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Abstract: In order to improve the braking performance of electric vehicles, a novel brake-by-wire
actuator based on an electro-magnetic linear motor was designed and manufactured. For the
purpose of braking force regulation accuracy and high robust performance, the state observer and
the anti-disturbance controller were designed in this paper after describing the actuator structure,
braking principle, and mathematical model. The simulation and experimental results showed that the
brake actuator responded rapidly, since its response time was only 15 ms. Compared to traditional
PID (Proportion Integration Differentiation) methods, the controller proposed in this paper is able
to regulate the braking force more precisely and has better anti-disturbance performance, thus the
braking process can be accurately controlled according to the driver’s demand. The vehicle simulation
results showed that the braking distance and braking time were shortened by 12.19% and 15.54%,
respectively compared with those of the conventional anti-lock brake system (ABS) in the same
braking conditions.

Keywords: electro-magnetic linear actuator; brake-by-wire; anti-disturbance; state observer;
control performance

1. Introduction

Vehicle braking technology continuous to improve due to the increasing concern about safety
performance. Active safety systems, such as anti-lock brake system (ABS), electronic brake force
distribution system (EBD), traction control system (TCS), yaw stability control system (YSC), and
electronic stability program system (ESP) were developed successively in recent decades. In particular,
the ABS has become the prerequisite equipment for passenger cars, and a large number of researchers
are constantly improving its performance [1–3]. While greatly improving, the brake system is also
becoming more complex and more difficult. More importantly, it still cannot regulate the braking force
independently and accurately between wheels according to the electrical vehicle (EV)’s regenerative
braking strategy, therefore it is not adapting to the development of EV [4]. The brake-by-wire (BBW)
systems, represented by electro-mechanical brake (EMB), electro-wedge brake (EWB), and electronic
hydraulic brake (EHB), are significant improvements introduced since the ABS was developed [5–7].
Because the BBW systems are able not only to improve the braking performance effectively but also to
adapt well to the regenerative braking system, the kinetic energy can be significantly recovered in EV
braking [8].

The mechanical/hydraulic connections between pedal and wheel actuator are replaced by signal
and power cable in the BBW system, and the wheel actuators are driven independently by motors.
Thus, the braking force of every wheel can be independently adjusted and changed, and the braking
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process can be regulated more flexibly than with a hydraulic system [9]. At present, many researchers
are studying how to optimize the structure of the BBW actuator and to improve the performance of the
controller. Peng focused on the EMB based on brushless direct current motor and designed a fuzzy
sliding mode controller for torque regulation [10]. Han designed a robust sliding mode controller to
improve the EWB performance [11]. Lee proposed a novel active brake judder attenuation strategy for
EMB and designed two attenuation algorithms to compensate the clamp force so as to eliminate the
judder which caused brake torque variations [12]. In addition, researchers such as Todeschini, Shin,
Lindvai, and Wang have proposed their own methods for the optimization design of the BBW actuator
and the improvement of the controller [13–16].

In the BBW solutions that have been proposed so far, both EMB and EWB are driven by rotary
motors. First, the motor torque must be enlarged by a gear mechanism and then be converted into
linear force by a ball-screw mechanism in the EMB. Similarly, the torque must be converted into linear
force by a ball-screw mechanism first and then the force must be enlarged using a wedge mechanism
in the EWB. Therefore, the structure of EMB and EWB are complex because they require both motion
conversion and torque/force amplification mechanisms at the same time [11,15]. On the other hand,
the EHB was improved with respect to the conventional hydraulic braking system by adding extra
solenoid valves. However, it still has a hydraulic pump, hydraulic pipelines, hydraulic valves, and
other hydraulic components, and the braking force of all wheels are still powered by the same hydraulic
pump, thus its braking performance is only marginally improved [17].

In order to effectively deal with the complex structure of EMB and EWB and further improve
the braking performance, a novel BBW actuator based on an electro-magnetic linear actuator (EMLA)
was designed in this work and was named direct-drive electro-hydraulic brake (DDEHB). Then,
the state observer and the anti-disturbance controller (ADC) were designed to improve response
time and control precision thus achieving a robust performance of the DDEHB. Afterwards, the
DDEHB characteristics and control strategy were tested by simulation. Finally, a co-simulation
model based on MATLAB/Simulink (R2014a) and AMESim (Rev 13) was built to validate the vehicle
braking performance.

