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Abstract The focus of this study is to explore the statis-

tical distribution models of high-speed railway (HSR) train

delays. Based on actual HSR operational data, the delay

causes and their classification, delay frequency, number of

affected trains, and space–time delay distributions are

discussed. Eleven types of delay events are classified, and a

detailed analysis of delay distribution for each classifica-

tion is presented. Models of delay probability delay prob-

ability distribution for each cause are proposed. Different

distribution functions, including the lognormal, exponen-

tial, gamma, uniform, logistic, and normal distribution,

were selected to estimate and model delay patterns. The

most appropriate distribution, which can approximate the

delay duration corresponding to each cause, is derived.

Subsequently, the Kolmogorov–Smirnov (K–S) test was

used to test the goodness of fit of different train delay

distribution models and the associated parameter values.

The test results show that the distribution of the test data is

consistent with that of the selected models. The fitting

distribution models show the execution effect of the

timetable and help in finding out the potential conflicts in

real-time train operations.

Keywords High-speed railway � Train delay cause �
Actual operation data � Distribution model

1 Introduction

Since 2008, China’s high-speed railway (HSR) has grown

significantly owing to its advantages over other modes of

transportation; these include large transport capacity, low

energy consumption, and high degree of punctuality.

Railway passenger terminals and HSR lines have devel-

oped into networks; all these factors could improve the rail

transport operations in terms of quantity and quality.

In the process of creating an HSR timetable, the con-

flicts between different trains over network resources

should be eliminated. Ideally, trains are supposed to run

according to a timetable without any conflict. However,

delays are often unavoidable owing to human-related

errors, interference from operating environments or facili-

ties, and equipment-related events. Compared with road

and air transportation, railways have a stricter order of line

resources; that is, any delay would affect several trains and

cause a series of delays.

For high-speed lines in China, once the delay is more

than 1 min, the train would be marked as a delay train.

According to the data from the Chinese Guangzhou Rail-

way Corporation, during March to November in 2015, the

total arrival and departure delay time are 54,327 min in

Changsha station and 77,802 min in Guangzhou station.

On the one hand, train delays would reduce the quality of

transportation services and increase the cost of railway
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operations. On the other hand, they would increase the

travel time of trains and cause inconvenience to passengers.

Accurately analyzing the impact of the delay of HSR trains

is conducive to improving the management level of HSR

transportation, and is an important guarantee that HSR will

provide quality transportation services to society.

The railway delay mechanism could be revealed by the

delayed train records [1]. Using the actual train operation

data, this paper performs a statistical distribution analysis

of the HSR train delays, including the various distribution

functions of train delays caused by different delay events.

In particular, related parameters of these delay distribu-

tions were also estimated to describe the current delay

state of the high-speed trains. The main contributions

include (1) preliminary analysis of the causes of delays

and the overall situation of HSR train delays as a foun-

dation for further studies and (2) establishing distribution

models and parameter estimations of delays to serve as

the basis for timetabling and simulation studies of train

operations.

The remainder of this paper is organized as follows.

Section 2 reviews the current studies on the train operation

disturbance. Section 3 introduces the structure of the delay

record data. Section 4 presents the results of the causes and

statistical characteristics of HSR train delays. Section 5

proposes the statistical models for the distribution of train

delay time, and presents distribution model selection and

parameter estimation results. Finally, conclusions are pre-

sented in Sect. 6.

2 Literature review

HSR train operation disturbance has received extensive

interest, as reflected in the literature on railway trans-

portation management, and most of the scholars have

focused on the prediction of disturbance, simulation

research of disturbance, and theoretical models of delay

propagation. With the development of computer science

and data technology, quantitative research on train per-

formance based on operational data has become popular.

However, owing to the difficulty of obtaining train opera-

tion records, most of these studies are based on simulated

or partial data [2].

