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Abstract—Traffic congestion occurs as demand sur-
passes the available capacity of a road network, re-
sulting to lower speeds and longer journey times.
To effectively alleviate the problem, the number of
vehicles should be maintained below the network’s
critical density; with route guidance constituting the
primary control strategy to achieve this. However,
the effectiveness of route guidance is limited in high-
demand conditions.
In this work, we investigate a Model Predictive

Control (MPC) framework that combines multi-
regional route guidance with a novel demand man-
agement method. Route guidance is used to minimize
the network’s density imbalance while demand man-
agement is utilized to reduce the conditions that cause
congestion. This can be achieved by manipulating
vehicle routes (i.e., using route guidance) and/or by
instructing a portion of the vehicles to wait at their
origin before commencing their journey (demand
management). Simulations are conducted to evaluate
the performance of the proposed MPC optimization
indicating the substantial improvements that can be
achieved in traffic flow performance.

I. Introduction

Traffic congestion has become one of the most critical
problems in modern city landscapes. Interestingly, urban
congestion does not occur due to lack of capacity but,
primarily, due to the absence of intelligent traffic man-
agement policies that can steer traffic away from hot-
spot regions. To achieve this, route guidance methods
seek to reroute traffic flows towards alternative routes
that reduce traffic imbalance across the road network.
In doing so, the travel times are reduced and the user
equilibrium is improved [1] and [2].

The appeal of route guidance methods is strengthened
by the recent advancements in information and com-
munication capabilities of onboard units which are now
capable of providing real-time traffic state information
to drivers and recommend alternatively routes to follow.
Despite these great features, congestion still persist since
the aforementioned routing solutions only focus on im-
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proving the user equilibrium which only slightly benefits
the overall system operation [3].

The latter work also argues that routing solutions
focused on improving the social optimum can substan-
tially benefit the system since a slight decrease in the
number of vehicles entering the network (i.e., demand)
can substantially reduce travel times during congestion
periods. Evidently, the number of vehicles that need
to incur some waiting (at their origin) is significantly
smaller than those actually benefiting as elaborated in
[3]. Considering these insights, the integration of route
guidance with intelligent demand management has be-
come an attractive proposition with the potential to
substantially curb the traffic congestion.

In this work, we propose a novel region-level model-
predictive control scheme that integrates route guidance
with demand management. Given the origin and destina-
tion pairs of the vehicular flows that request to navigate
within the traffic network, the proposed scheme tries to
find the alternative path that minimizes the destination
arrival times. The proposed MPC scheme does not only
suggest a route to follow, but also manages the external
inflow rates, resulting to a congestion-free operation since
a portion of the inflows are restricted at their origins
(demand management). In this way, route guidance finds
the optimum transfer flows across neighboring regions,
while demand management regulates the external inflow
rates as we have previously proposed in [4] and [5].

Hence, the main contribution of this work is the for-
mulation of the joint route guidance and demand man-
agement problem and its solution using an approximate
MPC scheme. The consideration of demand management
in the formulation is shown to potentially eliminate the
formation of cycles1 that may result from other state-of-
the-art route guidance solutions [6]. The reason is that
cycles occur when there is a need to delay entrance within
a region due to heavy congestion, something that can
be avoided by restraining the vehicles from entering the
network in the first place.

The remainder of this paper is organized as follows.
Section II reviews the related work and indicates our
contribution compared to the state-of-the-art. Section III
presents the regional level system model and Section IV
derives the mathematical formulation of the multi-region
route guidance problem. Section V reformulates the
problem as a Mixed Integer Linear Program (MILP),

1Vehicles are flowing back and forth between neighboring regions.



while Section VI formulates the combination of the
route guidance with the demand management method.
Section VII includes simulation results demonstrating
how the proposed MPC formulation outperforms the
corresponding scheme with no demand management.
Finally, Section VIII concludes this work and discusses
future research directions.

