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With the continuous urban scale expansion, traffic networks have become extremely complex. Finding an optimal route in the
shortest time has become a difficult and important issue in traffic engineering study. In this study, a novel computing model,
namely, probe machine, is used to solve this problem. Similar to previous studies, urban transport networks can be abstracted into
maps, in which points representing places of origin, destinations, and other buildings constitute the data library and edges
representing the road make up the probe library. -e true solution can be obtained after one probe operation on the computing
platform. And by comparing the solving process with Dijkstra’s and Floyd’s algorithms, the computing efficiency of the probe
machine is clearly superior, although all three methods can solve the shortest path problem and obtain the same solution.

1. Introduction

Traffic engineering is the basic theory of the research and
development of traffic engineering discipline. Its main
purpose is to seek the transportation system planning,
construction andmanagement scheme with the largest travel
efficiency, the least traffic accidents, the fastest traffic speed,
the least transportation cost, and the lowest energy con-
sumption. -e rapid development of urban traffic and in-
crease in the number of vehicles has made travelling more
convenient for people in recent years. However, urban traffic
is not smooth due to the numerous traffic network nodes
and complex sections; some cities suffer from traffic con-
gestion [1, 2]. Finding a suitable path for drivers is not only
one of the solutions to promote the development of urban
transportation [3–5], but also one of the main purposes in
traffic engineering research. -erefore, we must address this
issue by determining the shortest path. In traffic engineering,
“shortest path” does not necessarily mean the shortest
distance, but also the shortest time or the lowest cost.

-e shortest path problem is a classical problem in graph
theory, which has been applied in many fields [6]. Finding
the path with the shortest distance is the most basic ap-
plication of the shortest path problem, which is also a very

practical problem. -e basic objective of the shortest path
problem is to find the path, with the lowest weight, between
two points where every edge in the graph has its own weight
value. Many algorithms to solve the shortest path problem
have been proposed in previous studies, such as Dijkstra’s
algorithm [7], Bellman–Ford algorithm [8], and Floyd’s
algorithm [9].-emost classical algorithm for solving such a
problem is Dijkstra’s algorithm. It can solve the shortest path
problem from a given point to any point; however, it fails to
solve the shortest path problem with a negative weight.
-erefore, Floyd’s algorithm and other algorithms were
proposed to solve the above problem.

In 2016, Xu proposed a new computing model, i.e., the
probe machine [10]. Probe machine is a completely parallel
computing model that can simultaneously process multiple
pairs of data. Parallel computing can speed up operations,
expand the scale of processing problems, and facilitate the
ability of algorithms to handle problems [11, 12]. Compared
with turingmachines, probemachines can solve NP-complete
problems after a probe operation, such as the Hamiltonian
cycle problem [10], vertex problem [10], travelling salesman
problem [13], working operation problem [14], and so on.-e
probes of a probe machine can be divided into connective
probes and transitive probes. A connective probe can connect
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data fibers from different data, while a transitive probe can
transmit information between data fibers from different data.
-e probe machine is a form of bionic computing. It achieves
complete parallelism by imitating the process of information
transmission of neurons and reduces computation com-
plexity. Bionic computing refers to the use of biological
models to deal with practical problems, and it can often yield
unexpected results in some fields [15, 16]. In recent studies,
more computational models are used to solve all kinds of NP
problems, such as SAT problem [17–21], vehicle routing
problem [22–24], graph coloring problem [10, 25, 26], partner
selection problem [27], and the other problems [28–33].

In this study, we first introduce a probe machine.-en, a
shortest path problem, which is a problem of finding the
path with the minimum distance, is solved by using
Dijkstra’s algorithm, Floyd’s algorithm, and probe machine;
the process using the three methods is then compared.

2. Probe Machine

-e probe machine was first proposed by Professor Xu in
2016. It consists of nine parts including data library (X),
probe library (Y), data controller (σ1), probe controller (σ2),
probe operation (τ), computing platform (λ), detector (η),
true solution storage (Q), and residue collector (C).

-e data placement mode of the data library is nonlinear.
-e data library is divided into n data pools X1, X2, . . . , Xn.
Data pool Xi includes one type of data xi, and data xi

comprises a body and pi data fibers, as shown in Figure 1.
-ere are two types of probes in a probemachine, namely,

connective probe and transitive probe. A connective probe
can connect different data fibers from different data, and a
transitive probe can transfer information from the source
fiber to a destination fiber. In this study, the connective probe
is used to solve the shortest path problem.-e set of all probes
between two data pools constitutes the probe pool; the probe
library is a set of all probe pools, as shown in Figure 2. -e
data controller and probe controller add the corresponding
data and probes into the computing platform, respectively.
After the probe operation, the resulting aggregation is de-
tected by a detector.-e resulting true solution is put into the
true solution storage. -e residue is put into the residue
collection, which decomposes it into basic data and returns it
to the data pool, as shown in Figure 2.