2. Structure and Model of the DDEHB

2.1. Structure and Principle of the DDEHB

The DDEHB is a novel brake-by-wire actuator that utilizes a fast-responding EMLA to provide
brake force. The EMLA converts electrical energy into electro-magnetic force, and then the force is
amplified by an unequal-diameter hydraulic cylinder (UDHC) before being forced on the brake disc.
The structure of the DDEHB is shown in Figure 1 [18].
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Figure 1. Structure of the direct-drive electro-hydraulic brake (DDEHB). 

Figure 1 shows the EMLA body. The permanent magnets 2 are pasted on the body’s inner 

surface. The coil 3 moves along the axis when it is energized by the electromagnetic force. The plunger 

4 is connected with a coil by a pin and moves together with the coil. The motion of the plunger 

Figure 1. Structure of the direct-drive electro-hydraulic brake (DDEHB).
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Figure 1 shows the EMLA body. The permanent magnets 2 are pasted on the body’s inner surface.
The coil 3 moves along the axis when it is energized by the electromagnetic force. The plunger 4 is
connected with a coil by a pin and moves together with the coil. The motion of the plunger (direction,
velocity, and displacement) depends on the magnitude and direction of the coil current. Two friction
plates 8 are symmetrically installed on both sides of the brake disc 9, the right plate being connected
with piston 6, and the left plate being connected with a caliper. The disc 9 is fixed on and rotates with
the wheel. The brake fluid in cylinder 5 is compressed when the plunger moves left. The piston 6 is
driven to the left by compressed fluid and presses the disc to slow down the wheel.

As mentioned previously, the EMLA converts electrical energy into electromagnetic force, then
the force is enlarged by the UDHC and acts on the brake disc directly. Therefore, the structure of
the DDEHB is simpler than those of the EMB and EWB because a motion conversion mechanism
such as a ball-screw mechanism is unnecessary in the DDEHB [19]. More importantly, the working
mode of the traditional hydraulic brake, which is the typical ‘master cylinder boost–hydraulic pressure
transfer–wheel cylinder boost’, is completely abandoned in the DDEHB. Therefore, the response of the
DDEHB is faster than those of the EMB and the traditional hydraulic brake.

2.2. Model of the DDEHB

It is necessary to build accurate mathematical models for controller designing. The DDEHB
actuator can be divided into three subsystems, which are electric subsystem, magnetic subsystem, and
mechanical-hydraulic subsystem [20].

The electric subsystem can be equivalent to a closed circuit consisting of inductor, resistor, and
counter electromotive force, which is described by Equations (1) and (2):

Ue = Ee + Reie + Le

..
le (1)

Ee = BeleNe·ve = Keve (2)

where Ue is the voltage of the EMLA, ie is the coil current, Re is the coil resistance, Le is the coil
inductance, Ee is the coil counter electromotive force, Be is the magnetic induction intensity, le is the
coil single-turn length, Ne is the number of coil turns, and ve is the velocity.

If the magnetic hysteresis losses and end effects are ignored, the magnetic subsystem can be
simplified as a proportional system:

Fe = BeleNe·ie = Kmie (3)

where Fe is the electro-magnetic force.
In order to simplify the mechanical hydraulic subsystem, unimportant factors such as liquid

frictional drag and instantaneous shock are ignored. The simplified model can be described by
Equations (4)–(7) according to the literature [21]:

Fe = me
.
ve + Cve + pSl (4)

Sl
.
xl = Si

.
xi + 103

×
Sixi + V0

Kc

d(p− ps)

dt
(5)

ps =
Fs

Si
(6)

Fs = Kot·xi (7)

where me is the total mass of coil and plunger, C is the coil damping factor, p is the hydraulic pressure,
Sl is the cross area of the plunger, xl is the plunger displacement, Si is the cross area of the piston, xi is
the piston displacement, Kc is the equivalent distortion modulus of the hydraulic fluid, V0 is the initial
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volume of the cylinder, ps is the equivalent pre-pressure of the cylinder, Fs is the equivalent pre-force
of the cylinder, Kot is the stiffness of the sealing ring.

