velocity v� is above v
max

, 
then it is reduced to v

max
.

if v� > v
max

,
v
� → v

max
.

Change State. If the number of decelerations ��
slow

 has reached 
the threshold (threshold_slow), then the vehicle enters a calm 
state, regardless of its previous state. By contrast, if the number 
of accelerations ��

accel
 has reached the threshold (threshold_

acceleration), then the vehicle enters a harsh state, regardless 
of its previous state. ­ese changes are implemented as 
follows.

if ��slow > �ℎ���ℎ���_����,
������ → ����,
��slow → 0,��accel → 0.

if �k
accel > �ℎ���ℎ���_������������,
������ → ℎ���ℎ,
��slow → 0, ��accel → 0.
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Note here that both ��slow and ��accel are reset to zero when 
either of them exceeds the corresponding threshold, meaning 
that some vehicles may stay in harsh or calm states for long 
periods. Individual vehicles make subjective estimates of the 
global tra�c �ow based on how o®en they have accelerated 
or decelerated. When a vehicle enters a calm state, this implies 
that it believes the global �ow to be congested. On the other 
hand, when it enters a harsh state, this implies that it believes 
the global �ow not to be congested. In this way, individual 
vehicles coordinate their velocities based on the distance to 
the vehicle in front.
Update Position. Vehicle � updates its position �� based on its 
speed v� at the current time step.

2.3. Control Models. In order to investigate whether the multi-
state NS model can generate complex patterns similar to those 
of real tra�c, we developed two control models. One is the 
“harsh model,” in which vehicles never enter calm states, 
i.e., threshold_slow is set to positive in¢nity. ­e other is the 
“calm model,” in which the vehicles never enter harsh states, 
i.e., threshold_acceleration is set to positive in¢nity. In both 
models, each vehicle’s state becomes ¢xed a®er it ¢rst enters 
a harsh/calm state.

­en, we compared the results from our multi-stage NS 
model with those from the calm and harsh models in order to 
evaluate whether it was capable of generating complex patterns 
similar to those seen in real tra�c situations.

2.4. Parameters. Table 1 shows the parameter values used in 
the analysis. Unless otherwise noted, the trials involved 10,000 
time steps. However, we ran certain analyses over 100,000 
steps in order to evaluate the system’s long-term behavior. For 
all three models, all vehicles were initially in normal states.

3. Results and Discussion

At the beginning of each trial, we randomly placed (number 
of cells × vehicle density) vehicles on the ¢eld. Figure 1 
illustrates the relationship between �ux and vehicle density, 
where �ux is de¢ned as the average number of vehicles passing 
through each cell per unit time. We calculated the �ux a®er 

(1)�� → �� + v�.

each trial. When the vehicle velocities are high, the �ux is also 
high because many vehicles pass through any given cell.

Figure 1(a) plots average data from 10 trials for vehicle den-
sities of up to 0.50 in the multi-state NS model, with a bin width 
of 0.01. Here, the �ux appears to �uctuate for each trial even at 
high vehicle densities. In fact, according to Figure 1(b), which 
plots the �uxes for individual trials at di£erent vehicle densities, 
the �ux varies even with the same vehicle densities. By contrast, 
Figures 1(c) and 1(d), which plot the �uxes for individual trials 
at di£erent vehicle densities for the calm and harsh models, 
respectively, appear to show fewer dots than we see in Figure 1(b). 
­is is because the �ux does not change with every trial in the 
calm and harsh models, unlike in the multi-state NS model. In 
addition, we see tra�c jams in the calm model over a wide range 
of vehicle densities, perhaps because it does not allow for accel-
eration. Meanwhile, the tra�c pattern in the harsh model exhib-
its a phase transition at a vehicle density of approximately 0.20. 
Please also see Figure S1 in the Supplementary Material, which 
illustrates the vehicle positions over time for di£erent vehicle 
densities under the harsh model.

Despite the fact that the system seems to gradually become 
more congested under the harsh model as the vehicle density 
increases beyond 0.20, tra�c jams never occur. ­erefore, the 
model is not realistic because it does not allow vehicles to enter 
calm states. Vehicles do not maintain their velocities, instead 
repeatedly accelerating and decelerating. In this sense, the 
multi-state NS model is better able to exhibit the complex 
patterns seen in real tra�c.

Next, we analyzed the behavior of the multi-state NS sys-
tem in more detail. Figure 2 shows an example of how the 
vehicle positions changed over time for a vehicle density of 
0.40, with the vertical and horizontal axes representing the time 
step and vehicle position, respectively. ­is illustrates tra�c 
congestion, where overcrowded regions are sometimes clearly 
separate from sparsely populated regions and sometimes not.

