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Understanding passengers’ responses to fare changes is the basis to design reasonable price policies. This work aims to explore
retiming responses of travelers changing departure times due to a prepeak discount pricing strategy in the Beijing subway in
China, using smart card records from an automatic fare collection (AFC) system. First, a new set of classification indicators is
established to segment passengers through a two-step clustering approach. Then, the potentially influenced passengers for the fare
policy are identified, and the shifted passengers who changed their departure time are detected by tracing changes in passengers’
expected departure times before and after the policy. Lastly, the fare elasticity of departure time is defined to measure the retiming
responses of passengers. Two scenarios are studied of one month (short term) and six months (middle term) after the policy. The
retiming elasticity of different passenger groups, retiming elasticity over time, and retiming elasticity functions of shifted time
are measured. The results show that there are considerable differences in the retiming elasticities of different passenger groups;
low-frequency passengers are more sensitive to discount fares than high-frequency passengers. The retiming elasticity decreases
greatly with increasing shifted time, and 30 minutes is almost the maximum acceptable shifted time for passengers. Moreover, the
retiming elasticity of passengers in the middle term is approximately twice that in the short term. Applications of fare optimization
are also executed, and the results suggest that optimizing the valid time window of the discount fares is a feasible way to improve
the congestion relief effect of the policy, while policy makers should be cautious to change fare structures and increase discounts.

1. Introduction

1.1. Motivation. The Beijing subway is suffering from serious
congestion due to booming travel demand, especially during
the morning peak hours (7:00 a.m.∼9:00 a.m.). To relieve
overcrowding, transit agencies implemented a discount pric-
ing measure in 2016 that provided a 30% discount for
passengers who checked in before 7:00 a.m. It was the first
case in China to use time-dependent pricing policy in rail
transit systems, and the measure was only a pilot policy
at certain stations. After one year of the experiment, the
discount rose from 30% to 50%, and the number of trial
stations increased from 16 to 23. However, the policy is still
in the pilot stage and is not expanding to a larger scale

because the responses of passengers to the discount fare
remain unclear, and no obvious reduction in peak demand
is observed.

Differential pricing is an important and effective measure
in traffic demand management (TDM). Whether pricing
strategies work depends strongly on the responses of travelers
to fare changes. Normally, the fare elasticity of demand is
used to describe the relationship between demand changes
and fare changes at an aggregate level. It is useful to estimate
demand changes for system-wide and long-term pricing
policies. However, for regional and short-term (valid time
window is short) fare strategies, it is hard to capture the
reactions just by the fare elasticity of demand. For instance,
the prepeak discount price in the Beijing subway is valid
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only before 7:00 a.m., which mainly influences passengers’
departure time choices and will not result in obvious changes
in demand.There is a great need to consider the microscopic
travel responses of passengers to fare changes and then
provide support to establish a precise pricing scheme.

Passengers’ travel responses to fare changes are very
complex and related to various external factors, such as
service quality, travel preference, and socioeconomic factors.
Previous works on travel responses are usually specific to a
certain region or transit system and assume that the external
factors remain the same before and after the policy. Unfor-
tunately, few works on travel responses for transit systems in
China are found, as the Beijing subway is the first case to apply
time-of-day pricing policy in transit systems. Additionally,
traditional works are mainly based on statistical methods
using SP/RP (Stated Preference/ Revealed Preference) survey
data, which greatly limits the potential to study passengers’
travel responses in depth. The RP survey only creates a static
and sampled picture of the traffic pattern in a short time
period, which introduces errors as people’s travel behavior
changes over time [1]. The SP survey, based on fictitious
situations, may have large errors because the choices of
interviewees may be different from their actual behaviors.
As a benefit of the application of the AFC system in rail
transit, the smart card data produced from the AFC system
provide valuable insights into the usage of public transport
and help to better understand travel demand, behavior, and
other purposes [2]. The AFC system not only records the
accurate trip information of each passenger but also makes
it possible to track behavior changes of passengers before and
after a new policy.

Hence, this work aims to explore the retiming behavior
of passengers for departure time choice and determine which
passengers will travel early and how long they will shift from
their original departure time to enjoy the discount fare. The
main contributions of this work contain three aspects. (1) A
new set of classification indicators, which is obtained directly
from smart card data, is proposed to segment passengers
into groups and then improve the objectivity of classification.(2)The shifted passengers who change their departure time
are identified by comparing the expected departure times
before and after the fare policy, and then the retiming
elasticity of different passenger groups, retiming elasticity
over time, and retiming elasticity functions of shifted time are
measured for the Beijing subway travelers. (3) According to
the results of the retiming elasticity, the active time threshold
of the discount fare is very short, and valid time window
optimization of the discount price is very important to
improve the effect of the policy.

1.2. Literature Review. Passengers’ responses to fare changes
are usually indicated by demand changes. The fare elasticity
of demand, which is widely used to measure passengers’
responses to fare changes, is defined as the percentage change
in travel demand due to a 1% change in fare. A large number
of case-specific fare elasticities have been studied for traffic
and transportation systems. Bresson et al. noted that the
elasticity of transit demand can generally be regarded as -0.3
without considering case-by-case differences [3]. However,