In the electric subsystem, if the state variable is defined as

x = ie

the input variable is defined as
u = Ue

The state equation can be described by Equation (8).{ .
x = −Re

Le
x− Ke

Le
ve +

u
Le

y = x
(8)

The piston presses the disc firmly during braking, so the displacement of the piston is maximum,
and the velocity is 0. If the state variables are defined as[

x1

x2

]
=

[
p
ve

]
the input variable is defined as

u = Fe

with
Kk = 103

×
Siximax + V0

Kc

the state equation of the mechanical-hydraulic subsystem can be described by Equation (9).
.
x1 =

Sl
Kk

x2
.
x2 = −

Sl
me

x1 −
C
me

x2 +
1

me
u

y = x1

(9)

The state equations of each subsystem and their interrelations are shown in Figure 2. If the EMLA
voltage is Ue, it generates the current ie in the coil. The coil will generate the electromagnetic force Fe,
inducing the displacement of xl. The force constant Km of the EMLA is affected by the displacement xl.
At last, the current ie changes because of the varied force constant Km and coil velocity ve.
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3. Control Method of the DDEHB

As shown in Figure 2, the DDEHB consists of a first-order system, a proportional system, and a
second-order system, in series. Therefore, a controller with double loop and anti-disturbance capability
was designed according to the series structure, which is shown in Figure 3. The outer loop is the
brake force (hydraulic pressure) controller, which calculates the coil current according to the target
brake force (target pressure) and actual brake force (actual pressure); the inner loop is the current
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controller, which calculates the voltage of the EMLA according to the target current calculated by the
outer controller and actual coil current.World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 5 of 15 
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The feedback variables influence the controller. The measured variables usually contain process
noise and measurement noise; however, there are often some variables that cannot be measured directly,
such as the pressure variation ratio. Therefore, a state observer was designed to eliminate the noises
and to estimate the pressure variation ratio.

3.1. State Observer

The state observer was based on a Kalman filter, which uses previous estimated variables and
current measured variables to estimate the current state variables. Redefine the state variables on the
basis of the Kalman filter as:

x =


x1

x2

x3

 =


ie
ve

p


If the input variable is defined as

u = Ue

the state equation of the DDEHB becomes

.
x = Acx + Bcu (10)

where

Ac =


−

Re
Le
−

Ke
Le

0
Km
me

−
C
me
−

Sl
me

0 Sl
Kk

0

Bc =


1
Le

0
0


The coil current and hydraulic pressure can be measured directly by sensors, so the measured

variables are defined as:

z =

[
z1

z2

]
=

[
ie
p

]
Then, the measurement equation is

z = Hcx (11)
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where

Hc =

[
1 0 0
0 0 1

]
The Kalman filter consists of a series of recursive formulas which use the measured variable z to

estimate the state variables x and effectively eliminate the process noise ω and measured noise v. The
state Equation (10) and measurement Equation (11) are discretized as Equations (12) and (13) using the
accurate discretization method:

xk = Axk−1 + Buk−1 +ωk−1 (12)

zk = Hxk + vk (13)

where k is the sampling time, and A, B, H are defined by Equations (14)–(16), which are discretized
state matrix, input matrix, and measurement matrix, respectively:

A = eAcT (14)

B = Bc

∫ T

0
eAcTdt (15)

H = Hc (16)

where T = 10−5s is the sampling time.
Define x̂−k as the prior estimation state, x̂k as the posterior estimation state modified by the

measured variable zk, P−k as the prior estimation error covariance, Pk as the posterior estimation
error covariance, Kk as Kalman gain, and Q and R as process noise and measure noise covariance
matrix, respectively.

According to the Kalman principle, the priori estimation state of the k step is

x̂−k = Ax̂k−1 + Buk−1 (17)

The priori estimation error covariance at the k step is

P−k = APk−1AT + Q (18)

The Kalman gain at the k step is

Kk = P−k HT
(
HP−k HT + R

)−1
(19)

The posteriori estimation state at the k step is

x̂k = x̂−k + Kk
(
zk −Hx̂−k

)
(20)

The posteriori estimation error covariance at the k step is

Pk = (I−KkH)P−k (21)

The priori estimation state x̂−k at the k step is calculated by Kalman recursive formulas according to
Equation (17) and the posteriori estimation state x̂k−1 at the k− 1 step. Then, the priori estimation state
x̂−k is corrected as posteriori estimation state x̂k according to the measured variable zk and Equation (20).
x̂k is able to effectively eliminate the measured noise and process noise and estimate the unmeasured
variable (pressure variation ratio).
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3.2. Anti-Disturbance Controller

3.2.1. Outer Controller

The design of the outer controller was divided into four steps, which were arrangement of
the transition process, calculation of variable differences, calculation of the initial output, and
disturbance compensation.

