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Abstract: The average speed (AS) of a road segment is an important factor for predicting traffic
congestion, because the accuracy of AS can directly affect the implementation of traffic management.
The traffic environment, spatiotemporal information, and the dynamic interaction between these
two factors impact the predictive accuracy of AS in the existing literature, and floating car data
comprehensively reflect the operation of urban road vehicles. In this paper, we proposed a novel
road segment AS predictive model, which is based on floating car data. First, the impact of historical
AS, weather, and date attributes on AS prediction has been analyzed. Then, through spatiotemporal
correlations calculation based on the data from Global Positioning System (GPS), the predictive
method utilizes the recursive least squares method to fuse the historical AS with other factors (such as
weather, date attributes, etc.) and adopts an extended Kalman filter algorithm to accurately predict
the AS of the target segment. Finally, we applied our approach on the traffic congestion prediction on
four road segments in Chengdu, China. The results showed that the proposed predictive model is
highly feasible and accurate.
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1. Introduction

The prediction of the average speed (AS) of road segments plays an important role in an intelligent
transportation system (ITS). Its accuracy and timeliness have a great impact on the implementation of
dynamic traffic management, such as traffic congestion estimation [1] and signal control [2]. The data
collection of floating cars has the advantages of high flexibility, strong real-time performance, wide
coverage, and high data precision, when compared to that of fixed detectors [3].

Existing researches usually relied on traffic parameters of fixed detectors to predict the AS in a road
segment. The low accuracy is the main barrier for its wide application. Cetin and Comert [4] utilized
the coil dataset published by California Path and then proposed the expectation maximization and
Cumulative Sum (CUSUM) algorithms to predict the average traffic speed. Chandra and Al-Deek [5]
mined the interaction between the upstream and downstream segments using dual-loop detector
data and predicted the AS of road segments designed by a vector self-decreasing time series model.
Jing et al. [6] assessed the multistep speed predictive performance of eight different models using
2-min road segment speed data collected from remote traffic microwave sensors. All above approaches
failed to consider the traffic state of adjacent intersections, so it is difficult to accurately demonstrate
the traffic state of urban roads via data acquisition from fixed detectors.
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Recently, the booming of mobile Internet has inspired new ideas for traffic congestive detection.
The mobile detective data from the vehicle have a wide coverage and continuous space, and the
huge daily traffic data make the prediction of the traffic state more accurate and reliable. Emerging
technologies based on Global Positioning System (GPS) enable us to track vehicle trajectories and
collect real-time traffic data across entire road networks [7], and have been introduced to predict the
AS of road segments. Queen and Albers [8] proposed a dynamic Bayesian model to identify lagged
causal relationships between time series, and predict traffic speed at multiple road link locations.
Pei et al. [9] collected GPS probed data of road segments, and developed a predictive model of AS
using a full Bayesian method. Combining the acceleration of the target segment and the speed of the
adjacent segment, Ye et al. [10] used an improved Neural Network (NN) to improve the prediction
performance of AS. Based on a study of prediction bias correlation among adjacent road segments and
weather factors, Yang et al. [11] employed an artificial NN and adjustment approach to predict the AS
of a road segment. Yao et al. [12] developed a Support Vector Machine (SVM) model consisting of
spatiotemporal parameters. It is commonly used for short-term prediction under the experimental
condition that the runtime speed should be below 35 KM/h. Satrinia and Saptawati [13] combined
map-matching with topological information to predict traffic speed via Support Vector Regression
(SVR). Zhao et al. [14] adopted a deep learning model to predict the traffic speed during non-recurrent
congestion periods. These approaches perform well only if the GPS data sampling is sufficient. On the
other hand, the predictive accuracy of these approaches based on NNs, SVM, and SVR usually depend
on the training quality of the traffic dataset.

Apart from the aforementioned road traffic predictions, Kalman filter (KF) does not depend on
the training quality of the traffic dataset, and is one of the most widely used traffic prediction methods,
which was first introduced in traffic forecasting by Okutani and Stephanedes [15]. KF addressed the
problem of filtering the recursion of discrete linear data, which is applied to the fields of traffic variable
prediction and travel time estimation [16,17]. However, due to its linear model, it is not appropriate
for nonlinear and random traffic variables. To overcome this issue, an extended Kalman filter (EKF)
that is suitable for nonlinear traffic prediction is implemented with the KF algorithm, which linearizes
the nonlinear state space model. Liu et al. [18] proposed a state-space model and a progressive EKF
method. It fuses heterogeneous data and tracks the variation in traffic dynamics. Yuan et al. [19,20]
later used the EKF to predict the traffic states, in which the discretized Lagrangian model was used
as the process equation. Based on the EKF, Dong et al. [21] developed a spatiotemporal model to
predict traffic flow. Huang et al. [22] designed an advanced EKF algorithm to improve the accuracy of
vehicle speed prediction by combining the adaptive forgetting factor and the EKF algorithm. Although
EKF has been widely adopted to speed prediction, it failed to enable high accuracy and parameter
estimation, as well as random factors.

Recursive least squares (RLS) is used to correct the previous results by using new observational
data. RLS usually performs real-time traffic state estimation toward the system parameters [23].
Comert et al. [24] adopted a RLS filtering and proposed a model for predicting traffic speed with the
considerations to impact factors such as weather, accidents, and driving characteristics. A weighted
RLS estimator was used to optimize these parameters of the linear functions. Tang et al. [25] established
the Takagi–Sugeno-type fuzzy rules to forecast travel speed. Aiming to optimize wireless network
performance, Kulkarni et al. [26] proposed a simple traffic mechanism to predict traffic load by using
RLS. However, RLS performs poor recognition accuracy if noise exists.

Hybrid models incorporate the advantages of single approaches to improve traffic prediction
accuracy [27,28]. However, the road segment data used [27] is not sufficient, and random events should
be taken into account for further accuracy improvement.