travel responses are complex and comprehensive behaviors
of passengers, not only for price but also related to various
external factors. Other works have indicated that demand
elasticity varies greatly in terms of variables such as age, time
span, transit mode, time of day, original fare level, income
level, trip distance, data paradigm, type and direction of a
price change, and demographic and geographic conditions
[4–8]. To reduce the influence of external factors, the case-
specific fare elasticity should usually be measured when
designing new fare schemes for a certain traffic system. For
rail transit systems, Holmgren studied 81 transit fare-change
cases and found a price elasticity of demand of -0.38 [9],
while Hensher extracted a value of -0.395 from 319 cases [7].
Schimek obtained an elasticity of -0.34 using data collected
from 198 transit agencies during 1991 and 2012 [10]. According
to the data collected in the UK, Paulley et al. showed that
the price elasticities of the metro are -0.26 for peak hour
demand and -0.42 for off-peak demand. Furthermore, they
recommended a range of short-term transit fare elasticities
of -0.2 to -0.5 (-0.15 to -0.3 for peak hours) and -0.37 for the
metro in a predicted scenario [11]. However, considering the
large variety in the values, it has been suggested that a range
rather than an absolute value should be provided for fare
elasticities [8]. Taking the fare change in the Beijing subway
in 2014 as the background, in which a distance-based fare is
applied to replace the flat fare structure, Wang et al. studied
the price elasticities of demand bymeans of an SP survey with
4210 samples, and the values of the price elasticities ranged
from -0.232 to -1.143 [12]. Furthermore, Wang et al. studied
the price elasticities of different distances on weekdays and
weekends using smart card data one week before and after a
fare change [13]. Comparing the results of these two works,
the elasticities from the SP survey are much larger than
those revealed via the smart card data. In conclusion, the
fare elasticities of demand differ greatly for different regions,
transit systems, and time periods (such as peak and off-peak).
It is necessary to measure the fare elasticities for a specific
traffic and transit system when designing new fare schemes.

Another approach to measure the travel responses of
passengers to fare changes is using travel behavior models.
The fare is treated as a factor that affects the travel behaviors
of passengers, such as the departure time choice, travel mode
choice, and travel route choice. The most commonly used
travel behavior models are the logit-based model and its
derivative models. Mahmassani et al. [14], Lu et al. [15, 16],
and Lu and Mahmassani [17] developed a multicriteria route
and departure time user equilibrium model for dynamic
traffic assignment applications with variable toll pricing.
Aboudina et al. proposed an integratedmodel by considering
departure time choice and travel route choice [18], while
Habib et al. integrated departure time choice and travel
mode choice [19]. Based on these travel behavior models,
changes in demand can be estimated by a traffic assignment
model, and fare policies can be evaluated through demand
changes [20]. Simulations are usually used to examine the
aggregate impacts of differential pricingmeasures on a transit
or multimodal transport network. Liu and Charles noted
that the functionality of a simulation system depends on
its core choice model and its assumptions of individuals’
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Figure 1: Framework for studying passengers’ retiming responses to the prepeak discount fare.

“travel behavior,” e.g., a traveler’s response and sensitivity to a
peak fare surcharge alone or combined with changes in other
service attributes, such as onboard crowding and service
frequency [21]. However, the heterogeneity and microscopic
travel behaviors of passengers can be considered in these
methods, and some necessary attributes in themodel are hard
to obtain (such as personal attributes and travel character-
istics at the individual level). Due to the lack of advanced
and intelligent data acquisition equipment, most studies use
limited sample survey data or highly aggregated collection
data. The available data greatly limits the potential to study
the travel responses of passengers in depth.

With the wide application of AFC systems in public
traffic and transportation systems, massive and continuous
trip information can be obtained. The unique ID of smart
cards makes it possible to trace day-to-day behavior changes
of passengers at the individual level. Pelletier et al. under-
took a complete review of transit smart card research, and
they suggested that there was great potential for demand
management using card data [22]. Compared to survey data,
smart card data have outstanding characteristics for travel
behavior analysis, such as being accurate, continuous, and
trackable. However, there are also intrinsic limitations of
smart card data, including the absence of socioeconomic
properties (age, career, income, home/work location, etc.)
and travel information (trip purposes, trip chains, etc.) [2].
In recent years, many researchers have tried to mine indirect
and potential information from smart card data, such as
travel pattern analysis [23], trip purpose detection [24, 25],
and travel behavior analysis [26]. Although various studies

have been performed on smart card mining, the data have
rarely been used to study a practical policy. Hence, taking
the prepeak discount fare in the Beijing subway as the
background, this work aims to study the travel responses of
passengers for changing departure times for discount fares
by tracing the behavior changes of individual passengers
through the actual trip information from smart card data.

1.3. Organizations. Figure 1 provides the framework for ana-
lyzing the retiming responses of travelers under a prepeak
discount price policy. There are two important parts of
this work: passenger classification and retiming response
measurement. Though detailed trip information (such as
travel time, origin-destination, and fare) for each cardholder
can be obtained from smart card data, it is still difficult to
measure behavior changes at the level of individual travelers
for a huge number of passengers. Hence, an unsupervised
clustering approach is employed to classify passengers into
groups according to their impersonal travel characteristics
(such as trip times in a day or week). In regard to the retiming
response measurements, the potentially influenced travelers
who may be affected by the fare policy are detected first,
and then a before-and-after method is used to determine
which passengers shift their departure time. Once we obtain
these shifted passengers, a deeper analysis of the retiming
responses can be performed. Finally, applications of discount
price optimization in two aspects are provided.

The remainder of this paper is organized as follows.
Section 2 describes the background of the prepeak discount
price policy implemented in the Beijing subway, and the data
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Table 1: Development of the Beijing subway in the last decade.

Year Number of
lines

Network
length (km)

Annual
ridership
(billion)

Daily ridership
(ten thousand)

Growth rate
(%)

2008 8 200 1.22 332 /
2009 9 228 1.42 390 16.39
2010 14 336 1.85 506 30.28
2011 15 372 2.19 601 18.38
2012 16 442 2.46 673 12.33
2013 17 465 3.20 878 30.08
2014 18 527 3.39 929 5.94
2015 18 554 3.32 910 -2.06
2016 19 574 3.66 1003 10.24
2017 21 588 3.78 1035 3.27

Table 2: Prepeak discount price scheme in the Beijing subway.