II. Background and related work
Initial research work on route guidance assumed detail

microscopic models, where speed and position informa-
tion of all vehicles is assumed to be known [1] and [7].
However, microscopic models are highly complex models
that make the proposed solutions impractical, especially
in large-scale networks [8]. Furthermore, in most cases,
different microscopic models apply to different networks
and driver behaviours, and hence a solution approach
only applies to the particular scenario.

An alternative approach is to use a regional-level route
guidance framework where the network is partitioned
into smaller homogeneous [9] regions within which ve-
hicles are responsible to follow a regional-level route
as shown in [10] and [11]. To do that, the network
fundamental diagram (NFD) is used, as it can offer low
complexity modeling of large urban networks capturing
the macroscopic relationship between the three main
mobility parameters, i.e., speed, flow, and density. The
NFD is composed of two distinct regimes, separated at
the critical density point: 1) the free-flow regime where
traffic flows at its maximum speed (free-flow speed) and
2) the congested regime is slowed down as congestion
emerges. Therefore, utilizing the NFD dynamics, simple
control schemes can be implemented without the need of
acquiring extensive traffic information (e.g., the per-link
densities) [12].

The work in [10] and [13] propose route guidance
frameworks that correlate routing decisions with the
NFD, in an effort to better spread the traffic load across
a larger area of the network. However, these solutions
are not able to cope well with heavy congestion; usually,
such approaches aim to control restricted areas (e.g.,
the city center) so that performance improvements occur
only for scenarios with relatively light traffic. This is
due to the fact that in high demand, a load balancing
method can only delay the emergence of congestion but
not actually prevent it. The latter can only be achieved
by sustaining the total number of vehicles in all regions
below some critical values [8]. Recent attempts trying to
only control the total number of vehicles result in travel
time imbalances since traffic is not evenly distributed
across the regions [14].

In light of this insight, the combination of route guid-
ance with an intelligent demand management method
has become an attractive method to tackle the two
aforementioned problems since density will be curbed
below certain values while minimizing the observed travel
times.

Model predictive control (MPC) approaches are in-
creasingly being employed to control traffic congestion,
with the NFD serving as the prediction model. MPC
has the ability to optimize the current states while
considering future implications through the region’s NFD
model [15]. The work in [16] and [17] initially used a
nonlinear MPC framework to control a free-way system
and a two-region urban network, respectively. Similarly,
more recent works in [11] and [14] attempt to use MPC to
implement route guidance schemes based on the NFD dy-
namics. A hybrid MPC is presented in [18] for an urban
region, equipped with time switching plans together with
perimeter control where, the non-linear MPC problem is
approximated to an MILP, showing the importance of the
approximate model regarding the required computation
times. Nonetheless, the integration of perimeter control
with route guidance demonstrates its ability to postpone
the emergence of congestion [6].

As elaborated above, in this work we develop an MPC
framework to jointly solve the region-level route guidance
and demand management problems in order to find the
best alternative routing strategies which minimize the
cumulative total time of all vehicles, where the total
time of each vehicles accounts for both the waiting time
outside the network and the travel time.

III. System Model

A. Traffic Flow Model

Let an urban area be partitioned into R homogeneous2

regions, denoted by r ∈ R = {1, . . . , R}. We assume that
the regions are homogeneous [9] and the traffic dynamics
within each region can be modeled using a triangular
NFD as depicted in Fig 1 (a) [20]. As illustrated in
Fig. 1 (b), the flow-density NFD is complemented by
the fundamental relationship that the intended outflow
qr(ρr(k)) (veh/h) is equal to the product of density ρr(k)
(veh/km) and speed ur(ρr(k)) (km/h) at each time-steps
k, i.e., qr(ρr(k)) = ρr(k)ur(k). Using the NFD one can
define all important parameters of region r such as the
jam density, ρJ

r , the capacity qC
r = ρC

r u
f
r where the region

operates at its maximum outflow observed at the critical
density, ρC

r , and the backward congestion propagation
speed wr = qC

r /(ρJ
r − ρC

r ) [21], where uf
r is the free-flow

speed. In this work, we also assume that the distance
traveled by a vehicle inside each region is independent of
the origin-destination pair and the drivers’ route choice,
similar to [18].