Recently, existing researches based on motion detectors have had these problems. On one hand,
the accuracy of AS prediction would be affected when the road segment data is not sufficient or a
random event occurs. On the other hand, the predictive accuracy of Machine Learning methods such
as NNs, SVM, and SVR usually depend on the training quality of the dataset.
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In this study, we proposed a novel road segment AS prediction model based on floating car
GPS data (FCG-ASpredictor), which adopted a spatiotemporal correlation calculation method and a
recursive least squares–extended Kalman filter (RLS-EKF) to solve current issues. Finally, we identified
our approach on the AS prediction on four road segments in Chengdu and found that FCG-ASpredictor
is feasible and highly accurate.

The rest of the paper is organized into five sections. Section 2 analyzes the data association.
Section 3 describes the materials and methods. Section 4 illustrates the experimental results. Section 5
discusses the evaluation and feasibility. Finally, conclusions are drawn in Section 6.

2. Data Association Analyses

Based on the GPS data of floating cars in Chengdu in November 2016, we adopted a K-means
Clustering algorithm to calculate the frequency distribution. Based on the frequency-intensive areas
of GPS data and historical data, we also used the Pearson correlation coefficient [29] to analyze the
correlation of the AS. In addition, we analyzed the impact of other sudden factors (such as weather,
date attributes, etc.) on the AS of road segments.

2.1. Historical Data Correlation Analyses

A traffic dataset that contains time-series data is chronologically consecutive. As a typical
time-series set, the AS of a road segment is analyzed on an hourly basis, with which we can
comprehensively study its internal relationship. The current time interval is closely related to the AS
of the adjacent road segments. As shown in Figure 1, the AS of the north third section of the First
Ring Road for the time span (1 November to 7 November 2016) is selected. In addition to an obvious
sudden change in the AS during the traffic rush hours, the data correlation between these two adjacent
timeslots is large, and the trend of change is coherent.

A correlation coefficient analysis is a statistical method that reflects the close relationship between
variables [30] and can be used to reveal the degree of influence on traffic conditions during adjacent
hours. The Pearson correlation coefficient is a measure of the strength of a linear relationship between
two variables. In this study, the Pearson correlation coefficient was used to analyze the correlation
between the AS of the road segment during these adjacent timeslots.
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The AS of 500 road segments in the main area is divided to 24 timeslots during November.
The average Pearson correlation coefficient is formulated as follows:

Pe(t, t + 1) =
Cov(Xt, Xt+1)√

Var(Xt)Var(Xt+1)
(1)
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where Pe(t, t + 1) is the Pearson correlation coefficient for adjacent timeslots, X is the AS dataset of all
of the same timeslots over 30 days, Cov(Xt, Xt+1) is the AS covariance of road segments in adjacent
timeslots within 30 days, and Var(·) is the variance.

As shown in Figure 2, the Pearson correlation coefficient between adjacent hours in the range of
24 timeslots is positive—that is, the current AS of the road segment has a correlation with the forward
timeslot under normal conditions. According to the aforementioned analysis, the AS of the current
timeslot is correlated with the forward timeslot, but the correlation is not large when traffic rush hours
are encountered. Therefore, the AS prediction only considers the data value of the forward timeslot,
leading to a low accuracy. The historical data of different timeslots are an important component of the
AS prediction of the road segment. By comprehensively analyzing the influencing weights of different
timeslots in the historical AS data, the accuracy of the AS prediction can be improved.
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The historical influencing factor includes forward timeslot data and historical simultaneous
timeslot data—that is, the AS of the previous six timeslots and the AS of the previous seven days
of historical timeslots, respectively. The Pearson correlation coefficient of the 13 influencing factors
in each road segment is calculated. Take the four road segments in Chengdu, China as an example.
Their Pearson correlation coefficients are listed in Table 1, indicating that the AS of the road segment is
closely related to the AS of the forward timeslots and the AS of the historical simultaneous timeslots.
The AS of the four road segments for the previous 1–6 h and the first, sixth, and seventh historical
simultaneous timeslots are positively correlated. Meanwhile, the AS correlation degree of the forward
timeslot decreases with time, which indicates that the above nine influencing factors are considerations
of the AS prediction of the four target segments. The degree of correlation varies with the road segment
and timeslot.

2.2. Correlation Analyses of Other Factors

It can be seen from the foregoing correlation analysis that the traffic dataset changes in chronological
order and has coherence, and the historical simultaneous timeslot data and the forward timeslot data
have different degrees of influence on the current timeslot data. However, the daily traffic status does
not completely obey the normal law of historical data. When affected by external dynamic factors such
as weather, date attributes, and emergencies, the traffic status may cause special circumstances, making
the traffic situation deviate from the long-term trend [31,32]. Emergencies have greater randomness and
unpredictability, and the corresponding datasets are limited. Therefore, this work mainly analyzes the
influence of other external factors such as weather and date attributes on the traffic road segment speed.
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Table 1. Pearson correlation coefficient of historical influence factors.

Timeslots Seg. 1 Seg. 2 Seg. 3 Seg. 4

previous 1 h 0.4340 0.4398 0.4477 0.5475
previous 2 h 0.2865 0.3252 0.2934 0.3287
previous 3 h 0.2116 0.2545 0.2005 0.2289
previous 4 h 0.1683 0.2510 0.1472 0.1775
previous 5 h 0.2289 0.2223 0.1553 0.1599
previous 6 h 0.1050 0.0888 0.1309 0.1479

simultaneous timeslot of previous day 0.1969 0.1381 0.1368 0.1937
simultaneous timeslot of previous 2 days –0.0483 –0.0557 –0.1026 –0.0888
simultaneous timeslot of previous 3 days –0.1666 –0.1473 –0.1116 –0.1150
simultaneous timeslot of previous 4 days –0.1711 –0.0473 –0.0499 –0.0307
simultaneous timeslot of previous 5 days –0.0394 –0.0162 –0.0429 –0.0580
simultaneous timeslot of previous 6 days 0.1305 0.1193 0.0263 0.0979
simultaneous timeslot of previous 7 days 0.2015 0.1923 0.1353 0.1240