Line Discount stations Number Discount percentage Valid time window
2016 2017 2018 2019

Line BT

TQ, LHL, LY, JKS, GY,
TZBY,

BLQ, GZ, SQ, CMDX,
GBD

11 30% 50% 50% 50% check in before
7:00 a.m.

Line CP NS, SHGJY, SH,
GHC, ZXZ 5 30% 50% 50% 50% check in before

7:00 a.m.

Line 6
BYHX, TZBG,
WZXYL, CF,

CY, HQ, DLP, QNL
8 / 50% 50% 50% check in before

7:00 a.m.

source is supplied. The clustering-based passenger classifica-
tion is shown in Section 3. Further, methods and rules for
identifying the potentially influenced travelers and shifted
passengers are provided first. Then, the retiming elasticity
for different passenger types, changes in retiming elasticity
over time, and retiming elasticity functions of shifted time
are measured in Section 4. Afterwards, two examples of opti-
mizing fare schemes and suggestions are given in Section 5.
Finally, conclusions and future works are summarized.

2. Background

2.1. Prepeak Discount Price Policy in the Beijing Subway.
The Beijing subway has been one of the largest and most
congested transit systems in China. In the last decade, the
length of the network expanded from 200 km to 588 km, and
the average daily ridership grew to more than 10 million [27],
as shown in Table 1. Although the train headway of certain
lines has been decreased to the minimum time (less than two
minutes), the limited transport capacity still cannot satisfy the
booming demand, especially during peak hours.

To relieve the heavy congestion during the morning peak
hours (7:00∼9:00 a.m.), a pilot discount pricing strategy was
first implemented in 2016 that provided a 30% discount for
travelers who checked in before 7:00 a.m. This policy was
tested at 16 stations located on Line BT and Line CP on
normal weekdays. This measure was designed to encourage

travelers to shift their departure time from peak hours to
prepeak hours and thus spread the demand more evenly
over the time period. Unfortunately, the effect of the policy
was not noticeable after one year of the experiment. In 2017,
the discount increased to 50%, and 8 new stations on Line
6 were added. At present, the same prepeak discount price
scheme with a 50% discount is still implemented at these
24 stations. Detailed information for the prepeak discount
price scheme is shown in Table 2, where the names of stations
are represented by acronyms (the same acronyms are used
hereinafter).

There exist many types of differential pricing patterns
with specific objectives, such as fare increases to increase
revenue.Themain reasons for only adopting a discount price
scheme in the Beijing subway have two aspects; the first and
most important one is to relieve peak congestion, and the
second is that managers do not want to shift congestion from
rail transit to bus or road traffic. It is not a wise choice to
ease subway congestion at the expense of congestion in other
traffic modes.

2.2. Impacts of the Policy on Demand. It should be clear
whether the discount policy has positive impacts (e.g., peak
reduction or peak shift) on travel demand before exploring
the retiming behavior in depth. If no obvious changes in
demand are observed, there is no need for further study of
the travel responses to fare changes. Considering that no
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Figure 2: Demand distributions of stations before and after the fare policy.

significant effectwas observedwhen the 30%discount pricing
strategy was applied in the first year (2016), this work only
focuses on the 50%discount fare strategy. A simple evaluation
of the demand distribution is provided to show an overview
of the influence of fare changes on demand. BYHX, CY, and
HQ stations are selected as the representative stations to show
the changes. The analysis time horizon (5:00 a.m. to 12:00
a.m.) is divided into equal lengths of 30 minutes that are
consecutively numbered from 1 to 14.

Figure 2 presents the distribution of station inflows at the
representative stations, in which the inflows are the average
values in all weekdays of amonth.The short term (onemonth
after the policy) and the middle term (six months after the
policy) are both explored. The following can be observed:(1)The percentage of peak demand exhibits a small decline
during peak hours, indicating that the pricing strategy has a
positive impact on managing ridership growth. (2)The peak
time inCYandHQstationsmoves forward,whichmeans that
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Table 3: Data structure of smart card transaction records.

Field Names Comments
GRANT CARD CODE Card ID
CARD TYPE Card type
TRIP START TIME Check-in time
TRIP ORIGIN LOCATION Origin station ID
DEAL TIME Check-out time
CURRENT LOCATION Destination station ID

the discount price can indeed influence travelers’ departure
times.

In summary, the prepeak discount pricing policy indeed
has positive impacts on travel demand, though to an unequal
extent on different stations. The reason for the discrepant
impacts may be that the demand structure for each station
is different, and passengers (such as commuters and irregular
travelers) have differential sensitivities to fare changes.

2.3. Data Source and Data Processing. The AFC system was
first equipped in Beijing on May 10, 2006, and has been used
in both bus and subway systems. Travelers should swipe their
smart cards when they check in and check out, and then
two transaction records are archived for a trip. The primary
information in the smart card transaction records used in this
work is represented in Table 3.

Due to the large number of smart card transaction
records, it is impossible to analyze travel behaviors by the
original data directly. Two steps of data preprocessing are
conducted before analysis. (1)The first step is data cleaning,
which aims to exclude useless records. There are six types
of smart cards in the Beijing subway, of which the one-
trip temporary card and card for work cannot link to a
constant cardholder; hence, the records related to these cards
are neglected. Moreover, records on weekends and holidays
are invalid because the prepeak discount price policy is
only implemented on normal weekdays. (2)The second step
is data conversion, which involves restructuring the trip
information for each cardholder. A trip is defined as a base
unit, which contains the origin and destination stations and
the corresponding arrival and departure times. If all trips for a
passenger in a period are extracted and sorted by the check-in
time, the consecutive trip sequences can be acquired.The trip
sequences can be easily used to compute travel indexes and
analyze travel behaviors for the subsequent retiming analysis.
An example of the trip sequences for a cardholder is shown
in Table 4.