In the simulation and theoretical research domain, sim-

ulation software, such as LUKS [3], RailSys, and Open-

Track [4], are generally used to simulate the operation of

trains. However, the specific disturbance values are mostly

set on the basis of qualitative methods. Keiji et al. [5]

formulated a train operation simulation model for the

Tokyo Metropolitan Area by taking into account the

interaction between the trains and passenger-boarding

model at each station. Weik et al. [6] provided a strict

mathematical proof of the Strele formula for the estimation

of knock-on delay. Weng et al. [7] established a regression

tree model to predict train delays. This research is focused

on urban rail transit; however, the operating environment

of HSR is much more complex.

In terms of quantitatively studying the effects of dis-

turbance based on data-driven methods, the existing studies

focused on the distribution of the delay time. Scholars had

used the lognormal, exponential, or Weibull distributions

to fit the train delay duration distribution [8]. First, Sch-

wanhäußer et al. [9, 10] proved that the distribution and

propagation of the primary delay probability follows a

negative exponential distribution. From the historical

operation data of the Dutch railway, Yuan [11] found that

the distribution of train arrival and departure delay fit a

lognormal distribution curve. On the basis of the train

operation data, Xu et al. [12] used the zero-truncated

negative binomial (ZTNB) distribution to simulate and

predict the probability of the daily delay in train operation.

However, this research did not explain the model effect.

Meng and Goverde [13] put forward an approach to

reconstruct train delay propagation based on the records of

the Dutch railway operation data. However, the data covers

only for 1 month.

In summary, there is a growing number of studies about

train delay based on actual train data. However, there is

rarely statistical analysis and distribution modeling of

Chinese HSR train delays. Studies of HSR train delays in

China would contribute to an improvement in the man-

agement of train operation.

3 Data description

3.1 Data source

Train delay data, including data on four HSR routes, were

derived from the train operation database of China Railway

corporation. After removing invalid data (accounting for

4.4% of the total), which lacks the records of the delay

reasons, there are still 11,452 delayed trains. That is to say,

all the trains in this work are delayed trains.

3.2 Introduction to railway lines

The details about the constituent parts of the four lines, as

shown in Fig. 1, are

• Beijing–Guangzhou High-Speed Railway (B–G HSR):

total length of 998.5 km, from Chibi station to South

Guangzhou station; this includes the lines within the 14

stations on the route and connecting lines;
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• Guangzhou–Shenzhen High-Speed Railway (G–S

HSR): the line of 175.1 km runs from South Guangz-

hou station to North Shenzhen station and has five

stations;

• Guangzhou–Shenzhen Intercity Railway (G–S ICR):

there are six stations on the 153.4 km line from

Guangzhou station to Shenzhen station;

• Shenzhen–Xiamen High-speed Railway (S–X HSR):

the 362.5 km line connecting North Shenzhen station to

Zhao’an station has thirteen stations.

3.3 Time period

The sample period of the delayed trains is from April 21,

2014, to December 17, 2015. A sample of the data format

is presented in Table 1. Here, we just consider the positive

delays, meaning that trains departing and arriving earlier

than their schedule time are not taken into account.

4 Analysis of train delays

4.1 Causes of delays

According to the records of the China Railway Corpora-

tion, there are over 40 kinds of events causing train delays,

such as heavy rains, catenary faults, and braking equipment

failures. In this article, the causes of train delays were

classified into the following eleven types: human error

(HE); foreign body invasion (FBI), bad weather (BW);

natural disaster (ND); passenger influence (PI); vehicle

fault (VF), traction and power-supply system fault (TPSF);

dispatching and control system fault (DCSF); communi-

cation and signal system fault (CSSF); line fault (LF), and

other problems (OP). The detailed explanations of the

causes are as follows:

1. HE: unexpected maintenance (related departments

require a temporary operation interruption, which is

not scheduled, to maintain or examine the tracks,

vehicles, or other facilities); physical discomfort of

the driver; departure before the maintenance opera-

tion completed; and a stop at a neutral Sect.

2. FBI: hitting animals; pedestrians stepping on tracks;

track or catenary faults.

3. BW: heavy rain, wind, or snow.

4. ND: flood, landslide, fire, or earthquake.

5. PI: temporary stop owing to passage of key trains;

passenger aid; passenger transferring, and large

passenger volume.