Rain and snow worsen the road conditions and gradually result in traffic congestion, as shown
in Figure 3. Since the period of the sixth day to the ninth day was rainy in November, the 16 days
of each hour of the road segment AS in November were selected (the four days of the sixth day to
the ninth day had light rain, and the remaining 12 days were cloudy or sunny under the same week
attribute). The abscissa of Figure 3 represents the AS of the road segment over 24 h (km/h), and the
ordinate indicates the date in different types of weather. The deeper the red color, the slower the AS.
Meanwhile, the darker the blue color, the faster the AS. It is clear that the AS during the light rainy
days is basically slower than that of other days, so the influence of external factors such as the weather
on traffic congestion cannot be ignored.

Figure 4 demonstrates that the AS of a road segment is different in the state presented on weekdays
and weekends. The abscissa represents the AS of a road segment over 24 h each day (km/h), and
the ordinate represents the date of two consecutive weeks (seventh day to 11th day and 14th day to
18th day are the weekdays; and the 12th day, 13th day, 19th day, and 20th day are the weekends) in
the figure. This indicates that the phenomenon of morning and evening rush hours is brighter on
weekdays, while it is weakened during the weekend. This is clearly related to people’s travel behavior:
people need to go to work on weekdays, and they travel less on weekends.Sensors 2019, 19, x FOR PEER REVIEW 6 of 22 
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3. Materials and Methods

The traffic flow system is a highly correlated system, and a change is random at a certain moment,
which makes traffic status prediction difficult. RLS can realize the real-time estimation of system
parameters and has a great influence on model identification accuracy under noisy conditions. An EKF
can be applied to nonlinear system prediction, but it is susceptible to the accuracy of the state estimation.
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In order to compensate for the defects of the respective methods and solve the issue of insufficient
road segment data, the main idea of FCG-ASpredictor is shown in Figure 5. By establishing multiple
regression equations, the historical AS obtained by the spatiotemporal correlation calculation method
and the external factors (i.e., weather and date attribute) of the current timeslot are identified by the
RLS. The measured values and observed values are adopted by the EKF to improve the predictive
accuracy of the AS of the target road segment.

3.1. Study Area and Data Sources

Chengdu, as the capital of Sichuan Province in China, is an important central city in the western
region. Its geographical coordinate range is 30◦05′–31◦26′ latitude and 102◦54′–104◦53′ longitude. It is
consist of 20 districts, covering the total area of 14,335 km2, with a resident population of 16.33 million.
This paper selected the central urban areas, the Wuhou, Jingjiang, Qingyang, Jinniu, and Chenghua
districts, as the study areas.

Due to the high sampling frequency of floating cars data, we employ the dataset (i.e., order details)
from the Chengdu branch of Didi Chuxing, The sampling frequency is 3 s. The data size is 462 GB,
and each record includes: (1) driver ID; (2) order ID; (3) timestamp; (4) latitude; (5) longitude; and (6)
vehicle status. The raw data format is shown in Table 2.

Table 2. The raw data format.

Item Description

driver ID desensitization
order ID desensitization

timestamp Unix epoch
latitude dd.ddddd

longitude ddd.ddddd
status 0: empty; 1: passenger; 2: parking

3.2. The Computational Procedures of AS

The AS of the road segment usually refers to the AS of travel through the road segment. We employ
the travel speed of the road segment by using the accumulated integral of the instantaneous speed,
and obtain the AS of the road segment.

According to the position and timestamp of the adjacent position belonging to the same order
ID, the distance between adjacent positions can be calculated by using the spherical distance formula.
The time interval can be calculated by the timestamp of the adjacent positions. The instantaneous
speed of each position is calculated as follows:

v =
r ∗ arccos

{
sin(x1) ∗ sin(x2) + cos(x1) ∗ cos(x2) ∗ cos(y1 − y2)

}
|T1 − T2|

(2)

where v is the instantaneous speed, r is the earth radius, x1 and x2 are the latitudes of the adjacent
positions, y1 and y2 are the longitudes of the adjacent positions, and T1 and T2 are the time stamps of
the adjacent positions.

The travel distance of a positioning car based on the accumulated integral is calculated as follows:

dtra =

∫ tk

t0

vdt ≈ v0(
t1 − t0

2
) +

k−1∑
i=1

vi

( ti+1 − ti−1

2

)
+ vk(

tk − tk−1

2
) (3)

where dtra is the travel distance, t(·) is the GPS positioning time, and v(·) is the instantaneous speed.
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Since the sampling frequency is fixed, Formula (3) is modified as follows:

dtra = tint(
v0

2
+

k−1∑
i=1

vi +
vk
2
) (4)

where tint is the fixed time interval.
According to the travel distance and time interval, the travel speed is calculated as follows:

vtra =
dtra

tk − t0
(5)

where vtra is the travel speed.
Owing to the uneven distribution of the floating car in the urban road network, the speed

measurement accuracy is degraded, and the AS prediction of the road segment is considered from the
distribution of the floating car. In order to ensure accurate calculation of the AS of the road segment,
the number of travel speed samples n at a certain time should not be less than the minimum number of
samples nmin. If the number of travel speed samples n is insufficient, then the historical AS and AS of
the upstream and downstream segments during the simultaneous timeslot need to be integrated.

In addition, if the cumulative number m of continuous travel speed samples is greater than the
maximum value mmax, this indicates that the number of travel speed samples in the previous mmax

timeslots is continuously less than the minimum number of samples nmin, and the AS of the upstream
and downstream segments in the simultaneous timeslot is insufficient to reflect the current traffic status.
Then, it is necessary to integrate the historical AS of road segments. The spatiotemporal correlation
calculation process of AS is shown in Figure 6.Sensors 2019, 19, x FOR PEER REVIEW 9 of 22 
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Figure 6. The process of AS calculation.