Two different pricing schemes were implemented in the
Beijing subway, namely, a 30% discount in 2016 and a 50%
discount in 2017. Considering that there is no apparent effect
of the 30% discount pricing scheme, only the new pricing
plan (50% discount) started in 2017 is chosen for our analysis
in this work. To avoid the overlapping influence of the 30%
discount price in 2016, the 8 newly added stations located on
Line 6 are selected as our target stations, which are BYHX,
TZBG, WZXYL, CF, CY, HQ, YLP, and QNL stations.

Generally, time is needed for travelers to adjust their
behaviors in response to a new policy. In addition, seasonal
factors might affect travelers’ timing behaviors, such as
passengers being less willing to travel earlier in the dark
winter. Four months of smart card data are used in this study,
comprising onemonth before and after the policy (December
2016 and January 2017) for the short-term analysis and six
months before and after the policy (June 2016 and June 2017)
for the middle-term analysis.

3. Clustering-Based Classification
of Passengers

Passenger classification or market segmentation provides an
important method for travel behavior and traffic demand
analysis, which can be utilized to explore the regularity
and similarity for the same passenger group. Traditional
classifications are usually according to passengers’ travel or
personal attributes, such as trip purpose, age, occupation,
and income. However, the assumption that travelers with
similar personal or travel attributes will exhibit similar travel
behaviors is doubtful [28]. In this work, new segmentation
indexes produced directly from smart card data and an
unsupervised two-step clustering algorithm is employed to
segment passengers objectively. Then, it is able to explore
the responses of different passenger groups to the prepeak
discount fare policy.

3.1. Classification Indexes. Three aspects of travel behaviors
are considered for classification, travel intensity, temporal
travel characteristics, and spatial travel characteristics. The
fundamental rule for constructing indexes is that the variable
can capture the travel behavior differences of different pas-
senger groups.

(1) Travel Intensity. Travel intensity describes the usage of
passengers traveling by subway. The greater the intensity is,
the higher the loyalty of passengers on the subway. Travel
intensity is represented by three variables as following. These
travel indexes can be gathered directly from smart card
records.

(a) Number of trips per day represents the daily usage of
passengers traveling by subway.

(b) Travel days per week indicates the weekly usage of
passengers traveling by subway. Usually, the number
of travel days for commuters is larger than for other
types of travelers.

(c) Standard deviation of travel days per week is used
to measure the travel stability of passengers. Regular
passengers have higher stability.

(2) Temporal Travel Characteristics. Normally, travel time
can reflect the passenger types to a certain extent. For
instance, if the first-trip departure time of a passenger is
generally during the morning peak hours, he/she may be
a commuter. Temporal travel characteristics explain travel
behaviors related to time and are described by the three
following indexes.
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Table 4: An example of the trip sequences for a cardholder after data conversion.

Card ID Card Type Trip Sequence

28172180 normal
card

{(ADM, 12/1/2016 8:12:00, BJZ, 12/1/2016 8:29:00); (JGM, 12/1/2016
17:44:00, ADM, 12/1/2016 18:00:00); (ADM, 12/2/2016 8:17:00, BJZ,

12/2/2016 8:34:00); (ADM, 12/3/2016 8:09:00, BJZ, 12/3/2016 8:26:00);
(ADM, 12/4/2016 8:06:00, BJZ, 12/4/2016 8:23:00); (ADM, 12/5/2016

8:02:00, BJZ, 12/5/2016 8:18:00); (. . .) (. . .) (. . .)}
Table 5: Summary of classification indexes.

Dimension Classification index Unit Range of
value

travel intensity
travel days per week days/week (0, 5]

standard deviation of travel days per week none [0, 2.5]
number of trips per day trips/day [1, 9]

temporal travel
characteristics

start time of the first trip minute [300, 720]
standard deviation of the first-trip start

times none [0, 210]
activity duration per day minute [0, 1200]

spatial travel characteristics OD coverage rate none (0, 1]
trip distance (travel time) minute [10, 240]

(a) Start time of the first trip represents the median value
of the first-trip departure times of a passenger over a
long period.The reason for using the median is that it
is more robust than the average value due to outliers.
In addition, universal time is converted into minutes
(start time is midnight) for easy calculation (the same
for other time-related variables). In this work, the
earliest first-trip start time is 5:00 a.m. (operation
start time of Beijing subway), and the latest time is
12:00 a.m. Travel records later than 12:00 a.m. are not
considered for statistics of first-trip start time. Hence,
the range of the index is 300 to 720.

(b) Standard deviation of the first-trip start time mea-
sures the stability of the start time during a period.
Combined with the standard deviation of travel days
per week, it is easy to segment regular and irregular
travelers.

(c) Active duration time per day is the duration time
between the first-trip start time and the last-trip
end time in a day. The duration time can be used
to infer passenger types. For example, the duration
of commuters and workers is usually larger than
eight hours, while other types do not have apparent
characteristics. The maximum duration time per day
is the whole operation time, which is 1200 minutes
(5:00 a.m. to 24:00 a.m.).

(3) Spatial Travel Characteristics. Spatial travel characteristics
describe the discrepancies in travel space for different passen-
gers. For example, commuters always travel within a constant
origin-destination (OD) pair. Two variables are established to
describe the spatial travel characteristics of passengers.