Let sets O ⊆ R and D ⊆ R denote the regions
considered as the origins and destinations of flows, re-
spectively. Let also J−r ⊆ R be the set of neighboring
regions directly accessible from region r ∈ R (i.e., the
immediately next region of r ∈ R) and similarly let

2Each region is partitioned with respect to the homogeneous
distribution of accumulated traffic as proposed in [19].
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Fig. 1: (a) A three region traffic network where the
outflow traffic dynamics are modeled with a dedicated
NFD for each region. (b) The triangular flow-density
NFD of region r of an urban area.

J +
r = J−r ∪ {r}, such that

Jr =
{
J +

r , if r ∈ D
J−r , otherwise. (1)

Let also dod(k) (veh) be the instantaneous external
demand from o ∈ O to d ∈ D, i.e. the number of
new vehicles that request to enter region o ∈ O toward
the destination region d ∈ D during time-step k. Let
also d̃od(k) denote the admitted external demand that
actually enters region o ∈ O towards d ∈ D during time-
step k. Variable d̃od(k) is restricted by three factors:
1) The physical ability of the region to accommodate

more vehicles.
2) The maximum possible demand that can physically

enter region o at time-step k denoted by DMAX
od .

3) Demand management which allows only a portion
of the requested vehicles to enter the network; the
remaining vehicles wait at their origins (outside the
network) until they are admitted.

To keep track of the remaining flows to be served, Dod(k)
represents the cumulative external demand at time-step
k defined as

Dod(k+1) = Dod(k)− d̃od(k)+dod(k), k = 1, 2, . . . , (2)

where Dod(0) = 0.

Let the variable nr(k) (veh) be the total number of
vehicles of region r ∈ R at time-step k and nrd(k) denote
the number of vehicles in region r ∈ R destined to d ∈ D
such that

nr(k) =
∑
d∈D

nrd(k). (3)

Let also, the variable nrjd(k) denotes the number of
vehicles moving from region r ∈ R to d ∈ D through
the immediately neighbouring region j ∈ Jr. Then, it is
true that

nrd(k) =
∑

j ∈Jr

nrjd(k). (4)

Note that nrjd(k), {r, j} ∈ D determine the number
of vehicles that exit the network from their destination,
termed exiting vehicles.

In a similar fashion we can define the density variables

ρr(k) = nr(k)
Lr

, (5a)

ρrd(k) = nrd(k)
Lr

, (5b)

ρrjd(k) = nrjd(k)
Lr

, (5c)

where parameter Lr (km) denotes the total length of all
roads of region r.

The intended outflow of each region r ∈ R is denoted
by the function qr(ρr(k)) (veh/h) which can be ap-
proximated using the asymmetric unimodal curve of the
triangular NFD [21], shown in Fig. 1 (b), mathematically
defined as

qr(ρr(k)) =


qC

r

ρC
r

ρr(k), if 0 ≤ ρr(k) ≤ ρC
r

wr(ρJ
r − ρr(k)), otherwise. (6)

We call qr(ρr(k)) intended outflow, because it represents
the amount of flow that region r would transfer to
its neighboring regions and/or the outside world, if no
flow/storage capacity restrictions where applicable from
other regions.

Accordingly, variables qrd(k) and qrjd(k) denote the
intended transfer flow from region r ∈ R to destination
region d ∈ D and the corresponding flow that passes
through neighboring region j ∈ Jr, respectively, defined
as

qrd(k) =
∑

j∈Jr

qrjd(k), (7)

qrjd(k) = ρrjd(k)
ρr(k) qr(ρr(k)). (8)

In fact, the intended transfer flow between neighboring
regions r ∈ R and j ∈ J−r is restricted by their inter-
boundary capacity, Crj(ρj(k)), which is the maximum
flow that can be exchanged between the two neighboring



regions, for a specific value of ρj(k). According to [6],
Crj(ρj(k)) can be defined as