The formula for calculating the AS of the road segment is as follows:

v(t) =
n∑

i=1

vtrai(t)/n (6)

where v(t) is the AS of the road segment during timeslot t, n is the number of travel speed samples,
and vtrai(t) is the ith travel speed at timeslot t.
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If the travel speed sample number n of the road segment at timeslot t is smaller than the minimum
sample number nmin, then the historical AS and the simultaneous AS of the upstream and downstream
segments are integrated as follows:

v(t) = (1− θ) 1
n

n∑
i=1

vtrai(t) + θ[(1−ω)vh(t) +ωva(t)]

θ =

{
1− n

nmin
, n ≤ nmin

0, n > nmin

ω =

{
1− m

mmax
, m < mmax

0, m ≥ mmax

(7)

where vh(t) is the estimated historical AS of the road segment, and va(t) is the estimated AS of the
upstream and downstream segment during the current timeslot. The control parameters nmin and mmax

are derived from the example calibration.
vh(t) and va(t) are calculated by weighting the corresponding correlation speeds. The weighting

formula is as follows:
vh(t) = αv′h(t) + (1− α)v′h(t− 1) (8)

va(t) =βvu(t) + (1− β)vd(t) (9)

where v′h(t) and v′h(t− 1) are the AS of the historical simultaneous timeslot and the AS of the forward
timeslot, respectively; vu(t) and vd(t) are the AS of the upstream and downstream segments during
the current timeslot, respectively; and α and β are weight coefficients that are adjusted according to the
measurement of actual data.

3.3. Establishment of Multiple Regression Equations

According to the impact of historical AS, weather, and date attributes on AS prediction, the degree
of influence between the AS of the target road segment and the historical AS is calculated by the
Pearson correlation coefficient.

The AS in the historical simultaneous timeslots of the previous nt days, the AS of the previous np

timeslots during a day, the weather value of the current timeslot, and the date attribute value of the
current timeslot are selected. The following multiple regression equation for predicting the AS value
is established:

vk(t) =
[

a1 a2 · · · ant

]


vk−1(t)
vk−2(t)

...
vk−nt(t)

+
[

b1 b2 · · · bnp

]


vk(t− 1)
vk(t− 2)

...
vk(t− np)

+
[

c1 c2
] xk,1(t)

xk,2(t)

 (10)

where vk(t) is the predicted AS during timeslot t of the kth day, vk−1(t), . . . , vk−nt(t) are the AS in the
historical simultaneous timeslot t of the previous nt days, and vk(t − 1), . . . , vk(t − np) are the AS in
the previous np timeslots of the kth day. xk,1(t) and xk,2(t) are the weather-quantized value and the
date-attribute-quantized value, respectively, in timeslot t of the kth day; these need to be quantified
according to the standard. a1 . . . ant ,b1 . . . bnp ,c1 and c2 are the influence weights of each system variable
on the predicted value.

3.4. System Identification of RLS Method

The system parameters are identified and updated according to Formula (10). The transformed
recursive equation is as follows:

vk(t) = ϕk
T(t)θ+ ek(t) (11)
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where ϕk
T is the AS value of the road segment, θ is the identified parameter vector, and ek(t) is the

error caused by observation noise. ϕk
T and θ are recorded as vectors as follows:

ϕk
T(t) =

[
vk−1(t), . . . , vk−nt(t), vk(t− 1), . . . , vk(t− np), xk,1(t), xk,2(t)

]
(12)

θ =
[
a1, . . . , ant , b1, . . . bnp , c1, c2

]T
. (13)

Combining Formulas (11), (12), and (13), the system parameter identification gain and the error
covariance matrix are updated. The least-squares equation is expressed as follows:

Kk(t) = Pk(t− 1)ϕk(t)
[
ϕk

T(t)Pk(t− 1)θ̂k(t− 1)ϕk(t) + 1
]−1

(14)

Pk(t) =
[
I −Kk(t)ϕk(t)

T
]
Pk(t− 1) (15)

where Kk(t) is the parameter identification gain for timeslot t, Pk(·) is the error covariance matrix of
different timeslots, and I is the identity matrix of the identification parameter.

According to Formulas (6), (7), and (11) to (15), the recursive formula for system parameter
identification during timeslot t is expressed as follows:

θ̂k(t) = θ̂k(t− 1) + Kk(t)
[
v(t− 1) −ϕT

k (t− 1)θ̂k(t− 1)
]

(16)

where θ̂k(·) is the least-squares estimate of the system parameters for different timeslots, and v(t− 1)−
ϕT

k (t− 1)θ̂k(t− 1) is the correction term of the identified parameter estimation for timeslot t−1.

3.5. Implementation of EKF

It can be seen from Formula (10) that the AS prediction model includes nonlinear external factors
such as the weather and date attributes. This study uses an EKF algorithm to improve the AS prediction
accuracy of the target segment. For the sake of simplicity, Formula (10) is modified as follows:

x(t) =
[

a1 a2 · · · ant

]


x(t− ∆)
x(t− 2∆)

...
x(t− nt∆)

+
[

b1 b2 · · · bnp

]


x(t− 1)
x(t− 2)

...
x(t− np)

+
[

c1 c2
] xk,1(t)

xk,2(t)

 (17)

where ∆ is the number of timeslots in a day (assuming the length of the timeslot and the number of
timeslots remain constant), x(t) is the AS prediction of the road segment, x(t− ∆), · · · , x(t− nt∆) are
the AS in the historical simultaneous timeslots of the previous nt days, and x(t− 1), · · · , x(t− np) are
the AS of the previous np timeslots during a day.