(a) OD coverage rate is the percentage of the number of
traveled OD pairs to the number of trips. The smaller

the OD coverage rate, the higher the travel stability in
space. The range of coverage rate is from 0 to1.

(b) Trip distance is used to characterize the range of
passengers’ activities in space. Considering that the
fare structure in the Beijing subway consists of a
distance-based price pattern, the fare or travel time
is nearly proportional to the trip distance. In this
work, the travel time is used as a proxy variable for
the trip distance. According to the statistics of smart
card data, the maximum cost time of a trip for Beijing
subway travelers is almost 4 hours, and the minimum
is about 10 minutes. Hence, the range of the index is
from 10 to 240.

Table 5 provides a summary of these classification indexes,
in which the range of values is determined according to the
statistical results from smart card data. The index of travel
days per week, number of trips per day, activity duration per
day, and trip distance are the average value, while the start
time of the first trip is the median value.

3.2. Classification Method. Clustering is a kind of unsuper-
vised classification method for segmenting samples accord-
ing to the natural attributes of samples, without any a priori
classification rules. There are many clustering algorithms,
such as partitioning-based methods, hierarchical-based
methods, density-based methods, and grid-based methods
[29]. A clustering algorithm usually has distinctive charac-
teristics and is suitable for different types of data structures.
Considering that there are millions of travelers on the Beijing
subway in a day, efficiency is an important factor for choosing
a suitable clustering method. After a series of tests and
analysis, a hierarchical-based two-step clustering algorithm
is selected for its high computational efficiency and accuracy.
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Table 6: Center point for each group.

Travel indexes Group 1 Group 2 Group 3 Group 4 Group 5
average travel days per week 4.64 4.49 3.21 2.29 0.96
standard deviation of travel days per
week 0.27 0.39 1.31 0.74 0.24

average number of trips per day 1.88 2.25 1.76 1.72 1.41
start time of the first trip 484.98 474.90 474.61 554.62 364.47
standard deviation of the first-trip
start times 13.56 49.99 23.07 62.23 5.85

average activity duration per day 737.16 777.39 700.68 550.47 171.59
OD coverage rate 0.17 0.33 0.30 0.62 0.80

Table 7: Clustering results for different weekdays.

Date Percentage of each passenger group in all passengers(%)
Group 1 Group 2 Group 3 Group 4 Group 5

2016.12.5(Monday) 32.24 12.18 13.42 17.53 24.62
2016.12.6(Tuesday) 32.10 12.27 14.12 17.68 23.84
2016.12.7(Wednesday) 33.03 12.18 13.00 17.39 24.41
2016.12.8(Thursday) 31.65 12.75 13.45 17.78 24.36
2016.12.9(Friday) 32.72 11.82 13.25 17.46 24.75
Mean 32.35 12.24 13.45 17.57 24.39

The two-step clustering algorithm is an improvedmethod
based on the BIRCH (Balanced Iterative Reducing and
ClusteringUsingHierarchies)model, whose prominent char-
acteristics include the following: (1) the similarity within
objects is measured by log-likelihood distance, which is
suitable for numerical variables and categorical variables; (2)
a clustering feature tree (CFT), which is a kind of data storage
approach, is used to improve efficiency for big data; and (3)
the optimal number of clustering groups is automatically
determined according to the Akaike information criterion
(AIC) or the Bayesian Information Criterion (BIC). The
detailed information of this algorithm is provided in the
previous work [30].

3.3. Classification Results. Approximately 6.79 million card-
holders traveled by the Beijing subway in a month, and
approximately 2.9 million passengers traveled in a day.
Through data preprocessing and calculation, the travel
indexes shown above can be obtained for each cardholder.
The powerful statistical tool IBM SPSS Modeler is used to
segment passengers and has higher computational efficiency
for big data than other statistical tools. However, it is still
impossible to cluster all cardholders in a month due to
the large numbers. Here, two methods are used to improve
the clustering efficiency. (1) The first method is to reduce
the number of indexes and determine the key indexes.
The “Feature Selection” module in SPSS Modeler provides
a feasible method to achieve dimension reduction [29].
The Pearson correlation coefficient method in the “Feature
Selection” module is used to reduce the number of variables,
and the results show that the average trip distance can be
removed due to its low degree of importance. Then, the

number of indexes for classification is reduced to seven. (2)
The second method is sample reduction. Considering the
regularity and repeatability of subway travelers on different
days, cardholders on a single day are sufficient to represent
the characteristics of all travelers. All cardholders on June 12,
2017 (Wednesday), are chosen as our samples, with a total of
2,951,497 passengers.

The range of the number of groups is set to 2 to 15 for
clustering, the similarity measurement within objects is the
log-likelihood distance, and the clustering principle is the
BIC rule. The optimal result is five clustering groups. The
center point of each group is provided in Table 6.

Five consecutive weekdays are selected to validate the
stability of the clustering results, as shown in Table 7. It can be
seen that the differences of clustering results are small, which
validates the stability of clustering.

Figure 3 shows the distributions of the classification
indexes for each passenger group. It can be seen that
there are great differences among different passenger groups,
indicating that the indexes capture the heterogeneity of the
passengers.

The objective of this clustering is to analyze the travel
characteristics of similar passengers. According to the vari-
able distributions of each clustering group and the travel
characteristics of subway passengers, we attempt to identify
the passenger types that correspond to each clustering group
to better understand passengers’ behaviors.

(1) Group 1 (Regular Commuting Travelers). The passengers
in group 1, who travel 4.64 days per week and 2 trips per
day on average, have the most distinctive characteristics. In
addition, the standard deviations of their first-trip departure
times and OD coverage rates are small, indicating that they
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Figure 3: Distributions of the classification indexes for different passenger groups.
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travel steadily in time and space (OD). These passengers are
defined as regular commuting travelers.