Crj(ρj(k)) =


CMAX

rj , if ρj(k) ≤ αρJ
j ,

CMAX
rj

1− α (1− ρj(k)
ρJ

j

), otherwise, (9)

where CMAX
rj is the maximum inter-boundary capacity

and αρJ
j is the point where the inter-boundary capacity

starts to decrease with 0 < α < 1. Considering Eq. (9)
the value of qrjd(k) depends on the total number of
vehicles in region r ∈ R, while the transfer flow of
neighboring region j is analogous to its remaining storage
capacity which also depends on the transfer flows from
other regions s ∈ {Jj−r}. Hence, the actual transfer flow
from r ∈ R to j ∈ Jr, denoted by the variable q̃rjd(k)
and is defined as

q̃rjd(k) = min
(
qrjd(k), Crj(ρj(k)) qrjd(k)∑

y∈D qrjy(k)

)
.

(10)
Similar to [6] we omit the inter-boundary capacity con-
straints (9) and (10) from the prediction model used
in the developed MPC optimization approach described
in Section IV, as the effect of the critical capacity
is significantly larger than that of the inter-boundary
capacity. Furthermore, the work presented in [6] has
extensively studied the sensitivity to changes of the inter-
boundary capacity value, indicating that MPC schemes
are insensitive to the inter-boundary capacities.

Taking the above into account, the dynamics of the
number of vehicles in region r ∈ R with destination d ∈
D, can be defined as

nrd(k + 1) = nrd(k) + d̃rd(k) + Ts

∑
j ∈Jr

(qjrd(k)− qrjd(k)).

(11)
Finally, it is true that

qrjd(k) = njrd(k)/Ts (12)

where Ts denotes the simulation time-step that governs
the evolution of the regional dynamics (11).

IV. Regional level route guidance control
In this section, we employ the regional model described

in Section III to develop a mathematical formulation
utilizing the NFD of each region to provide optimal route
guidance.

A. Objective function
Let variables Sa(k) and Sb(k) be the cumulative num-

ber of vehicles that request to enter the network and
successfully arrive at their destination, respectively

Sa(k + 1) = Sa(k) +
∑
o∈O

∑
d∈D

dod(k), (13)

Sb(k + 1) = Sb(k) +
∑
d∈D

nrjd(k) {r, j} ∈ D, (14)

where Sa(0) = 0 and Sb(0) = 0.
Summing over all time-steps yields the cumulative

total time of all vehicles JCT T (veh·h)

JCT T = Ts

∑
k

(Sa(k)− Sb(k)) (15)

We formulate the problem using a Model Predictive Con-
trol framework with the control time-step equal to the
simulation time-step. We consider that a new problem
is resolved every m time-steps. We also assume that the
control and prediction horizons are equal to mNp. Then,
for the l-th MPC problem solution l = 1, 2, . . . , we define
the time horizon Kl = {m(l−1)+1, . . . ,m((l−1)+Np)}.
Under these considerations, we formulate the l-th

problem of finding the optimal transfer flows qrjd(k) and
admitted external flows d̃od(k) to minimize the total time
as:

min JMP C
CT T (l) = Ts

∑
k∈Kl

(Sa(k)− Sb(k)) (16a)

s.t. Traffic Dynamics (1)− (8) and (11)− (14),
CMAX

rj ≥
∑
d∈D

qrjd(k), k ∈ Kl, r ∈ R, j ∈ Jr, (16b)

d̃od(k) = min
(

((nJ
o −

∑
d∈D

dod(k))/|D|), dod(k),

DMAX
od

)
, k ∈ Kl, o ∈ O, d ∈ D, (16c)

0 < ρr(k) ≤ ρJ
r , k ∈ Kl, r ∈ R, (16d)

Sa(0) = 0, Sb(0) = 0, (16e)
Variables: ρr(k), d̃od(k), Drd(k), qrdj(k), qrd(k),
qr(ρr(k)), Sa(k), Sb(k), nr(k), nrd(k), nrjd(k)

The mathematical optimization problem defined by
the set of equations (16) is a non-convex Non-Linear
Program (NLP) due to the presence of the min term in
Eq. (16c), the non-affine function (6), and the product
of variables in (8). In problem (16), constraints (1)-
(8) and (11)-(14) define the traffic dynamics. The inter-
boundary capacity of Eq. (9) is replaced by the constraint
(16b) in an effort to not violate the physical limits of
the inter-boundary capacity (i.e., CMAX

rj ). Furthermore,
constraint (16c) allows all demand to enter unless it is
physically restricted by the flow/storage capacity of the
region. Constraint (16d) simply ensures that the density
of each region is within physical limits, whereas (16e) is
the initial condition for the cumulative variables Sa(k)
and Sb(k).