According to Formula (17), the standard form of the state equation and the observation equation
are expressed as follows:

x(t) = f (X(t− 1)) + w(t− 1)
y(t) = g(X(t)) + m(t)

(18)

where x(t) and y(t) are state and observation vector values, respectively; w(t− 1) is the system process
noise; m(t) is the observation noise; and f (X(t− 1)) and g(X(t)) are nonlinear mapping functions
of the state equations and observation equations, respectively. X(t− 1), f (X(t− 1)), and g(X(t)) are
expressed as follows:

X(t− 1) =
[

x(t− ∆) · · · x(t− nt∆) x(t− 1) · · · x(t− np) xk,1(t) xk,2(t)
]T

(19)

f (X(t− 1)) ≈ f
(_
X(t− 1)

)
+ A(t− 1)

(
X(t− 1) −

_
X(t− 1)

)
(20)
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g(X(t)) ≈ g
(_
X(t)

)
+ B(t)

(
X(t) −

_
X(t)

)
(21)

where
_
X is the estimated value of X, and A and B are the system state matrix and the observation

matrix, respectively.
According to Formulas (17) to (21), A and B are derived as follows:

A(t− 1) =
∂ f

(_
X(t− 1)

)
∂X(t− 1)

(22)

B(t) =
∂g

(_
X(t)

)
∂X(t)

. (23)

The three components of state vector X(t− 1) in Formula (19) are x(t− n), xk,1(t), and xk,2(t). They
are partial derivatives. A and B are converted to a Jacobian matrix:

A(t− 1) = [A1 A2 A3]

B(t) = [1 0 0]
. (24)

The corresponding parameters A1, A2, and A2 in Formula (24) are calculated as follows:

A1 =
[
a1, . . . ant , b1, . . . bnp

]T

A2 = c1

A3 = c2

. (25)

Since the specific values of parameters A1, A2, and A3 corresponding to Formula (25) are calculated
by Formula (16), then A(t− 1) and B(t) are known values. Combining with the KF, the time update of
Formula (17) is expressed as follows:

X(t)− = f (X(t− 1)) (26)

P(t)− = A(t− 1)P(t− 1)+A(t− 1)T + Q (27)

where X(t)− is the prior estimate of the state vector at timeslot t, P is the covariance of the state vector
estimation error, and Q is the covariance matrix of the process noise.

According to Formulas (18), (23), (26), and (27), the observation update of Formula (17) is expressed
as follows:

G(t) = P(t)−B(t)T
(
B(t)P(t)−B(t)T + R

)−1
(28)

P(t)+ = (I−G(t)B(t))P(t)− (29)

X(t)+ = X(t)− + G(t)
(
Y(t) − g

(
X(t)−

))
(30)

where G(t) is the Kalman gain at timeslot t, X(t)+ is the posterior estimate of the state vector at timeslot
t, and R is the covariance matrix of the observation noise.

4. Results

Since traffic control and guidance require real-time prediction, the length of the traffic prediction
horizon is short, usually no more than 1 h. In this study, the prediction horizons are set to 15 min,
30 min, and 1 h, respectively. All experiments are compiled and tested based on Python 3.7 and
TensorFlow 1.13.1.
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4.1. Data Preprocessing

In order to make the selected segments more objectively reflect the advantages of our approach,
four road segment speed datasets were adopted under the different road types. The road segment
information is shown in Table 3. According to the characteristics of the Chengdu urban network, the
segments 01_521, 03_6479, 04_6276, and 06_28250 belong to the main urban road, general road, ring
road, and outer ring road, respectively. The time span of these datasets is from June to November
2016. In order to be consistent with the comparison algorithm long short term memory–recurrent
neural network (LSTM-RNN) [27] and autoregressive integrated moving average model- Kalman filter
(ARIMA-KF) [28], we select the AS data from 1 June 2016 to 31 October 2016 as the training sample
and the AS data from 1 November to 30 November 2016 as the forecast sample.

To solve the issue of data drift, we use map-matching technology to obtain a standard dataset.
In terms of the driving characteristics of the floating car, the DiDi cars do not represent the normal
traffic state of the road segment under the vehicle status of empty and parking. Thus, we remove the
records of the vehicle status of empty and parking.

The datasets include the AS of the road segments [derived from Formulas (2) to (9)], and the
quantified values of external factors such as the weather and date attributes. According to the degree
of external factors affecting traffic flow [33], the weather and date attributes are quantified as shown in
Table 4.

Table 3. Road segment information.

ID Road Segment

01_521 Second Section of North Third Ring Road
03_6479 North Third Section of First Ring Road
04_6276 First Section of Hongxing Road

06_28250 Third Section of Jinxianqiao Road

Table 4. Quantized values of weather and date attributes.

Quantized Value Weather Condition Date Attribute

1 sunny, cloudy first and last weekday
2 light rain, sleet other weekdays
3 rain weekend
4 heavy rain first and last day of the holidays
5 snow, heavy snow other holidays

4.2. Result Analysis

Corresponding to the data in Table 4, multivariate regression equations are established by taking
the correlation factor values and the AS of four target road segments, respectively. Identified by the
RLS method and considering nonlinear external factors such as weather and date attributes, the EKF
algorithm is used to predict the AS for the current timeslot. Root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE) are used as the evaluation metrics.
Figures 7–15 show that the AS predictions based on the RLS-EKF are superior to those according to
other two algorithms. All evaluation values of AS predicted on three different prediction horizons
based on the RLS-EKF are lower than those based on the other two algorithms, which means the
accuracy and stability of AS predicted on three different prediction horizons based on the RLS-EKF are
superior to those based on the other two algorithms for the four road segments.
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5. Discussion

5.1. Evaluation

The comparative analysis of proposed algorithms and existing algorithms are performed by three
commonly used metrics in traffic prediction, including (1) RMSE, (2) MAE, and (3) MAPE. The three
evaluation metrics are defined as follows:

RMSE =

√√
1
n

n∑
i

(v̂(ti) − v(ti))
2 (31)

MAE =
1
n

n∑
i

∣∣∣v̂(ti) − v(ti)
∣∣∣ (32)

MAPE =
1
n

n∑
i

∣∣∣v̂(ti) − v(ti)
∣∣∣

v(ti)
(33)

where v̂(ti), v(ti) are the predicted value and estimated value at timeslot ti, respectively, and n is the
timeslot number.