(1) Arrangement of the transition process.

There is usually a large difference between the actual braking force and its target value at the initial
stage of braking or a sudden change of the target value. If the controller output is directly calculated
from the difference between the actual and the target force, the actual braking force is easily overshot.
Therefore, a transition progress is designed for the target force, and the actual force is required to
track the transitional value so as to minimize or avoid the overshoot effectively. Han designed a
transition process which is complex and difficult to apply to fixed-point DSP (Digital Signal Processor)
(TMS320F2812) [22]. This work designed a similar transition process which is simpler and easier to be
implemented on fixed-point DSP.

If the target hydraulic pressure is po, its transition value is p∗o, and the differential of the transition
value is

.
p∗o, the transition process can be described as

p∗o(k) = [po(k) − p∗o(k− 1)]·re + p∗o(k− 1) (22)

.
p∗o(k) =

p∗o(k) − p∗o(k− 1)
he

(23)

where re is the tracking factor, and he = 10−5s is the sampling frequency.

(2) Calculation of the controller variable difference.

The state variable has been effectively estimated by the state observer:

x = x̂ =


x1

x2

x3

 =


ie
ve

p


So, the difference between the actual pressure and its transition value is

ep = x3 − p∗o (24)

The differential of the actual pressure can be calculated according to Equation (9):

.
p =

Sl
Kk

ve =
Sl
Kk

x2 (25)

So, the differential of the difference between the actual pressure and its transition value is

.
ep =

.
p−

.
p∗o =

Sl
Kk

x2 −
.
p∗o (26)

At last, the integral of the pressure difference can be calculated by

e0 =

∫ t

0
ep(τ)dτ (27)

(3) Initial output of the controller.
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Traditional PID controllers use a linear combination of difference, difference’s differential, and
difference’s integral to calculate the output. However, practical experience shows that using a linear
combination is not the best method. Therefore, a nonlinear combination was adopted, which was
designed by Equation (28) [23]:

uo0 = k0 f al(e0, a0, δo) + k1 f al
(
ep, a1, δo

)
+ k2 f al

( .
ep, a2, δo

)
(28)

where k0, k1, and k2 are the controller parameters, which are similar to the integral coefficient,
proportional coefficient, and differential coefficient in the PID controller, and f al(x, a, δ) is the nonlinear
function whose expression is

f al(x, a, δ) =

 x
δ(1−a) |x| ≤ δ

sign(x)|x|a |x| > δ

where the parameters a and δ must satisfy the following conditions:{
a0 < 0 < a1 < 1 < a2

δo = j·he, j = 1, 2, 3 · · ·

The values of these parameters used in this study are shown in Table 1.

Table 1. Controller parameters.

Parameter a0 a1 a2 δo k0 k1 k2

Value −0.73 0.69 3.74 3he 6.3 3.4 0.04

(4) Disturbance compensation.

In the actual working process, some factors will affect the controller performance, such as coil
temperature, frictional resistance, magnetic field end effect, liquid frictional drag, and instantaneous
shock. Furthermore, there are other unpredictable disturbances in actual working conditions. All these
factors were considered together as whole disturbance by Han [22]. In this work, the state observer was
able to eliminate the process noise and measurement noise effectively but was not able to compensate
the disturbance; therefore, the disturbance compensation method described in the literature [23] was
adopted, which is expressed by Equations (29) and (30).

e = z2 − x3 (29)

.
γo = −βo f al(e, 0.25, he) (30)

where γo is the whole disturbance, and βo is the perturbation parameter calculated by

βo ≈
1

8.6he2.2 (31)

Equation (30) can effectively estimate the total outer disturbance, so the final output of the outer
controller after compensation is

uo =
uo0 − γo

bo
(32)

where bo is determined by the system state equation, and its value is

bo =
Km

me
(33)
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3.2.2. Inner Controller

The transition process was designed in the outer controller, so it was unnecessary to redesign it
in the inner controller, and the output uo of the outer controller was delivered directly to the inner
controller as input variable. Also, the state variable ie of the inner loop was estimated simultaneously
by the state observer, so the design of the inner controller was simpler. The inner controller was similar
to the outer controller, which was described by Equations (34)–(41).