Figure 3 shows an example where the tra�c appears to 
repeatedly fall into and out of a particular phase. To examine 
the di£erent tra�c phases in that system, we took some snap-
shots of the vehicle velocities. Figure S2 in the Supplementary 
Material shows the relationship between the vehicle velocity 
and position at a particular time step, for a vehicle density of 
0.40. Here, we can see that the system exhibits multiple tra�c 
states, with the phase transitioning back and forth from syn-
chronized �ow to tra�c jam, i.e., that the multi-state NS sys-
tem can exhibit reversible phase transitions.

­en, we investigated how the �ux changed over time, 
focusing on severe tra�c jams. Here we calculated the 

Table 1: Parameters used in the analyses.

Parameter Value Description
� 500 Field size
Time_length 10,000 Number of time steps per trial
� 0.01 Randomization probability
v
max

5 Maximum vehicle velocity
�reshold_slow 5 Number of previous decelerations required for a vehicle to judge the tra�c �ow to be congested
�reshold_acceleration 15 Number of previous accelerations required for a vehicle to judge the tra�c to be free-�owing
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Here, �� denotes the �ux at position �. Figure 5 shows that the 
slope is approximately 0.53 ≈ 0.50, indicating endogenous 
behavior determined by the system’s internal collective �uc-
tuations (�2 = 0.98) [27–29]. Again, these data were obtained 
over 100,000 time steps.

A®er that, we evaluated the e£ects of di£erent parameter 
values. First, we changed the vehicle density from 0.40 to 0.20 
and examined the e£ects on the �ux’s time evolution over 
100,000 steps, to con¢rm that it still varied from trial to trial. 
Figure S3 in the Supplementary Material shows the relationship 
between the vehicle velocity and position for a particular time 
step with a vehicle density of 0.20. As for a density of 0.40, we 
see phase transitions from synchronized �ow to jam and vice 
versa. Comparing Figures S4(a) and S4(b) with Figure 3, the 
system’s �ux appears to be high when the vehicle density is low 
and jams still sometimes occur for periods of time, as was the 
case with a density of 0.40 (Figures S4(a) and S4(b)). Based on 
these results, we re-de¢ned system phases with �uxes of less than 
0.01 as extreme tra�c jams. As Figure S4(c) shows, the 
cumulative distribution of the intervals between extreme jams 
again appears to follow a power-law distribution (1370 data 
points, � = 1.66, AIC weight for a power-law versus an 
exponential-law distribution of 1.00). In other words, we see no 
periodic oscillations in the tra�c system over a range of densities.

Next, we adjusted the threshold_slow and threshold_
acceleration parameters. Figures S5(a) and S5(b) in the 
Supplementary Material show the relationship between the 

intervals between successive extreme tra�c jams, where we 
de¢ned an extreme tra�c jam as a phase with a �ux of less 
than 0.005. Figure 4 shows the cumulative distribution for 
decreasing intervals between successive extreme tra�c jams. 
Here, we plot 37 data points taken from one trial over 100,000 
time steps, ¢nding a slope � of 1.21 and an Akaike information 
criterion (AIC) weight for a power-law versus an exponen-
tial-law distribution of 1.00. ­is ¢gure indicates that the traf-
¢c system seems to frequently experience extreme tra�c jams 
but is also able to escape that phase for long periods on rare 
occasions. In particular, the intervals’ cumulative distribution 
appears to follow a power-law distribution [26] where the 
lifetimes of extreme tra�c jams are less than ten time steps, 
i.e., the events are transient and unstable. We therefore focused 
on these unique phenomena.

From Figures 3 and 4, we can see that although the tra�c 
system frequently su£ers from extreme jams, it occasionally 
takes a long time, e.g., more than 10,000 steps, before it expe-
riences such a jam. ­e fact that the intervals’ cumulative dis-
tribution appears to follow a power-law distribution reveals 
that the tra�c system does not oscillate periodically with 
respect to the vehicle �ux.

In addition, to evaluate whether the system exhibits inter-
nal �uctuations, we calculated the relationship between the 
�ux and the �uctuation function � as follows:

(2)�2� = ⟨�2� ⟩ − ⟨��⟩2.
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Figure 1: Relationship between �ux and vehicle density. (a) Mean �ux for the multi-state NS model with � = 0.01, v
max
= 5, threshold_slow = 5, 

and threshold_acceleration = 15. ­e vertical bars indicate the standard deviation. (b) Fluxes from all trials for the multi-state NS model. (c) 
Fluxes from all trials for the calm model with � = 0.01, v

max
= 5, and threshold_slow = 5. (d) Fluxes from all trials for the harsh model with 

� = 0.01, v
max
= 5, and threshold_acceleration = 15.
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threshold values. However, threshold_acceleration must be 
higher than threshold_slow in order to generate a heavy tra�c 
jam for an extended period of time (Figures S5(c) and S5(d)).