6. VF: fault in any component of a vehicle.

7. TPSF: faults of catenary, pantograph, hauling system,

braking system, and so on.

8. DCSF: faults in automatic train control (ATC)

system, centralized traffic control (CTC) system,

Chinese train control system (CTCS), monitoring

system, risk prevention system, and so on.

9. CSSF: faults of signals, transponders, communication

equipment, and so on.

10. LF: faults in tracks, switches, and tunnel drainage

facilities, train shaking (owing to damage to track

parts), track settlement, and so on.

11. OP: faults in the air-conditioning equipment and so

on.

North Chibi

East Yueyang

South Changsha

East Hengyang

GuangzhouSouth 
Guangzhou

North Shenzhen

Shenzhen

Chaoshan

Zhao̕ an

B-G HSR

G-S HSR

G-S ICR

S-X HSR

Fig. 1 Schematic of four HSR lines

Table 1 Format of the original data sample

Train

number

Origin or destination Scheduled

timea
Actual

timea
Delay reasons Responsible

department

Date

D2312 North Shenzhen Station 16:55 17:14 A balloon on the catenary None 20140501

G1135 South Guangzhou

Station

18:20 18:37 Speed limitation due to heavy

rain

None 20140521

aThis time might be the departure or arrival time
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4.2 Correlation analysis of the factors

The classifications of these causes for delays were based on

experience. In order to explain and evaluate the classifi-

cation results, the correlation coefficients between each

pair of the factors were calculated. By calculating the delay

time of delayed trains owing to different causes on indi-

vidual days, a date-delay time matrix was obtained. The

columns of the matrix are populated by the delay time

because of different causes, whereas the rows contain the

dates.

The results of the correlation matrix between different

factors are calculated with Eq. (1) and are presented in

Table 2. The largest absolute value in the correlation

matrix is 0.241; this means that most factor pairs are nearly

uncorrelated. These results confirm that the statistical

characteristics of these individual delay factors could be

considered independently.

qij ¼
E Xi � E Xið Þ½ � � Xj � E Xj

� �� �� �

rXi
rXj

; ð1Þ

where Xi and Xj are the delay times due to different causes

on a particular day, and the subscripts i and j, which are

different column numbers in the matrix, denote different

causes; rXi
and rXj

are standard deviations of the delay

time owing to different causes; and E Xð Þ denotes the

expectation.

4.3 Overall statistical analysis of delay data

Based on different causes for delays, the overall statistical

analysis of the delayed train data (see Table 3) shows that a

total 1,615 delay events took place during the sample

period and 11,452 trains were affected; this led to an

average delay of 42 min per train.

Table 2 provides the following results. First, TPSF

(19.0%) and DCSF (22.1%) have the largest probabilities

of occurrence of delay; they are followed by FBI (14.9%),

BW (16.8%), and VF (14.0%). These five factors accoun-

ted for 72.8% of all delay occurrences. Second, some of the

low-frequency causes, such as ND and CSSF, lead to

serious delays and affect a large number of trains. Third,

some causes, such as ND (standard deviation of 81.23)

exhibit greater randomness, and, thus, it is difficult to

predict how long the disruptions will last. However, most

of these factors generally lead to regular delays; for

example, TPSF has a standard deviation of 26.78. Finally,

81.0% of the delays last for less than 60 min, while 90% of

the delays are less than 91 min. A kurtosis of 90.60 for the

train delays and a huge gap between the maximum delay

(1199 min) and the 75 percentile delay (49 min) prove that

the distribution is biased to the left as shown in Fig. 2).

4.4 Chronological analysis of delays

The total delay time and the number of delayed trains are

calculated for each day of a 2-year period, as shown in

Fig. 3; owing to holidays and festivals, the peaks are nearly

coincident. In February, May, and October, there are some

grand holidays and festivals, such as Spring Festival and

National Day in China. On these days, there is huge

demand for transportation. More high-speed trains are

dispatched, even at night, and the regular midnight main-

tenance is skipped to transport more passengers. The lack

of maintenance and large train density lead to more

infrastructure-related faults, and more trains are affected

when disruptions occur. Second, delays take place more

often in spring and summer, because the operating envi-

ronment is worse in these seasons. More heavy rains and

winds in these seasons cause more damage of exposed

equipment, and limit train speed.