3. Solving the Shortest Path Problem

In this study, an example of a directed graph is considered, as
shown in Figure 3.-e points on the graph are represented by
v1, v2, v3, v4, v5, v6, v7, v8, v9; the distance from vi to vj is
represented by vij. -e shortest path from v1 to v8 is obtained.
Wewill use Dijkstra’s algorithm, Floyd’s algorithm, and probe
machine to solve the shortest path problem.

3.1. Solving the Shortest Path Problem Using Dijkstra’s
Algorithm. P represents the distance from the starting point
to point vi, and T refers to the previous point in the shortest
path. Si represents the set of points that have pmark in step i.

(1) i � 0, S0 � v1 , P(v1) � 0, λ(v1) � 0, T(vi) � +∞,
λ(vi) � M, (i � 2, 3, . . . , 9)

Because v2 ∉ S0, P(v1) + w12 <T(v2),
let T(v2) � P(v1) + w12 � 6, λ(v2) � 1;
Similarly, T(v3) � P(v1) + w13 � 3, λ(v3) � 1;
T(v4) � P(v1) + w14 � 1, λ(v4) � 1.
T(v4) � min T(v2), T(v3), T(v4) ,
so, let P(v4) � 1, S1 � v1, v4 , k � 4.

(2) i � 1, let T(v6) � P(v6) + w46 � 11, λ(v6) � 4;

T(v3) � min T(v2), T(v3), T(v6) ,
so, let P(v3) � 3, S2 � v1, v4, v3 , k � 3.

(3) i � 2, let T(v6) � P(v6) + w46 � 11, λ(v2) � 3;

T(v2) � min T(v2), T(v6) ,
so, let P(v2) � 5, S3 � v1, v4, v3, v2 , k � 2.

(4) i � 3, let T(v5) � P(v2) + w25 � 6, λ(v5) � 2;

T(v5) � min T(v5), T(v6) ,
so, let P(v5) � 6, S4 � v1, v4, v3, v2, v5 , k � 5.

(5) i � 4, let T(v6) � P(v5) + w56 � 10, λ(v6) � 5,

T(v7) � P(v7) + w57 � 9, λ(v7) � 5,
T(v8) � P(v5) + w58 � 12, λ(v8) � 5,
T(v9) � P(v5) + w59 � 8, λ(v9) � 5,
T(v9) � min T(v6), T(v7), T(v8), T(v9) ,
so, let P(v9) � 8, S5 � v1, v4, v3, v2, v5, v9 , k � 9.

(6) i � 5, let T(v8) � P(v9) + w98 � 12, λ(v8) � 5;

T(v7) � min T(v6), T(v7), T(v8) ,
so, let P(v7) � 9, S6 � v1, v4, v3, v2, v5, v9, v7 , k � 7.

(7) i � 6, T(v6) � min T(v6), T(v8) ,

so, let P(v6) � 9, S7 � v1, v4, v3, v2, v5, v9, v7, v6 ,
k � 6.

(8) i � 7, let P(v8) � 11, S8 � v1, v4, v3, v2, v5, v9, v7,

v6, v8}, k � 8.

So, the shortest path from v1 to v8 is v1⟶ v3⟶
v2⟶ v5⟶ v9⟶ v8, as shown in Figure 4.

3.2. Solving the Shortest Path Problem Using Floyd’s
Algorithm. According to the graph, the adjacency matrix of
the graph is as follows:

A �

0 6 3 1 ∞ ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ 1 ∞ ∞ ∞ ∞

∞ 2 0 2 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ 0 ∞ 10 ∞ ∞ ∞

∞ ∞ ∞ 6 0 4 3 6 2

∞ ∞ ∞ ∞ ∞ 0 2 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)
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Figure 1: Data library [10].
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Figure 2: Connective probe machine [10].
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Step 1: taking v2 as the intermediary point and updating
the matrix,

A �

0 6 3 1 7 ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ 1 ∞ ∞ ∞ ∞

∞ 2 0 2 3 ∞ ∞ ∞ ∞

∞ ∞ ∞ 0 ∞ 10 ∞ ∞ ∞

∞ ∞ ∞ 6 0 4 3 6 2

∞ ∞ ∞ ∞ ∞ 0 2 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Step 2: taking v3 as the intermediary point and updating
the matrix,