Finally, we changed the parameter � from 0.01 to 0.1 and 
evaluated the e£ect on the �ux’s time evolution over 100,000 

�ux and vehicle density for (threshold_slow, threshold_
acceleration) values of (10, 30) and (10, 10), respectively. Here, 
we have plotted data from 10 trials for vehicle densities of up 
to 0.50, with a bin width of 0.01. ­e �ux appears to �uctuate 
over a wide range of vehicle densities, regardless of the 

10000

5000

0

Figure 2:  Illustration of vehicle positions over 10,000 time steps for the multi-state NS model. Here, the vertical and horizontal axes 
indicate the time step and vehicle position, respectively, and each vehicle is shown as a black dot. ­e vehicle density is 0.40, � = 0.01,  
v
max
= 5, threshold_slow = 5, and threshold_acceleration = 15.
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based on experience and the distance to the vehicle in front. 
Each vehicle maintains its speed when it believes local jams 
will persist, but catches up to the vehicle ahead when it believes 
the local jam is temporary. We found that tra�c �ows in this 
system could be reversible over wide range of vehicle densities. 
­e system sometimes experiences severe jams while main-
taining some level of congested �ow [14, 15]. In real tra�c 
�ows, the �ux oscillates nonperiodically [23, 24], which may 
be related to the emergence of complex macro-level patterns. 
In our model, nonperiodic oscillations persist even a®er 
changing the parameters, suggesting that it is �exible with 
respect with to some parameter changes.

On the other hand, we do not see this behavior when the 
vehicles’ states are ¢xed. For example, the system appears to 
experience severe jams for extended periods when the vehicles 

time steps. Here, we can clearly see that the �ux is low when 
� is large (Figures S6(a) and S6(b)). We also calculated the 
time intervals between extreme tra�c jams, de¢ning system 
phases with �uxes of less than 0.005 as extreme tra�c jams. 
Again, the intervals’ cumulative distribution appears to follow 
a power-law distribution (20 data points, � = 1.23, AIC weight 
for a power-law versus an exponential-law distribution of 
1.00). ­us, changing the randomization parameter has no 
impact on the tra�c system’s nonperiodic oscillations.

4. Conclusions

We have developed a CA model, called the multi-state NS 
model, in which individual vehicles adjust their velocities 
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Supplementary Material 

Additional analysis and data. Figure S1. Illustrations of vehicle 
positions for the harsh model. Here, the vertical and horizontal 
axes indicate the time step and vehicle position, respectively, 
and each vehicle is shown as a black dot. Here, the vehicle 
densities are (a) 0.10 and (b) 0.50, and � = 0.01, v

max
= 5, and 

threshold_acceleration = 15. Figure S2. Relationship between 
the vehicle velocity and position at a particular time step. Here, 
the data was obtained from one trial using the multi-state NS 
model with a vehicle density of 0.40. Figure S3. Relationship 
between the vehicle velocity and position at a particular time 
step. Here, the data was obtained from one trial using the 
multi-state NS model with a vehicle density of 0.20. Figure S4. 
Flux properties for a vehicle density of 0.20. (a) Changes in 
the �ux over 100,000 time steps. (b) Subset of the data in (a). 
(c) Cumulative distribution of the intervals between extreme 
jams. Here, � = 0.01, v

max
= 5, threshold_slow = 5, and 

threshold_acceleration = 15. Figure S5. Flux-vehicle density 
relationships and �ux changes over time for di£erent 
thresholds. Here, � = 0.01 and v

max
= 5. (a) Flux-density 

relationship for threshold_slow = 10 and threshold_acceleration 
= 30. (b) Flux-density relationship for threshold_slow = 10 and 
threshold_acceleration = 10. (c) Flux changes over time for 
threshold_slow = 10 and threshold_acceleration = 30. (d) Flux 
changes over time for threshold_slow = 10 and threshold_
acceleration = 10. ­e average data from 10 trials over 10,000 
time steps are plotted in (a) and (b), while partial data from 
one trial over 100,000 time steps are plotted in (c) and (d). ­e 
vertical bars indicate the standard deviation. Figure S6. Flux 
properties for � = 0.01, v

max
= 5, threshold_slow = 5, and 

threshold_acceleration = 15. (a) Changes in the �ux over 
100,000 time steps. (b) Subset of the data in (a). (c) Cumulative 
distribution of the intervals between extreme jams. 
(Supplementary Materials) 
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