Table 2 Correlation matrix between various factor pairs

HE FBI BW ND PI VF TPSF DCSF CSSF LF OP

HE 1.000 - 0.004 - 0.017 - 0.014 - 0.016 - 0.025 0.026 0.160 - 0.009 - 0.006 - 0.008

FBI - 0.004 1.000 - 0.024 - 0.015 - 0.007 0.015 - 0.021 - 0.006 0.011 - 0.026 0.005

BW - 0.017 - 0.024 1.000 - 0.019 0.005 0.103 - 0.025 - 0.028 - 0.014 0.198 - 0.011

ND - 0.014 - 0.015 - 0.019 1.000 - 0.006 - 0.016 0.010 0.236 - 0.006 0.003 - 0.004

PI - 0.016 - 0.007 0.005 - 0.006 1.000 - 0.020 0.024 - 0.016 - 0.008 - 0.016 - 0.006

VF - 0.025 0.015 0.103 - 0.016 - 0.020 1.000 - 0.014 - 0.024 - 0.004 0.008 - 0.006

TPSF 0.026 - 0.021 - 0.025 0.010 0.024 - 0.014 1.000 0.023 - 0.010 0.241 0.043

DCSF 0.160 - 0.006 - 0.028 0.236 - 0.016 - 0.024 0.023 1.000 - 0.012 - 0.004 - 0.009

CSSF - 0.009 0.011 - 0.014 - 0.006 - 0.008 - 0.004 - 0.010 - 0.012 1.000 - 0.009 - 0.003

LF - 0.006 - 0.026 0.198 0.003 - 0.016 0.008 0.241 - 0.004 - 0.009 1.000 - 0.006

OP - 0.008 0.005 - 0.011 - 0.004 - 0.006 - 0.006 0.043 - 0.009 - 0.003 - 0.006 1.000
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5 Distribution intensity and parameter
estimations

To evaluate a timetable or add disturbance events in the

simulation process of train operations, it is necessary to

consider the intensity of disruptions or disturbances. The

intensity, on the one hand, means the number of delayed

trains in a time period. On the other hand, it also stands for

how long the delay event lasts.

5.1 Duration distribution of delayed trains in given

time period

Primary delay probability has been proved to follow a

negative exponential distribution [14–16].

Table 3 Overall statistical analysis of delayed train data

Causes Frequency

(%)

Number of delayed trainsa (%) Total delay timea (%) Delay per traina Max delay SD Skewness Kurtosis

HE 2.60 4.13 3.15 32 205 29.45 2.92 10.34

FBI 14.86 14.77 11.68 33 229 26.99 2.77 10.83

BW 16.78 27.69 35.12 53 333 50.45 1.90 3.85

ND 1.73 7.14 11.87 69 1,199 81.23 7.50 86.93

PI 3.53 3.45 2.05 25 91 13.48 2.15 6.58

VF 13.99 9.48 7.21 32 204 26.10 2.28 6.23

TPSF 19.01 13.87 10.72 32 183 26.78 2.38 8.21

DCSF 22.11 12.78 12.53 41 257 41.24 1.94 3.38

CSSF 1.30 1.96 1.49 32 74 17.13 0.48 - 0.76

LF 3.72 4.38 3.97 38 162 26.24 1.39 1.75

OP 0.37 0.33 0.21 26 56 9.87 0.45 1.05

Overall 100 11,452a 476,984 min 42 1,199 43.38 5.48 90.60

aIt involves primary and knock-on delays

350

300

Delay 

200

150

100

50

0

N
um

be
r o

f a
ffe

ct
ed

tra
in

s

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C
um

ul
at

iv
e 

fr
eq

ue
nc

y

Number of affected trains
Cumulative frequency

0 50 100 150 200 250 1200

Delay (min)