(2) Group 2 (Working Travelers).The travelers in group 2 are
similar to those in group 1, but there are slight differences.
Group 2 has a larger standard deviation of the first-trip
start times (49.99 minutes), indicating that these passengers
may have flexible working times. Moreover, they have the
largest trip counts per day (2.25), meaning they have high
dependence on the subway. These passengers are defined as
working travelers who travel not only for commuting but also
for business.

(3) Group 3 (Frequent Travelers). The travel days per week
for passengers in group 3 are smaller than those of the two
prior groups, and the standard deviation of the travel days
is widely distributed (Figure 3(b)). The temporal stability is
weak, but the travel OD stability is strong (Figure 3(g)).These
passengers can be inferred to be frequent travelers.

(4) Group 4 (Low-Frequency Travelers). Group 4 has a dis-
persed distribution on travel days, is unstable for the first-trip
start times, and has a high OD coverage rate, which indicate
that they use rail transit only for noncommuting trips. These
passengers are considered low-frequency travelers whose
travel purposes are daily living trips, such as visiting friends,
entertainment, and shopping.

(5) Group 5 (Occasional Travelers). Compared to the other
groups, group 5 has a low travel frequency in a day and a
week and a large OD coverage rate and standard deviation
of the first-trip start times. There is great randomness and
variety for these travelers. Hence, the passengers of group 5
are defined as occasional travelers.

4. Retiming Response to Discount Price

Take the prepeak discount fare policy of Beijing subway in the
year of 2017 as background. Firstly, this section introduces
how to identify the potentially influenced passengers and
departure time shifted travelers for the discount fare. Then,
combining with the results of passenger classification in the
above section, retiming elasticities for different passenger
groups are measured and studied in depth.

Normally, passengers’ responses to fare changes are
indicated by demand change, and the fare elasticity of
demand is used to capture demand changes to fare changes
in transportation systems. However, the motivation in this
study is not to examine the demand change but instead
the passengers’ departure time rescheduling behaviors due
to the discount fare. The fare elasticity of departure time
is defined to describe the sensitivity of passengers to shift
their departure times due to fare changes and is named the
retiming elasticity.

Note that the departure time in this work means the
check-in time of passengers traveling by subway, not the
actual departure time of passengers starting from their actual
origin. Considering that the discount price measure in the
Beijing subway is only valid in the early morning (before

7:00 a.m.), the retiming elasticity can be understood as the
response of passengers by moving forward their first-trip
departure times.

4.1. Influenced Passenger Detection. Because the discount
price measure in the Beijing subway is only implemented in
certain stations and valid in a short timewindow, only a small
portion of travelers could be affected by the policy. Hence,
identifying the potentially influenced passengers (target con-
sumers of the policy) is the first step for further analysis.
Three aspects are considered for detecting the potentially
influenced passengers:

(a) Passengers should travel from the target stations with
discount prices. In this case, only the 8 stations located
on Line 6 are the target stations. Passengers who did
not travel from these stations were excluded along
with their corresponding smart card data.

(b) Passengers should always start their first trip during
peak hours. The target consumers of the discount
price are travelers during peak hours. The first-trip
expected departure time can be utilized to check
whether a passenger always travels during peak hours.
According to the work of Peer et al., the median value
of the departure times over a period can be regarded
approximately as the expected departure time [31, 32].

(c) Passengers should be residents who live around the
target stations. The discount price mostly influences
the residents who live around the target stations, not
occasional travelers who travel from those stations.
Zou et al. [25] and Barry et al. [33] show that the
first-trip origin station in a day is usually located
near the home locations of passengers. The detection
algorithm proposed in the work of Zou et al. [25] is
used to identify the home location for each passenger,
and then the residents who live around the target
stations can be obtained.

Figure 4 shows the process for extracting the potentially
influenced passengers (the smart card ID) from all travelers.
Two scenarios of different time ranges after policy application
are studied in this work, including the short term (one
month later) and themiddle term (six months later). Figure 5
provides the number of potentially influenced passengers. To
analyze changes in passengers’ travel behaviors, the selected
passengers should travel in both months. Note that the
selected passengers are not all influenced passengers because
some passengers may lose their cards or change their home
location during the study period. However, the selected
sample covers almost 85% of all travel demand, and it is
sufficient for our study. It can be found that there is a small
increase in the influenced passengers in the middle term,
which may be ascribed to seasonal influence.

4.2. Shi�ed Passenger Identification. Shifted passengers are
travelers who change or move forward their departure times.
The expected departure time (EDT), which describes the
desired time that passengers want to travel, is utilized to
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Figure 6: Schematic diagram of shifted passengers identification.

check whether a passenger is shifted. If the first-trip EDT of a
passenger falls into the peak hours before the policy and shifts
to the prepeak hours afterwards, then he/she can be regarded
as a shifted passenger. The schematic diagram for identifying
shifted passenger is provided in Figure 6. However, it is
impossible to know the actual EDT for passengers. Referring
to the work of Peer et al., the median value of departure times
over a period can be regarded approximately as the EDT [32].

A shifted passenger is detected by the rule of

𝛿𝑖 = {{{
1, if 𝑡𝑖 < 7:00 a.m. 𝑎𝑛𝑑 𝑡󸀠𝑖 ≥ 7:00 a.m.0, 𝑒𝑙𝑠𝑒 (1)

where 𝛿𝑖=1means passenger (card ID), 𝑖 is a shifted passenger,
and 𝑡󸀠𝑖 and 𝑡𝑖 are the corresponding EDT before and after fare
changes, respectively.
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Figure 8: Time-varying retiming elasticities of all passengers.