A �

0 5 3 1 7 ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 2 0 2 3 ∞ ∞ ∞ ∞
∞ ∞ ∞ 0 ∞ 10 ∞ ∞ ∞
∞ ∞ ∞ 6 0 4 3 6 2
∞ ∞ ∞ ∞ ∞ 0 2 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Step 3: taking v4 as the intermediary point and updating
the matrix,

A �

0 5 3 1 7 11 ∞ ∞ ∞
∞ 0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 2 0 2 3 12 ∞ ∞ ∞
∞ ∞ ∞ 0 ∞ 10 ∞ ∞ ∞
∞ ∞ ∞ 6 0 4 3 6 2
∞ ∞ ∞ ∞ ∞ 0 2 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Step 4: taking v5 as the intermediary point and updating
the matrix,

A �

0 5 3 1 7 11 10 13 9
∞ 0 ∞ 7 1 5 4 7 3
∞ 2 0 2 3 7 6 9 5
∞ ∞ ∞ 0 ∞ 10 ∞ ∞ ∞
∞ ∞ ∞ 6 0 4 3 6 2
∞ ∞ ∞ ∞ ∞ 0 2 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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Figure 3: Shortest path problem.
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Figure 4: -e shortest path.
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Step 5: taking v6 as the intermediary point and updating
the matrix,

A �

0 5 3 1 7 11 10 13 9

∞ 0 ∞ 7 1 5 4 7 3

∞ 2 0 2 3 7 6 9 5

∞ ∞ ∞ 0 ∞ 10 12 ∞ ∞

∞ ∞ ∞ 6 0 4 3 6 2

∞ ∞ ∞ ∞ ∞ 0 2 ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Step 6: taking v7 as the intermediary point and updating
the matrix,

A �

0 5 3 1 7 11 10 13 9

∞ 0 ∞ 7 1 5 4 7 3

∞ 2 0 2 3 7 6 9 5

∞ ∞ ∞ 0 ∞ 10 12 16 ∞

∞ ∞ ∞ 6 0 4 3 6 2

∞ ∞ ∞ ∞ ∞ 0 2 6 ∞

∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Step 7: taking v9 as the intermediary point and updating
the matrix,

A �

0 5 3 1 7 11 10 12 9

∞ 0 ∞ 7 1 5 4 6 3

∞ 2 0 2 3 7 6 8 5

∞ ∞ ∞ 0 ∞ 10 12 16 ∞

∞ ∞ ∞ 6 0 4 3 5 2

∞ ∞ ∞ ∞ ∞ 0 2 6 ∞

∞ ∞ ∞ ∞ ∞ ∞ 0 4 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

-us, the shortest path from v1 to v8 is
v1⟶ v3⟶ v2⟶ v5⟶ v9⟶ v8.

3.3. Solving the Shortest Path Problem Using the Probe
Machine. -e probe machine solves the shortest path
problem as follows.

3.3.1. Data Library Construction

X � ∪
9

i�1
E
2

vi( . (9)

E2(vi) is the data pool of vi, and E2(vi) is a set of two long
paths centered around vi. -e two long paths are denoted as
vilj, and i, l, j are different from each other. At the same
time, because this problem is a directed graph, each path has
one data fiber. -e data library is as follows:

X � ∪
9

i�1
E
2

vi( ,

E
2

v1(  � ∅,

E
2

v2(  � x215, x235 ,

E
2

v3(  � x312, x314 ,

E
2

v4(  � x416, x436, x456 ,

E
2

v5(  � x524, x526, x527, x528, x529 ,

E
2

v6(  � x647, x657 ,

E
2

v7(  � x768, x758 ,

E
2

v8(  � ∅,

E
2

v9(  � x958 .

(10)

-e data fibers are as follows:

I x215(  � x
5
215,

I x235(  � x
4
235,

I x312(  � x
2
312,

I x314(  � x
4
314,

I x416(  � x
6
416,

I x436(  � x
6
436,

I x456(  � x
6
456,

I x524(  � x
4
524,

I x526(  � x
6
526,

I x527(  � x
7
527,

I x528(  � x
8
528,

I x529(  � x
9
529,

I x647(  � x
7
647,

I x657(  � x
7
657,

I x768(  � x
8
768,

I x758(  � x
8
758,

I x958(  � x
8
958.