Fig. 2 Number of delayed trains along with delay time

(a) (b)

D
el

ay
 ti

m
e 

(
10

00
m

in
)

04/21 06/09 07/27 09/17 11/06 12/26
Date

20

12

9

6

3

0
02/14 04/05

Delay time in 2014
Delay time in 2015

N
um

be
r o

f a
ffe

ct
ed

tra
in

s

04/21 06/09 07/27 09/17 11/06 12/26
Date

280

160

80

120

40

0
02/14 04/05

Delay trains in 2014
Delay trains in 2015

Fig. 3 Total delay time (a) and the number of delayed trains (b) on individual days

192 Y. Yang et al.

123 J. Mod. Transport. (2019) 27(3):188–197



f tð Þ ¼ ke�kt; t[ 0;
0; t\0;

�
ð2Þ

where k is the rate parameter.

In addition, a zero-truncated negative binomial distri-

bution (ZTNB), as expressed in Eq. (5), was applied to

model and forecast the probability of the number of

delayed trains per day [12]:

P yijyi [ 0ð Þ ¼ C yi þ 1=að Þ
C yi þ 1ð ÞC 1=að Þ acið Þyi

1þ acið Þ� yiþ1=að Þ 1� FNB 0ð Þ½ ��1;

ð3Þ

where a is the over-dispersion parameter; ci is the

estimated number of delayed trains for the ith

observation and FNB yið Þ is the probability of negative

binomial distribution when the frequency is yi [12].

Moreover, ci is calculated as

ci ¼ exp b0 þ b1x1i þ � � � þ bnxnið Þ; ð4Þ

where xni is the frequency of the ith cause.

5.2 Distribution of delay duration

A specific distribution should be selected to model the

possible delay duration for a train. The data collected from

April 21st, 2014 to December 17th, 2015 were divided into

two groups: the first 12 months (7,872 or 68.7% of the

observations, or the so-called modeling data) were used for

establishing the model and parameter estimation, and the

following 8 months (3,580 or 31.3% of the observations;

so-called testing data) for the hypothetical test and calcu-

lating the relative values of goodness of fit. All the cal-

culation processes subsequent were implemented on the

R-project program.

5.2.1 Selection of candidate distributions

One of the typical causes, bad weather (BW), was taken as

an example to explain the method for candidate distribution

selection.

First, the empirical density histogram, nuclear curve,

and cumulative distribution of BW were used to intuitively

determine candidate distributions. As shown in Fig. 4, the

majority of the delay durations were less than 100 min,

presenting a left-skewed distribution.

In addition, Cullen-Frey graph (Fig. 5) were introduced

to quantitatively compare the skewness and kurtosis of the

target dataset and the candidate distributions. Owing to the

uncertain distribution and skewness and kurtosis values of

the dataset, a nonparametric bootstrap was performed in the

Cullen-Frey graph by using the argument boot [17]. Some

of the distributions (normal, logistic, etc.) have only one

possible value for the skewness and kurtosis, while others

(lognormal, gamma, and beta) have areas of possible val-

ues, presented as lines or areas. Based on the result of BW

in Fig. 5, with a positive skewness and a kurtosis not far

from 5 [18], three types of distributions were taken into

account: lognormal, exponential, and gamma. With the

same analysis and calculation for all the causes, Table 4

shows the results of candidate distributions for the

remaining causes of delay.
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5.2.2 Parameter estimation by maximum likelihood

estimation (MLE)

After confirming the candidate distributions, suitable fitting

and parameters of the distribution models were needed.

Figure 6 presents the comparison of the candidate distri-

butions of BW by four classical goodness-of-fit plots [19].

As these plots show, the lognormal distribution might be a

suitable choice for BW. In the Q–Q plot, none of the three

types of candidate distributions fit the tail well.

For quantitative analysis of the best fitting distribution,

the maximum likelihood estimation (MLE) method is used.

The probability density functions of lognormal, exponen-

tial, and gamma distributions are as follows:

Lognormal: f x; l; rð Þ ¼ 1

xr
ffiffiffiffiffiffi
2p

p e� ln x�lð Þ2=2r2 ; ð5Þ

where l and r are the logarithmic mean and standard

deviation of the variables.