The estimated value is a relative value that is obtained from the historical AS. To predict the AS of
the current timeslot t, the AS in the historical simultaneous timeslots of the previous nt days, the AS of
the previous np timeslots, the weather value of the current timeslot, and the date attribute value of the
current timeslot are selected. When entering the next timeslot, the AS of the timeslot t is calculated as
the estimated value according to Formulas (6) to (9).

From Table 5, RLS-EKF achieves the better performance with all three metrics for all prediction
horizons, and the advantage becomes more evident in the four road segments.
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Table 5. Performance comparison of different approaches for AS prediction.

Segment Approach
15 min 30 min 1 h

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

01_521
ARIMA-KF 12.01 10.30 14.6% 13.36 11.84 15.6% 13.67 12.01 19.1%
LSTM-RNN 7.81 6.87 9.1% 10.58 9.83 12.2% 11.15 10.43 15.8%

RLS-EKF 4.35 3.81 4.7% 6.86 6.31 5.3% 7.19 5.58 9.2%

03_6479
ARIMA-KF 4.36 3.48 12.8% 6.09 5.12 19.5% 5.45 4.74 19.4%
LSTM-RNN 3.83 2.82 10.9% 4.64 2.43 11.7% 4.67 4.52 18.2%

RLS-EKF 1.95 1.46 5.5% 2.64 2.04 7.7% 3.31 2.53 9.2%

04_6276
ARIMA-KF 6.79 5.70 10.4% 6.98 6.05 11.7% 9.36 7.54 14.7%
LSTM-RNN 5.84 4.52 8.5% 4.01 3.82 7.3% 8.33 4.69 9.1%

RLS-EKF 2.24 1.61 3.0% 2.92 2.12 3.9% 5.94 3.25 6.1%

06_28250
ARIMA-KF 4.32 3.77 12.0% 5.90 4.84 13.7% 7.54 5.19 15.9%
LSTM-RNN 2.26 2.02 6.8% 4.23 3.85 7.3% 5.21 4.63 11.2%

RLS-EKF 1.76 1.33 3.9% 2.92 2.13 5.3% 3.54 2.39 6.8%

All metrics of RLS-EKF are lower than those based on the other two algorithms (LSTM-RNN
and ARIMA-KF). LSTM-RNN and ARIMA-KF are the latest traffic prediction approaches, and the
difference between all three evaluation metrics of RLS-EKF and those based on other two algorithms
are larger, which means that the experiments based on RLS-EKF have achieved good results.

From the perspective of three prediction horizons, all three metrics increase as the prediction
horizon increases. The difference between all three evaluation metrics of one-h intervals and those of
30-min intervals are larger than the difference between those of 30-min intervals and 15-min intervals,
which means that long-term traffic forecasting needs to consider more alternative influencing factors
for optimization.

From the perspective of four road segments, the errors of road segment 01_521 and 04_6276 are
larger than those of other two road segments.

5.2. Feasibility

The multiple regression equations in Section 3.3 contain four factors: (1) the AS of the historical
simultaneous timeslot (AS-hst); (2) the AS of the forward timeslot (AS-ft); (3) the weather condition
of the current timeslot (WC-ct); and (4) the date attribute of the current timeslot (DA-ct). In order to
demonstrate the influence of four factors on the AS prediction, according to the equations in Section 3.3,
we select five influencing cases, which respectively leave out the AS of the historical simultaneous
timeslot (Miss-AS-hst), the AS of the forward timeslot (Miss-AS-ft), the weather condition of the current
timeslot (Miss-WC-ct), the date attribute of the current timeslot (Miss-DA-ct), and lastly, do not have
any missing factor.

The RMSE of five different influencing cases based on RLS-EKF is illustrated in Table 6. We further
analyzed the feature contributions of five different influencing cases toward four road segments for
three predicted dimensions. All the RMSEs of the no missing factor case are lower than those of four
missing factor cases such as Miss-AS-hst, Miss-AS-ft, Miss-WC-ct, and Miss-DA-ct in the same road
segment and predicted horizon, which means that the four factors of the equations in Section 3.3 are
contributed to improve the predicted accuracy. In addition, Miss-AS-hst is the highest, Miss-AS-ft
is the second highest, Miss-WC-ct is the third highest, and Miss-DA-ct is the lowest in the RMSE
comparison of four missing factor cases. That means that AS-hst is the largest, AS-ft is the second
largest, WC-ct is the third largest, and DA-ct is the smallest regarding the feature contributions of the
predicted accuracy.

To improve the predicted accuracy of the FCG-ASpredictor, it is reasonable and feasible to select
AS-hst, AS-ft, WC-ct and DA-ct as import impact factors of the equations in Section 3.3.
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Table 6. RMSE of different influencing cases based on RLS-EKF.