Figure 7 shows the time-dependent distribution of shifted
passengers. It can be concluded that (1) passengers with an
EDT of 7:00∼7:10 a.m. are mostly likely to travel earlier for
the discount; (2) the number of shifted passengers decreases
greatly with time going on (shifted time rising), which
conforms with our intuition on travel time choices; (3)
approximately 90% of these passengers travel of 7:00∼8:00
a.m., which means that the effective time range of the fare
policy is very limited; and (4) there is an obvious increase
in shifted passengers in the middle term compared with the
short term, indicating that time is an important factor in the
effects of the fare policy.

4.3. Retiming Elasticity. Similar to the definition of the fare
elasticity of demand, the retiming elasticity can be defined
as the percentage change in ridership in response to a one
percent change in fare. However, this metric uses a different
measure of ridership, which is not the volume of demand but
the number of passengers who change their departure times.
By comparing the EDT of each passenger before and after
the fare policy implementation, the shifted passengers can be

determined. Then, the retiming elasticity can be formulated
as a point elasticity, as shown in

𝜆 = (𝑑1 − 𝑑0) /𝑑0(𝑓1 − 𝑓0) /𝑓0 (2)

where 𝜆 is the retiming elasticity; 𝑑0 is the ridership before
the fare change, and 𝑑1 is that after the change; and 𝑓0 and 𝑓1
are the corresponding fares. Here, the change in ridership is
equal to the number of shifted passengers, and the fare change
is 50%.

Figure 8 shows the time-dependent retiming elasticities
without considering passenger types. The following can be
observed: (1) Passengers travelling between 7:00 a.m. and
7:20 a.m. are more willing to change their departure times
for the discount, but the elasticity decreases greatly with time
(increase in shifted time). (2) It is difficult for passengers to
depart 30 minutes earlier for the discount (the elasticity falls
to -0.1); supposing that -0.1 is the lower bound of the elasticity
to determine the acceptable transfer time, 30 minutes can be
regarded as the maximal time that passengers can accept. (3)
Theretiming elasticity in themiddle term is larger than that in
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Figure 9: Distribution of retiming elasticities of different passenger groups in the short term.
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Figure 10: Distribution of retiming elasticities of different passenger groups in the middle term.

the short term, indicating that time is needed for passengers
to adjust their travel behaviors.

4.3.1. Retiming Elasticities of Passenger Groups. Different
types of passengers have diverse travel and personal char-
acteristics and tend to have discrepant sensitivities to fare
changes. Combined with the classification results, the retim-
ing elasticities of different passenger groups can be explored
at a finer resolution.The center point of each passenger group
has been obtained in Section 3. Then, passenger type of a
cardholder can be determined through the smallest Euclidean
distance to center clustering points, as shown in

𝑑𝑖𝑗 = 2√ 𝐾∑
𝑘=1

(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2 (3)

where 𝑑𝑖𝑗 is Euclidean distance of passenger i to the clustering
center point j; K is the set of classification indexes; 𝑥𝑖𝑘 is the

value of index k for passenger i; and 𝑥𝑗𝑘 is corresponding
value of center point j.

Figure 9 provides the retiming elasticities of different
passenger groups in the short term. The following can be
observed: (1) The retiming elasticity of all passenger types
decreases greatly with time going on. (2) Passenger group 1
(regular commuters) has the minimum elasticity to change
their departure times, while the elasticity of groups 4 and
5 are much larger than that of group 1. Passenger groups 1,
2, and 3 belong to high-frequency travelers, and groups 4
and 5 are low-frequency passengers. The retiming elasticity
of low-frequency passengers is much greater than that of
high frequency passengers. (3)For low-frequency passengers,
the retiming elasticity remains at a relatively high level
throughout the entire peak period, indicating that time is not
an important factor in their departure time choice but fare is.

Figure 10 shows the distribution of retiming elasticities
in the middle term, which has a similar trend as that of the
short term. It can be found that the elasticities are obviously
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Table 8: ATE of different passenger types in different time ranges.

Passenger type ATE in the short term ATE in the middle term Change in ATE
Group 1 -0.10 -0.24 -0.14
Group 2 -0.13 -0.27 -0.14
Group 3 -0.14 -0.29 -0.15
Group 4 -0.18 -0.38 -0.20
Group 5 -0.27 -0.49 -0.22
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Figure 11: Differences in retiming elasticity between the short term and the middle term.

larger than those in the short term. The changes in retiming
elasticity over time will be analyzed in the next section.

In summary, different types of passengers have substantial
differences in their retiming elasticities for fare changes.Thus,
the travel demand structure of stations can greatly influence
the effect of the price policy. The demand at a station with a
higher percentage of low-frequency passengers is influenced
more by the discount fare because more passengers tend to
shift their travel time.

4.3.2. Retiming Elasticity over Time. Passengers usually need
a certain time to adjust their travel behaviors after a new
policy implementation. This section explores the retiming
response of passengers in different time ranges (the short
term and the middle term).

Table 8 shows the average retiming elasticity (ATE) of
passengers between 7:00 and 8:00 a.m. The following can be
observed: (1)The elasticity in the middle term is obviously
larger than that in the short term, indicating that time is a
considerable factor in the effect of the policy. (2) Changes in
the ATE of high-frequency travelers (groups 1, 2, and 3) are
smaller than those of low-frequency travelers (groups 4 and
5), indicating that it is still difficult to change the behaviors of
high-frequency travelers even after the policy is implemented
for a certain amount of time.