Input variable : ii = uo (34)

Controller variable error : ei = x1 − ii (35)

Initial output : ui0 = k· f al(ei, ai, δi) (36)

Disturbance estimation : e = z1 − x1 (37)

Disturbance estimation :
.
γi = −βi f al(e, 0.25, he) (38)

Disturbance estimation : βi ≈
1

1.6he1.5
(39)

Final output : ui =
ui0 − γi

bi
(40)

Final output : bi =
1
Le

(41)

4. Simulation and Experimental Test

4.1. Simulation and Experimental Test of the DDEHB

In order to verify the feasibility of the DDEHB and the controller proposed in this paper, the
ELMA was first manufactured and tested. The assembled ELMA and its main components are shown
in Figure 4, and its main parameters are listed in Table 2. The electromagnetic properties were tested
firstly. During the test, the ELMA voltage was fixed to 24 V, but the duty cycle of the H-bridge was
changed from 0 to 100%, so the coil current also changed from zero to the maximum.
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Table 2. Parameters of the EMLA.

Parameter Value

EMLA diameter/mm 60
EMLA length/mm 70
EMLA voltage/V 24
Coil resistance/Ω 0.7615

Coil inductance/µH 279.8
Peak current/A 25

The force characteristics of the ELMA are shown in Figure 5. The output force is zero when
the current is small because the electromagnetic force is insufficient to overcome the friction and
it is proportional to the current once the electromagnetic force is greater than the friction. In the
fitting curves, also shown in the figure, the primary coefficient is the ELMA force constant, and the
constant term is the friction resistance. The force constant is slightly smaller if the coil is in the initial
position and does not affect the DDEHB performance because the output force is only needed to
overcome the movement resistance in this position. The force constant is very close to 15 when the
coil is in the working position, thus the DDEHB is able to provide sufficient force with the help of the
unequal-diameter hydraulic cylinder.
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After completing the ELMA test, a DDEHB co-simulation model and a prototype were established
to verify the feasibility of the DDEHB and the controller described previously. The co-simulation
model was based on Simulink and AMESim. The Simulink was used to establish the controller
strategy including state observer and anti-disturbance controller, the AMESim was used to establish the
DDEHB model including ELMA, unequal-diameter hydraulic cylinder, and brake caliper. The DDEHB
prototype is shown in Figure 6, and its main parameters are listed in Table 3. The brake caliper
was modified from a hydraulic unit and fastened to the ELMA by bolts; a digital signal processor
TMS320F2812 (Texas Instruments, Dallas, TX, USA) was used as the controller chip, and a current
sensor was used to measure the coil current. Due to space limitations for the caliper, it was not possible
to measure the piston force directly, therefore a hydraulic sensor was used to measure the caliper
force indirectly.

Table 3. Parameters of the DDEHB.

Parameter Value

Piston diameter/mm 38
Plunger diameter/mm 6

Max pressure/mPa 10
Max braking force/N 10,343 (µ = 0.38)