(11)

3.3.2. Probe Library Construction. In order to avoid arbi-
trary data aggregation, if there is a probe between data vilj

and vtab, one of the following two conditions need to be met:
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(1) | i, l, j ∩ t, a, b{ }| � | l, j ∩ a, b{ }| � 1,

(2) t ∈ l, j , i ∈ a, b{ }, | l, j ∩ a, b{ }| � 0.
(12)

At the same time, without loss of generality, because this
is a directed graph, the direction of the probe needs to be
same as the direction of the edge. -e probe library
established is as follows:

Y � ∪
i�8,t�9

i�1,t�2
Yit, (i< t),

Y23 � x5
235x

2
312 ,

Y24 � x5
215x

6
456, x5

235x
6
456 ,

Y25 � x5
215x

4
524, x5

215x
6
526, x5

215x
7
527, x5

215x
8
528, x5

215x
9
529, x5

235x
4
524, x5

235x
6
526, x5

235x
7
527, x5

235x
8
528, x5

235x
9
529 ,

Y26 � x5
215x

7
657, x5

235x
7
657 ,

Y27 � x5
215x

8
758, x5

235x
8
758 ,

Y29 � x5
215x

8
958, x5

235x
8
958 ,

Y34 � x4
314x

6
436 ,

Y35 � x2
312x

4
524, x2

312x
6
526, x2

312x
7
527, x2

312x
8
528, x2

312x
9
529 ,

Y36 � x4
314x

7
657 ,

Y45 � x6
456x

4
524 ,

Y46 � x6
416x

7
647, x6

436x
7
647, x6

456x
7
647 ,

Y47 � x6
416x

8
768, x6

436x
8
768, x6

456x
8
768 ,

Y56 � x4
524x

7
647, x6

526x
7
657 ,

Y57 � x6
526x

8
768, x7

527x
8
758 ,

Y59 � x9
529x

8
958 ,

Y67 � x7
647x

8
768, x7

657x
8
768 .

(13)

3.3.3. Probe Operation. -e data controller and probe con-
troller are used to extract the corresponding amount of data
and probes from the data library and probe library and add
them to the computing platform. After the probe operation,
all possible solutions to the problem are obtained. -rough
the detector, the optimal solution is output as follows:

v1⟶ v3⟶ v2⟶ v5⟶ v9⟶ v8. (14)

4. Results and Discussion

Although all three methods can solve the shortest path
problem and obtain the same solution, there are some
obvious differences in the solving process and computing
efficiency. Dijkstra’s algorithm is based on the breadth-first
search algorithm, which calculates the shortest path from the
starting point to all other points. -e calculation step of
Dijkstra’s algorithm is to expand from the starting point to
the layer by layer. Floyd’s algorithm is based on dynamic
programming algorithm to find the shortest path between
any two points in the graph. -e first step of Floyd’s

algorithm is to find the adjacency matrix of the graph, and
the second step is to update the adjacency matrix by taking
each point as the intermediate point. And, the solution
process of the probe machine is mainly divided into two
steps: the first step is to build the data library and the probe
library, and the second step is to get all possible solutions
through the probe operation. It can be seen from the so-
lution process that each step of Dijkstra’s algorithm and the
Floyd algorithm is part of solving the shortest path problem,
but the real solution process of the probe machine is only
probe operation. -e purpose of the remaining steps of the
probe machine is to prepare for the probe operation or to
screen the solution calculated by the probe operation. -is
phenomenon should be attributed to the way of storing data.
When the Dijkstra algorithm and the Floyd algorithm are
used, the linear data placement mode and the sequential data
processing mode are taken, so the solution process needs to
be performed step by step; however, in the probe machine, a
nonlinear data storage method is adopted, so the probe
machine can simultaneously process multiple pairs of data.
In other words, the probe machine is a completely parallel
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computational model, which is the biggest difference be-
tween the probe machine and other computing models.

Moreover, Dijkstra’s and Floyd’s algorithms are only
used to deal with problems in graph theory. -e probe
machine is a completely parallel computing model, which
can also get the true solution after one probe operation when
solving NP-complete problems. Although we only use the
probe machine to deal with the shortest path problem in this
paper, we can see the powerful computing power of the
probe machine through the solving process.

5. Conclusion

In urban traffic planning, the shortest path problem is a very
basic problem. In this study, a probe machine was used to
solve this problem. It can solve complex traffic problems
after a single probe operation, which improves the efficiency
and shortens the time required for solving traffic planning
problems. When dealing with actual traffic problems, the
speed at which a probe machine solves them is much higher
than the speed of other models. A probe machine has high
computing power; however, it is still a new concept. It has
several shortcomings and needs to be improved further to
handle specific problems. For example, when dealing with
complex traffic problems, complex data and probe libraries
need to be constructed. -e process of constructing these
libraries cannot be completely replaced by a probe machine
or computer. -e more complex the problem to be solved is,
the more difficult it becomes to construct data library and
probe library. In the future, we will continue to study the
probe machine and attempt to improve it.
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