Segment Prediction
Horizon Miss-AS-hst Miss-AS-ft Miss-WC-ct Miss-DA-ct No Missing

Factor

01_521
15 min 5.84 4.98 4.57 4.38 4.35
30 min 7.69 7.21 7.02 6.89 6.86

1 h 7.85 7.34 7.23 7.22 7.19

03_6479
15 min 3.05 2.88 2.60 2.52 1.95
30 min 3.23 2.87 2.75 2.69 2.64

1 h 3.92 3.48 3.41 3.36 3.31

04_6276
15 min 2.70 2.28 2.50 2.35 2.24
30 min 3.51 3.03 3.01 2.95 2.92

1 h 6.39 6.08 6.03 5.98 5.94

06_28250
15 min 2.41 1.89 1.83 1.80 1.76
30 min 3.76 3.05 3.03 2.97 2.92

1 h 3.92 3.64 3.62 3.61 3.54

6. Conclusions

In this paper, we propose an integrated analysis model of predicting road segment AS:
FCG-ASpredictor. It incorporates the spatiotemporal correlation calculation and RLS-EKF to address
two issues: (1) low accuracy due to insufficient data and (2) poor training quality. By using traffic data
in Chengdu, China to verify the proposed model, the analysis result is feasible. The main contributions
of this paper are as follows: (1) new design to obtain an accurate AS of the road segment: we use
the number of travel speed samples and the cumulative number of segments with less continuous
travel speed samples as the benchmark metrics, and build a spatiotemporal correlations calculation
method with regard to GPS data; (2) new approach based on RLS-EKF, which utilizes the RLS to fuse
the historical AS with other factors (such as weather and date attributes) and apply EKF to predict the
AS in the target segment. The experimental result shows that the RLS-EKF performs well and achieves
high accuracy.

The FCG-ASpredictor combines various impact factors such as AS-hst, AS-ft, WC-ct, DA-ct, etc.,
and achieves good results for the AS prediction of road segments. However, there still exists limitations
while applying the model for the speed prediction of long-term traffic; thus, we will work toward
improving the model adaptation on spatiotemporal correlations in the future.

Author Contributions: G.S. principally conceived of the idea for the study and provided the financial support.
D.Z. was responsible for the design of the study, completing the experiments and writing the manuscript. D.L.
was responsible for the analysis and discussion of the experimental results. J.C. was responsible for review and
editing. Y.Z. was responsible for the experimental validation.

Funding: This work was supported by the Zhejiang Public Welfare Technology Research Program under Grant
LGG19F030012, the National Natural Science Foundation of China under Grant No. 61603339.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kong, X.; Xu, Z.; Shen, G.; Wang, J.; Yang, Q.; Zhang, B. Urban traffic congestion estimation and prediction
based on floating car trajectory data. Future Gener. Comput. Syst. 2015, 61, 97–107. [CrossRef]

2. Mannion, P.; Duggan, J.; Howley, E. Parallel reinforcement learning for traffic signal control. Procedia
Comput. Sci. 2015, 52, 956–961. [CrossRef]

3. Kong, X.; Xia, F.; Ning, Z.; Rahim, A.; Cai, Y.; Gao, Z.; Ma, J. Mobility dataset generation for vehicular social
networks based on floating car data. IEEE Trans. Veh. Technol. 2018, 67, 3874–3886. [CrossRef]

4. Cetin, M.; Comert, G. Short-Term Traffic Flow Prediction with Regime-Switching Models; Transportation Research
Board: Washington, DC, USA, 2006; pp. 23–31.

http://dx.doi.org/10.1016/j.future.2015.11.013
http://dx.doi.org/10.1016/j.procs.2015.05.172
http://dx.doi.org/10.1109/TVT.2017.2788441


Sensors 2019, 19, 4967 20 of 21

5. Chandra, S.R.; Al-Deek, H. Predictions of freeway traffic speeds and volumes using vector autoregressive
models. J. Intell. Transp. Syst. 2009, 13, 53–72. [CrossRef]

6. Jing, H.; Zou, Y.; Zhang, S.; Tang, J.; Wang, Y. Short-term speed prediction using remote microwave sensor
data: Machine learning versus statistical model. Math. Probl. Eng. 2016, 2016, 9236156. [CrossRef]

7. Chen, D.; Yan, X.; Liu, F.; Liu, X.; Wang, L.; Zhang, J. Evaluating and diagnosing road intersection operation
Performance using floating car data. Sensors 2019, 19, 2256. [CrossRef]

8. Queen, C.M.; Albers, C.J. Intervention and causality: Forecasting traffic flows using a dynamic bayesian
network. J. Am. Stat. Assoc. 2009, 104, 669–681. [CrossRef]

9. Pei, X.; Wong, S.C.; Li, Y.C.; Sze, N.N. Full bayesian method for the development of speed models:
Applications of GPS probe data. J. Transp. Eng. 2012, 138, 1188–1195. [CrossRef]

10. Ye, Q.; Szeto, W.Y.; Wong, S.C. Short-term traffic speed forecasting based on data recorded at irregular
intervals. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1727–1737. [CrossRef]

11. Yang, J.; Chou, L.; Tung, C.; Huang, S.; Wang, T. Average-speed forecast and adjustment via VANETs.
IEEE Trans. Veh. Technol. 2013, 62, 4318–4327. [CrossRef]

12. Yao, B.; Chen, C.; Cao, Q.; Jin, L.; Zhang, M.; Zhu, H.; Yu, B. Short-term traffic speed prediction for an urban
corridor. Comput.-Aided Civ. Infrastruct. Eng. 2016, 32, 154–169. [CrossRef]

13. Satrinia, D.; Saptawati, G.A.P. Traffic speed prediction from GPS data of taxi trip using support vector
regression. In Proceedings of the IEEE 2017 International Conference on Data and Software Engineering
(ICoDSE), Palembang, Indonesia, 1–2 November 2017.

14. Zhao, J.; Gao, Y.; Bai, Z.; Lu, S.; Wang, H. Traffic speed prediction under non-recurrent congestion: Based on
LSTM method and BeiDou navigation satellite system data. IEEE Intell. Transp. Syst. Mag. 2019, 11, 70–81.
[CrossRef]

15. Okutani, I.; Stephanedes, Y.J. Dynamic prediction of traffic volume through Kalman filtering theory.
Transp. Res. Part B Methodol. 1984, 18, 1–11. [CrossRef]

16. Barimani, N.; Moshiri, B.; Teshnehlab, M. State space modeling and short-term traffic speed prediction using
Kalman filter based on ANFIS. IACSIT Int. J. Eng. Technol. 2012, 4, 116–120. [CrossRef]

17. Mir, Z.H.; Filali, F. An adaptive Kalman filter based traffic prediction algorithm for urban road network.
In Proceedings of the IEEE 12th International Conference Innovation Information Technology (IIT), Al-Ain,
UAE, 28–30 November 2016.