Max piston pressure/N 27219
Electromagnetic force/N 339

Firstly, the response characteristics were tested by simulation and experimental analysis. The target
pressure was set to 5 mPa, and the results are shown in Figure 7. From the simulation curve, ADC
experimental curve, and PID experiment curve, it can be seen that the DDEHB responded very quickly.
Its response time was 15 ms, which is not only less than that of the conventional hydraulic brake, whose
response time was 100 ms, but also less than that of the EMB, whose response time was 63 ms [24].
This shows that the DDEHB has a responsive advantage. Secondly, it can be seen that the state observer
was able to reduce the measurement noise effectively by comparing the measured and the estimated
data. Therefore, the ADC controller can improve control accuracy with smoother and more accurate
feedback variables. Finally, the ADC controller was able to effectively suppress the overshoot thanks
to the design of the transition process; in contrast, the PID controller does not have transition process
and state observer, so its experiment curve showed obvious overshoot and significant fluctuations.World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 11 of 15 
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The anti-disturbance capability of the ADC was also tested, as shown in Figure 8. During the
experiment, the pressure was kept stably at 5 mPa, but the measuring data were changed artificially
to 6 mPa at 20th ms, so as to simulate the disturbance. As it can be seen from two curves, the ADC
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responded more quickly to the disturbance and presented almost no flutter, while the PID controller
responded more slowly and showed larger fluctuations. This indicates that the ADC could effectively
improve the anti-disturbance ability of the DDEHB.
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At last, a tracking experiment was designed to verify the pressure tracking capability. The target
pressure was a sinusoidal periodic signal with maximum value of 4 mPa and cycle time of 1000 ms.
The simulation and experimental results are shown in Figure 9, with a partial enlargement are shown in
Figure 10. The pressure-tracking characteristics showed that the ADC was able to track the target value
accurately. The experimental results agreed with the simulation results, indicating that the ADC was
able to effectively control the hydraulic pressure or braking force. In addition, the high-pressure liquid
might leak form the connection between EMLA and caliper, because the EMLA and the caliper were not
an integral structure. However, the experimental results showed that the ADC was still able to control
the pressure perfectly, indicating that it has a good anti-disturbance performance. For comparison, the
tracking results of the PID controller are also shown in Figures 9 and 10. It can be seen from these
figures that the anti-disturbance ability of the PID was obviously worse than that of the ADC and the
target pressure could not be tracked accurately.World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 12 of 15 
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4.2. Simulation of Vehicle Performance 

The simulation and experimental results showed that the DDEHB is technically feasible and has 

the potential to improve a vehicle performance. Especially, the DDEHB more easily implements the 

anti-lock braking function than conventional hydraulic brake systems (conventional ABS). In order 
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Figure 9. Tracking performance of the DDEHB.
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4.2. Simulation of Vehicle Performance

The simulation and experimental results showed that the DDEHB is technically feasible and has
the potential to improve a vehicle performance. Especially, the DDEHB more easily implements the
anti-lock braking function than conventional hydraulic brake systems (conventional ABS). In order
to research the anti-lock performance of a vehicle equipped with the DDEHB, co-simulation vehicle
models with the DDEHB or the conventional hydraulic brake were established using Simulink and
AMESim. The initial velocity was set to 30 m/s, the road maximum adhesion coefficient was set to 0.45,
the target deceleration was set to 6 m/s2, and the other parameters of the vehicle are listed in Table 4.

Table 4. Vehicle parameters.

Parameter Symbol/Unit Value

Vehicle mass M/kg 1367
Center of gravity Hg/mm 375

Axle base l/mm 2400
Front axle base lf/mm 1056
Rear axle base lr/mm 1344

Shortly after the start of braking, both systems activated the anti-lock function. The velocity
and deceleration are shown in Figure 11, and the wheel speed and slip rate are shown in Figure 12.
The conventional ABS adopts the logic threshold control strategy, so the pressure in the wheel cylinder
continues to circulate according to the “buck–keep–boost–keep” mode, and the wheel slip rates are
maintained in a reasonable range (0.1–0.3) to prevent the wheels from locking. Therefore, it can be seen
from the curves that the deceleration, wheel speed, and slip rate changed dramatically. In contrast,
the DDEHB precisely controls the hydraulic pressure after identifying the road conditions, and the
slip rates are maintained at their optimum values; therefore the deceleration, wheel speed, and slip
rate are smoother than for the conventional ABS [25]. The final simulation results are listed in Table 5.
We observed that the braking distance and braking time of the DDEHB were shortened by 12.19% and
15.54% compared with those of the conventional ABS, because the DDEHB allowed full road adhesion.

Table 5. Brake distance and brake time.

Brake System Brake Distance/m Brake Time/s

Conventional ABS 123.85 8.56
DDEHB 108.75 7.23

Performance improvement 12.19% 15.54%



World Electric Vehicle Journal 2019, 10, 44 14 of 16
World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 13 of 15 

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

 

Times/s

D
ec

el
er

at
io

n/
m
·s

-2

0

5

10

15

20

25

30
a

ABS
a

DDEHB

v
ABS

 V
el

oc
it

y 
/m

·s
-1

v
DDEHB

 

Figure 11. Velocity and deceleration. 