Exponential: f x; kð Þ ¼ ke�kx; x� 0

0; x\0

�
; ð6Þ

where k is the rate parameter that represents the frequency

of events.

Gamma: f x; a; bð Þ ¼ xða�1Þð1=bÞaxð�x=bÞ

C að Þ ;

CðaÞ ¼
Z1

0

ta�1

et
dt; ð7Þ

where a is the shape parameter and b is the scale

parameter.

Maximum likelihood equation is defined as

L hð Þ ¼ f x1; x2; x3; . . .; xn hjð Þ; ð8Þ

where x1; x2; x3; . . .; xnð Þ is the sample data set and h is the

unknown parameter set. A ĥ that could maximize L hð Þ or
ln L hð Þ should be found. For example, in case of a

lognormal distribution, the likelihood function is

LL l; r x1; x2; . . .; xnjð Þ ¼ �
X

k

ln xk þ LN l; r ln x1; ln x2; . . .; ln xnjð Þ

¼ C þ LN l; r ln x1; ln x2; . . .; ln xnjð Þ;
ð9Þ

where C is a constant.

The estimated parameters are:

l̂ ¼
P

k ln xk

n
; ð10Þ
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Fig. 5 Cullen and Frey graph with a bootstrapped value of 1,000 for BW data

Table 4 Candidate distributions for different causes

Causes Candidate distributions

BW Lognormal, exponential, gamma

CSSF Uniform

DCSF Lognormal, exponential, gamma

HE Uniform, normal

LF Normal, logistic

ND Logistic, lognormal, gammaa

OP Lack of data

PI Lognormal, exponential, gamma

TPSF Lognormal, exponential, gamma

FBI Lognormal, gamma

VF Lognormal, gamma

All Lognormal, exponential, gamma

aAccording to the original data, natural disaster may cause, in total,

500 min of delay on one train; here, only the delay times less than

500 min, which constitute the left part of the distribution, are taken

into account
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r̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k ln xk � l̂ð Þ2

n

s

: ð11Þ

By calculation, the maximum ln L hð Þ values of BW are

- 7,045.654 (lognormal distribution), - 7,273.524

(exponential distribution), and - 7,180.135 (gamma

distribution). Lognormal distribution has the maximum

ln L hð Þ value; thus, it is the most suitable distribution. In

this case, l = 3.469 and r = 0.793. Therefore, the

probability distribution function for the delay of one train

caused by BW is as follows:

f x x[ 0jð Þ ¼ 1

x� 0:793�
ffiffiffiffiffiffi
2p

p e� ln x�3:469ð Þ2=2�0:7932 :

ð12Þ

The estimated results of ln L hð Þ of the candidate

distributions for different causes are shown in Table 5.

The bold numbers are the maximum values, indicating that
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Fig. 6 Four types of plots for comparing the candidate distribution for BW. A density plot gives the shapes of the original and candidate

distributions through a histogram; a CDF plot shows the fit of the cumulative distribution functions; a Q–Q plot and a P–P plot present the

goodness of fit of the candidate distribution

Table 5 Results of ln L hð Þ according to the candidate distributions of causes

Causes Lognormal Exponential Gamma Uniform Logistic Normal

BW 2 7,045.654 - 7,273.524 - 7,180.135 – – –

CSSF – – – a – –

DCSF 2 3,928.369 - 4,092.195 - 4,040.919 – – –

HE – – – a – - 382.606

LF – – – – - 1,308.703 2 1,302.678

ND - 3,970.601 – 2 3,959.025 – - 4,095.903 –

OPa – – – – – –

PI 2 1,098.614 - 1,243.095 - 1,116.006 – – –

TPSF 2 4,042.877 - 4,208.79 - 4,128.324 – – –

FBI 2 4,750.112 – - 4,865.146 – – –

VF 2 1,925.123 – - 1,975.979 – – –

All 2 29,451.52 - 30,594.82 - 30,050.77 – – –

aThe amount of data is not adequate
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the distribution has the best fit. In addition, not every

distribution has an MLE value. Table 6 shows the

estimated parameter results of the best distributions.