The optimal transfer flows in problem (16) can be
realized using local controllers located at the boundary
of each region through traffic signal control as discussed
in [14] and [18]. In addition, the fact that the control
actions, i.e. the transfer flows qrjd(k) and the admitted
external flows d̃rd, take place only at the boundaries im-
plies that the homogeneity of each region is not affected
and their corresponding NFDs remain unchanged.



V. MILP Reformulation

In this section we approximate problem (16) with a
Mixed Integer Linear Program that can be solved to
optimality using standard mathematical programming
solvers. To achieve this we need to transform (16c), (6)
and (8) into an MILP form.

Equality (16c) is associated with the minimum of three
affine functions which can be handled by state-of-the-art
MILP solvers (e.g., Gurobi [22]) with built-in functions
that accurately model this operator using one binary
variable for each affine function and appropriate MILP
constraints [23].

To transform the product of variables in (8) into
MILP constraints we consider an approximation ap-
proach. Combining (8) with the fact that ur(ρr(k)) =
qr(ρr(k))/ρr(k) yields

qrjd(k) = ρrjd(k)ur(ρr(k)) (17)

which is comprised of variable ρrjd(k) and ur(ρr(k))
which is a nonlinear function of ρr(k). Hence, to approx-
imate (17) we consider segmentation of the density for
the function ur(ρr(k)).
Towards this direction, we introduce binary variables

bh
r (k) = {0, 1}, h ∈ H = {1, . . . , |H|}, r ∈ R and
k ∈ Kl which indicate whether ρr(k) ∈ [ρh−

r , ρh+
r ), where

ρh−
r and ρh+

r is the lower and upper bound of density
segment h, as shown in Fig. 2. Note that the spacing
is not uniform: b1

r(k) indicates whether region r is in
the free-flow so that ρ1−

r = 0 and ρ1+
r = ρC

r , while the
rest indicate the corresponding segment in the congested
state. Hence, it is true that∑

h∈H

bh
r (k) = 1, r ∈ R, k ∈ Kl (18)

By introducing continuous variables, ρh
r (k) ∈ [0, ρJ

r ] and
defining the constraints∑
h∈H

ρh
r (k) = ρr(k), r ∈ R, k ∈ Kl (19)

bh
r (k)ρh−

r ≤ ρh
r (k) ≤ bh

r (k)ρh+

r , h ∈ H, r ∈ R, k ∈ Kl (20)

we ensure that for each time-step and region only one
variable ρh

r (k) is non-zero and equal to ρr(k).
For example, consider the function ur(ρr(k)) as pre-

sented in Fig. 2 with the following parameters: ρJ
r = 90,

ρC
r = 30, qc

r = 1800 and |H| = 4. We can sepa-
rate ur(ρr(k)) in the following four density segments:
[0, ρC

r ], (ρC
r , 50], (50, 70] and (70, 90]. Now suppose that

at time-step k, ρr(k) = 40 veh/km with uf
r = 60 km/h

and ur(40) = 37.5 km/h. Hence, it is true that b2
r(k) = 1

and b1
r(k) = b3

r(k) = b4
r(k) = 0, as well as that ρ2

r(k) =
ρr(k) = 40 veh/km and ρ1

r(k) = ρ3
r(k) = ρ4

r(k) = 0.
Having defined segments for the density, one can ob-

tain qh−

rjd(k) and qh+

rjd(k), h ∈ H, k ∈ Kl, r ∈ R, j ∈ Jr,
which provide lower and upper bounds on the transfer