Shortly after the start of braking, both systems activated the anti-lock function. The velocity and 

deceleration are shown in Figure 11, and the wheel speed and slip rate are shown in Figure 12. The 

conventional ABS adopts the logic threshold control strategy, so the pressure in the wheel cylinder 

continues to circulate according to the “buck–keep–boost–keep” mode, and the wheel slip rates are 

maintained in a reasonable range (0.1–0.3) to prevent the wheels from locking. Therefore, it can be 

seen from the curves that the deceleration, wheel speed, and slip rate changed dramatically. In 

contrast, the DDEHB precisely controls the hydraulic pressure after identifying the road conditions, 

and the slip rates are maintained at their optimum values; therefore the deceleration, wheel speed, 

and slip rate are smoother than for the conventional ABS [25]. The final simulation results are listed 

in Table 5. We observed that the braking distance and braking time of the DDEHB were shortened 

by 12.19% and 15.54% compared with those of the conventional ABS, because the DDEHB allowed 

full road adhesion. 

0 1 2 3 4 5 6 7 8 9

200

400

600

800

1000

 

Times/s

S
pe

ed
/n
·m

in
-1

0.2

0.4

0.6

0.8

1.0

s
ABSs

DDEHB


ABS


DDEHB

 S
li

p 
ra

te

 

Figure 12. Speed and slip rate. 

Table 5. Brake distance and brake time. 

Brake system Brake Distance/m Brake Time/s 

Conventional ABS 123.85 8.56 

DDEHB 108.75 7.23 

Performance improvement 12.19% 15.54% 

5. Conclusions 

In this paper, a novel brake-by-wire actuator and its control method were studied. The 

simulation and experimental results showed that this actuator has good prospects. Its main 

advantages are described below. 

Figure 11. Velocity and deceleration.

World Electric Vehicle Journal 2019, 10, x FOR PEER REVIEW 13 of 15 

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

Times/s

D
ec

el
er

at
io

n/
m
·s-2

0

5

10

15

20

25

30
aABSaDDEHB

vABS

 V
el

oc
ity

 /m
·s-1

vDDEHB

 
Figure 11. Velocity and deceleration. 

Shortly after the start of braking, both systems activated the anti-lock function. The velocity and 
deceleration are shown in Figure 11, and the wheel speed and slip rate are shown in Figure 12. The 
conventional ABS adopts the logic threshold control strategy, so the pressure in the wheel cylinder 
continues to circulate according to the “buck–keep–boost–keep” mode, and the wheel slip rates are 
maintained in a reasonable range (0.1–0.3) to prevent the wheels from locking. Therefore, it can be 
seen from the curves that the deceleration, wheel speed, and slip rate changed dramatically. In 
contrast, the DDEHB precisely controls the hydraulic pressure after identifying the road conditions, 
and the slip rates are maintained at their optimum values; therefore the deceleration, wheel speed, 
and slip rate are smoother than for the conventional ABS [25]. The final simulation results are listed 
in Table 5. We observed that the braking distance and braking time of the DDEHB were shortened 
by 12.19% and 15.54% compared with those of the conventional ABS, because the DDEHB allowed 
full road adhesion. 

0 1 2 3 4 5 6 7 8 9

200

400

600

800

1000

Times/s

Sp
ee

d/
n·

m
in

-1

0.2

0.4

0.6

0.8

1.0

sABSsDDEHB

ωABS

ωDDEHB

 S
lip

 ra
te

 
Figure 12. Speed and slip rate. 

Table 5. Brake distance and brake time. 

Brake system Brake Distance/m Brake Time/s 
Conventional ABS 123.85 8.56 

DDEHB 108.75 7.23 
Performance improvement 12.19% 15.54% 

5. Conclusions 

In this paper, a novel brake-by-wire actuator and its control method were studied. The 
simulation and experimental results showed that this actuator has good prospects. Its main 
advantages are described below. 

Figure 12. Speed and slip rate.

5. Conclusions

In this paper, a novel brake-by-wire actuator and its control method were studied. The simulation
and experimental results showed that this actuator has good prospects. Its main advantages are
described below.

(1) The DDEHB is able to control the brake force accurately, quickly, and independently, therefore,
it is able to accurately control the braking process.

(2) The proposed state observer is able to eliminate the noise and estimate the state
variables accurately, and the proposed anti-disturbance controller is able to accurately compensate
the disturbance.

(3) The simulation results showed that the DDEHB is able to reduce the braking distance and the
braking time significantly, in contrast to the conventional hydraulic brake system.
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