5.2.3 Model testing

The Kolmogorov–Smirnov test (K–S) [20] is used to

evaluate these distributions. As shown in Eq. (13), the

statistic is the maximum difference between the empirical

piecewise function of the dataset and the empirical distri-

bution function of a theoretical distribution. In this paper,

the significance level of the test is 0.05, and the critical

value of D is calculated by Eq. (14) when the sample size is

large enough (generally greater than 50). According to the

K–S test, if D is not greater than D0:05, the null hypothesis

(H0) is accepted. The null and alternative hypotheses in the

test are defined:

H0 Delay time data fitting the identified distribution;

H1 Delay time data not fitting the identified distribution.

D ¼ MaxjF1 xð Þ � F2 xð Þj; ð13Þ

D0:05 ¼
1:36
ffiffiffiffi
m

p ; ð14Þ

where F1 xð Þ and F2 xð Þ are the empirical distribution

functions of the modeling dataset and the candidate dis-

tribution, respectively, and m is the sample size.

The modeling data were applied to conduct the K–S test;

because all the models passed the K–S test, the null

hypothesis (H0) is accepted. Subsequently, the testing of

fitting models was calculated. Using the same method, the

testing data were introduced to match the specified prob-

ability distributions of every cause by the K–S test. The

results are listed in Table 7.

The test results show that the distribution models fitted

in this paper all passed the K–S test, except for CSSF. The

model could accurately describe the general law of HSR

disturbance affecting the train delay time distribution, and

has good prediction ability and practical application. As for

CSSF, the reason might be (1) the data scale is not ade-

quate for the precise calculation and (2) the probability of

its occurrence is too random, and, thus, the uniform dis-

tribution cannot be accurately fitted.

Table 6 Parameter estimate results of the best distributions

Distribution Cause Parameter estimate D D0:05

l SE r SE

Lognormal BW 3.469 0.020 0.793 0.014 0.025 0.029

DCSF 3.290 0.026 0.771 0.018 0.036 0.043

PI 3.149 0.026 0.447 0.018 0.050 0.083

TPSF 3.218 0.021 0.662 0.015 0.031 0.042

FBI 3.243 0.020 0.654 0.014 0.034 0.039

VF 3.187 0.033 0.707 0.024 0.032 0.049

All 3.378 0.009 0.751 0.007 0.013 0.015

a SE b SE

Gamma ND 1.935 0.090 0.030 0.002 0.049 0.058

Uniform Max Min

CSSF 74 3 0.093 0.109

HE 97 7 0.064 0.076

l SE r SE

Normal LF 37.897 1.558 26.162 1.102 0.062 0.074

Table 7 Results of the K–S test for testing data

Cause Sample size D D0:05 Pass

BW 976 0.038 0.044 Yes

DCSF 477 0.056 0.062 Yes

PI 124 0.018 0.122 Yes

TPSF 529 0.054 0.059 Yes

FBI 497 0.057 0.061 Yes

VF 302 0.031 0.078 Yes

ND 272 0.075 0.082 Yes

CSSF 70 0.173 0.163 No

HE 148 0.099 0.112 Yes

LF 163 0.079 0.107 Yes

All 3,558 0.020 0.023 Yes
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6 Discussion and conclusions

In this paper, the statistical train delay status and distri-

bution models of HSR were investigated by using the

actual operational data. Based on the categorization of

delay events, different distribution models were fitted and

the related parameters were estimated. The main findings

and contributions are as follows:

1. Based on the actual performance of the trains on high-

speed lines, the train operation delay status were

extracted and analyzed.

2. Distributions of delay time were modeled for eleven

causes for delay, and all the most suitable fittings were

screened by the MLE method and K–S test.

3. The models were checked with the operation data. The

test results show that most of the distribution models

fitted in this paper had good practical applicability, and

could accurately fit the impact of HSR disturbance on

train delay time, which had great practical application

value.
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