ρr50

ranges

urf

ur(ρr(k))

ρrJρrC

br1 k =0 br2 k =1 br3 k =0 br4 k =0

70

ur(ρr(k))

ur(40)

Fig. 2: The function f(ρr(k)) = qr(ρr(k))/ρr(k) that is
produced when considering a triangular NFD.

flows, defined as

qh−

rjd(k) = ρrjd(k)ur(ρh+

r )bh
r (k), (21)

qh+

rjd(k) = ρrjd(k)ur(ρh−

r )bh
r (k), (22)

where ur(ρh+

r ) and ur(ρh−

r ) are the corresponding lower
and upper bounds on the speed for density segment h.

Eqs. (21) and (22) contain a continuous/binary vari-
able product, so that each of these two equalities can be
equivalently transformed to a set of MILP inequalities
using the big “M” notation. Specifically, equalities (21)
and (22) are equivalent to (23) and (24) comprised of
four MILP constraints, respectively.

qh−

rjd(k) ≤Mbh
r (k) (23a)

qh−

rjd(k) ≤ ρrjd(k)ur(ρh+

r ) (23b)

qh−

rjd(k) ≥ 0 (23c)

qh−

rjd(k) ≥ ρrjd(k)ur(ρh+

r )− (1− bh
r (k))M. (23d)

qh+

rjd(k) ≤Mbh
r (k) (24a)

qh+

rjd(k) ≤ ρrjd(k)ur(ρh+

r ) (24b)
qh+

rjd(k) ≥ 0 (24c)
qh+

rjd(k) ≥ ρrjd(k)ur(ρh+

r )− (1− bh
r (k))M. (24d)

For both (23) and (24) it is true that M = CMAX
rj since

the transfer flows are upper bounded by the maximum
inter-boundary capacity. Combining (17), (23) and (24)
one can obtain the following lower and upper bounds on
qrjd(k): ∑

h∈H

qh−

rjd(k) ≤ qrjd(k) ≤
∑
h∈H

qh+

rjd(k) (25)

Hence, the larger the number of density segments |H|
used to approximate ur(ρr) is, the tighter the bounds on
the transfer flows will be.

Using the introduced variables b1
r(k) and ρ1

r(k) we can
also reformulate qr(ρr(k)) into the MILP equality

qr(ρr(k)) =
( qC

r

ρC
r

+ wr

)
ρ1

r(k)

+ wrρ
J
r (1− b1

r(k))− wrρr(k). (26)
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Fig. 3: Simulated urban area consisted from 16 regions.

Since we only provide bounds for the transfer flows, we
consider the flow conservation equation within region r ∈
R

q̂r(ρr(k)) =
∑

j ∈Jr

∑
d∈D

qrjd(k) (27)

to achieve better approximation to the final values of the
flows through the developed MILP formulation.

To summarize, the problem presented in Eq. (16)
can be reformulated into a MILP problem by replacing
Eqs. (6) and (8) with Eqs. (18)-(20) and Eqs. (23)-(27).
Hence, we get a system with linear inequality constraints
with the introduction of additional continuous and bi-
nary variables.

VI. Demand-management Formulation
To formulate the joint route guidance and demand

management problem we need to replace Eq. (16c) with
the following two equations,

d̃od(k) ≤ DMAX
od (28)

and
d̃od(k) ≤ Dod(k). (29)

By doing this, the optimization will manage to select
the amount of admitted external flows that minimize
the objective function. Hence, a portion of the vehicles
will remain at their origins if that option benefits the
overall network performance. Besides, under the MPC
framework, the optimization will select the volume of
admitted external flows that optimize the near-future
states. In other words, MPC will keep the densities of
each region up to the values that maximize the actual
outflow of each region, aiming at improving the overall
network performance.