18. Liu, Y.; He, S.; Ran, B.; Cheng, Y. A progressive extended Kalman filter method for freeway traffic state
estimation integrating multisource data. Wirel. Commun. Mob. Comput. 2018, 2018, 6745726. [CrossRef]

19. Yuan, Y.; Van Lint, H.; Van Wageningen-Kessels, F.; Hoogendoorn, S. Network-wide traffic state estimation
using loop detector and floating car data. J. Intell. Transp. Syst. 2014, 18, 41–50. [CrossRef]

20. Yuan, Y.; Van Lint, J.W.C.; Wilson, R.E.; Van Wageningen-Kessels, F.; Hoogendoorn, S.P. Real-time lagrangian
traffic state estimator for freeways. IEEE Trans. Intell. Transp. Syst. 2012, 13, 59–70. [CrossRef]

21. Dong, C.; Xiong, Z.; Shao, C.; Zhang, H. A spatial–temporal-based state space approach for freeway network
traffic flow modelling and prediction. Transp. A Transp. Sci. 2015, 11, 547–560. [CrossRef]

22. Huang, Y.; Qian, L.; Feng, A.; Wu, Y.; Zhu, W. Rfid data-driven vehicle speed prediction via adaptive
extended kalman filter. Sensors 2018, 18, 2787. [CrossRef]

23. Kolansky, J.; Sandu, C. Enhanced polynomial chaos-based extended Kalman filter technique for parameter
estimation. J. Comput. Nonlinear Dyn. 2018, 13, 021012. [CrossRef]

24. Comert, G.; Bezuglov, A.; Cetin, M. Adaptive traffic parameter prediction: Effect of number of states and
transferability of models. Trans. Res. Part C Emerg. Technol. 2016, 72, 202–224. [CrossRef]

25. Tang, J.; Liu, F.; Zou, Y.; Zhang, W.; Wang, Y. An improved fuzzy neural network for traffic speed prediction
considering periodic characteristic. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2340–2350. [CrossRef]

26. Kulkarni, P.; Lewis, T.; Fan, Z. Simple traffic prediction mechanism and its applications in wireless networks.
Wirel. Pers. Commun. 2011, 59, 261–274. [CrossRef]

27. Wang, X.; Xu, L.; Chen, K. Data-driven short-term forecasting for urban road network traffic based on data
processing and LSTM-RNN. Arab. J. Sci. Eng. 2019, 44, 3043–3060.

28. Xu, D.; Wang, Y.; Jia, L.; Qin, Y.; Dong, H. Real-time road traffic state prediction based on ARIMA and
Kalman filter. Front. Inf. Technol. Electron. Eng. 2017, 18, 287–302. [CrossRef]

http://dx.doi.org/10.1080/15472450902858368
http://dx.doi.org/10.1155/2016/9236156
http://dx.doi.org/10.3390/s19102256
http://dx.doi.org/10.1198/jasa.2009.0042
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000428
http://dx.doi.org/10.1109/TITS.2012.2203122
http://dx.doi.org/10.1109/TVT.2013.2267210
http://dx.doi.org/10.1111/mice.12221
http://dx.doi.org/10.1109/MITS.2019.2903431
http://dx.doi.org/10.1016/0191-2615(84)90002-X
http://dx.doi.org/10.7763/IJET.2012.V4.330
http://dx.doi.org/10.1155/2018/6745726
http://dx.doi.org/10.1080/15472450.2013.773225
http://dx.doi.org/10.1109/TITS.2011.2178837
http://dx.doi.org/10.1080/23249935.2015.1030003
http://dx.doi.org/10.3390/s18092787
http://dx.doi.org/10.1115/1.4031194
http://dx.doi.org/10.1016/j.trc.2016.09.014
http://dx.doi.org/10.1109/TITS.2016.2643005
http://dx.doi.org/10.1007/s11277-009-9916-8
http://dx.doi.org/10.1631/FITEE.1500381


Sensors 2019, 19, 4967 21 of 21

29. Szczepanska, A.; Senetra, A.; Wasilewicz-Pszczolkowska, M. The effect of road traffic noise on the prices of
residential property-A case study of the polish city of Olsztyn. Transp. Res. Part D Transp. Environ. 2015,
36, 167–177. [CrossRef]

30. Wei, G.; Wang, H.; Lin, R. Application of correlation coefficient to interval-valued intuitionistic fuzzy
multiple attribute decision-making with incomplete weight information. Knowl. Inf. Syst. 2011, 26, 337–349.
[CrossRef]

31. Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, CA,
USA, 4–9 February 2017; pp. 1655–1661.

32. Xia, F.; Wang, J.; Kong, X.; Wang, Z.; Li, J.; Liu, C. Exploring human mobility patterns in urban scenarios:
A trajectory data perspective. IEEE Commun. Mag. 2018, 56, 142–149. [CrossRef]

33. Nahar, L.; Sultana, Z. A new travel time prediction method for intelligent transportation system. IOSR J.
Comput. Eng. 2014, 16, 24–30. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trd.2015.02.011
http://dx.doi.org/10.1007/s10115-009-0276-1
http://dx.doi.org/10.1109/MCOM.2018.1700242
http://dx.doi.org/10.9790/0661-16382430
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data Association Analyses 
	Historical Data Correlation Analyses 
	Correlation Analyses of Other Factors 

	Materials and Methods 
	Study Area and Data Sources 
	The Computational Procedures of AS 
	Establishment of Multiple Regression Equations 
	System Identification of RLS Method 
	Implementation of EKF 

	Results 
	Data Preprocessing 
	Result Analysis 

	Discussion 
	Evaluation 
	Feasibility 

	Conclusions 
	References