VII. Simulation Results
In order to evaluate the performance of the proposed

method, a Manhattan-style network topology (see Fig. 3)
is considered consisting of 16 regions. The model pre-
sented in Eq. (11) is used in the simulations where
each region is assume to have identical NFDs [20] with
parameters: ρC

r = 30(veh/km), ρJ
r = 130(veh/km),

Lr = 1(km), vf
r = 60 (km/h) and qC

r = 1800 (veh/h).
Note that, in the simulated network the inter-boundary
capacity constraint is included as presented in Eq. (9)
and (??), with CMAX

rj = 2000 (veh/h) and a = 0.25. The
prediction and control horizons are chosen as mNp = 20
whilem = 5 for both proposed schemes where the simula-
tion sample time is Ts = 60s while the duration of whole
simulation experiment is120 min. In this context the
performance of the proposed MPC schemes is examined:
• RG: The route guidance with no demand manage-

ment MPC scheme as described in Section V.
• RGDM: The joint route guidance and demand

management MPC scheme as presented in Sec-
tion VI.

Note that the comparison of RG and RGDM takes place
under light, moderate and heavy demand conditions. In
all examined scenarios we consider four regions acting as
origins (1, 4, 11 and 16) and four as destinations (2, 8, 9
and 14). For all simulations we assume that the drivers
are 100% compliant, the network is initially empty, and
demand increases in three phases such that at the end of
each phase we let a small period of time for the network
to partially discharge. Finally, the formulated problems
are constructed and solved using the Gurobi solver [22].

In the topmost part of Table I we depict the cumu-
lative total time (CTT) of all vehicles compared with
the total time that would take the vehicles to reach
their destination assuming no congestion and no waiting
at the origins. Furthermore, the lower part of Table I
illustrates the average waiting time (AWT) of vehicles
before commencing their trips. Under heavy demand, it
is clearly indicated that the RGDM outperforms the RG
approach as it results in lower total times. The cumu-
lative total time of the RG grows exponentially as with
larger demand congestion emerges due to the absence
of congestion. On the contrary, RGDM maintains the
density of each region close to the critical value and
for this reason the observed travel times are close to
the shortest path ones. Furthermore, it is interesting to
observe that waiting time with the RG method due to
congestion is almost identical to the enforced waiting
with the RGDM method, but with significantly higher
travel times. Finally, analysis of the derived routes from
RGDM illustrated that cycles in the network are avoided
as the vehicles prefer to wait at their origins instead to
circulating within the network.

Fig. 4 illustrates the space-time diagram of density for
the three demand scenarios considered. Comparing the
three plots, it is evident that the use of demand man-
agement ensures that density is maintained around the
critical values, even under moderate and heavy demand.
Under the light demand scenario the performance of the
two methods is almost identical.

Figs. 5 illustrate the cumulative number of vehicles
that request to enter the network (generated) with the
number of vehicles that have completed their trip (exit-
ing vehicles) for the two methods. For the light demand



Demand Scenarios

Light Moderate Heavy

C
T
T RG 3.84 4.61 8.11

RGDM 3.84 3.96 4.58
Shortest Path 3.84 3.82 3.81

AW
T RG 0 0.01 0.63

RGDM 0 0.13 0.76

TABLE I: The cumulative total Time (CTT) and the
Average Waiting Time (AWT) for different demand sce-
narios.

scenario both methods work equally well as no congestion
occurs, but in both moderate and heavy scenarios, the
RGDM outperforms the RG method as vehicles can be
served with higher flow. Therefore, the RGDM method
can offer significant total time reductions with enhanced
network performance.

VIII. Conclusions

This work integrates the multi-region route guidance
framework with a demand management methodology
that aims to prevent traffic congestion by allowing ve-
hicles for a late departure. The performance evaluation
confirms the usefulness of the proposed integration as it
leads to substantial improvements in terms of network
operation and overall travel time reductions compared
to the ordinary route guidance framework.

Future research directions include the investigation
of the robustness of the proposed demand management
scheme against demand uncertainty and measurements
noise with respect to the estimation of the actual density
of each region. Furthermore, future work will analyse
how driver compliance affects the performance of the
proposed scheme and investigate new schemes that in-
centivize drivers to use demand management towards
optimal system performance.
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