Figure 11 provides the differences in retiming elasticity
of different passenger groups between the short term and

the middle term. It can be clearly seen that (1) passengers
who travel between 7:00 a.m. and 7:30 a.m. have a greater
increase in retiming elasticity, while there is limited change
for passengers who travel later than 7:30 a.m., and (2) low-
frequency passengers (groups 4 and 5) are more sensitive to
the time than high-frequency travelers.

4.3.3. Retiming Elasticity of Shi�ed Time. It can be seen that
the retiming elasticity of passengers strongly depends on the
time span that passengers need to move up (shifted time)
and is inversely related to the moving-up time. It is easy
to understand that passengers always try to balance travel
time costs and fare savings. In this section, the relationship
between retiming elasticity and shifted time is studied by a
data fittingmethod. Assume that the retiming elasticity of the
shifted time satisfies a negative exponential distribution, as
shown in

𝜆 (Δ𝑡) = −𝑎𝑒𝛽⋅Δ𝑡 (4)

where 𝜆(Δ𝑡) is the elasticity when the moving-up time is Δ𝑡,
and 𝛼 and 𝛽 are parameters to be estimated.

Table 9 provides the fitting results of the elasticity for
different types of passengers. The goodness of fit verifies our
assumption.

For a passenger, the retiming elasticity can be understood
as the probability that a passenger would like to change
his/her departure time. Suppose the EDT of a passenger is
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Table 9: Fitting results of retiming elasticity for different types of passengers.

Time range Passenger Type 𝛼 𝛽 Goodness of fit 𝑅2

The short term

Group 1 0.6145 -0.1144 0.9698
Group 2 0.2827 -0.0588 0.9192
Group 3 0.2474 -0.0555 0.8657
Group 4 0.2904 -0.0410 0.9554
Group 5 0.2350 -0.0205 0.8934

The middle term

Group 1 0.5422 -0.0598 0.9386
Group 2 0.5196 -0.0494 0.9524
Group 3 0.5342 -0.0484 0.9556
Group 4 0.5283 -0.0349 0.9273
Group 5 0.4921 -0.0224 0.8323

known, and the valid time of the discount fare is fixed; then,
the departure time change probability can be calculated by
the retiming elasticity function.

For a station, once the travel demand structure and
time-dependent distribution of demand are determined, the
number of passengers willing to change departure time
can also be estimated. The passenger type and expected
departure time of each cardholder can be easily obtained by
collecting smart card history records; then, the number of
such passengers can be estimated by

𝑀 = 𝑁∑
𝑛=1

Δ𝑓 ⋅ 𝜆𝑛 = 𝑁∑
𝑛=1

Δ𝑓 ⋅ (−𝑎𝑛𝑒𝛽𝑛⋅Δ𝑡𝑛) (5)

where 𝑀 is the number of shifted passengers; 𝑛 means
passenger ID, and 𝑁 is the total number of potentially
influenced passengers; Δ𝑓 is the percentage change of the
fare discount; and 𝛼𝑛, 𝛽𝑛, and Δ𝑡𝑛 are the corresponding
parameters for passenger 𝑛 (type).
5. Applications and Suggestions

In the section, two simple applications of retiming elasticity
for optimizing discount price are presented. The first is
to choose potential target discount stations by considering
station demand characteristics, and the second is to analyze
the valid time window for the effect of discount fares. Then,
discussions and suggestions for improving the effect of the
price policy are provided.

5.1. Potential Target Discount Station Selection. Suppose the
percentage of the discount (50%) and the valid time window
(before 7:00 a.m.) remain unchanged the same as the actual
fare policy. This case aims to find potential discount stations
with a large number of passengers being shifted by the
discount. According to the retiming elasticity of different pas-
senger groups, low-frequency passengers are more sensitive
to fare changes than high-frequency passengers. Hence, the
composition of station demand (flow) is important for the
effect of the fare policy.

The total smart card records in June, 2017, are used.
Classification indexes of each cardholder are computed from
the records in a month, and then passenger type of each

passenger can be determined through the smallest Euclidean
space distance to the clustering center points. Also the first-
trip EDT of each passenger can be gained. A representative
day of June 12, 2017 (Wednesday), is selected to analyze
the shifted passengers, which means only cardholders who
travelled in the day are target passengers.

The potentially influenced passengers for the discount
price during the morning peak hours (7:00∼9:00 a.m.) can
be collected through the process shown in Figure 4, and
the results are shown in Figure 12. The number of shifted
passengers for each station can be computed according to (5),
in which Δ𝑓 is -50% and the shifted time Δ𝑡 for a passenger
is the time span between his/her first-trip EDT and the end
time of discount (7:00 a.m.).

Figure 13 shows the top 50 stations with the largest
number of shifted passengers.These stations can be chosen as
potential target stations for the next price scheme.However, it
should be noted that peak demand shift is not the purpose of
the price policy; the major goal is to relieve congestion.There
are slight differences between the two. Stations with large
numbers of shifted passengers may not have a substantial
effect on reducing congestion because capacity supply is
another important factor for congestion issues.Thus, capacity
bottlenecks should also be considered when establishing a
new pricing scheme. How to optimize fare schemes from the
perspective of relieving system congestion will be provided in
our future work.

5.2. Valid Time Analysis for the Effect of Fare Policy. For a
prepeak discount fare policy, the valid time depends on the
boundary (end) time. In the Beijing subway, all participating
stations have the same end time (7:00 a.m.) of the discount.
This is unreasonable because there are great differences in the
temporal characteristics of station demand. Usually, the peak
time of demand for suburban stations is much earlier than
for urban stations, so different valid times for stations may
perform better than a constant time.

Assume that the percentage of the discount remains the
same (50%), while the end time of the discount can be
changed. The same smart card data as in the case above is
used. Figure 14 shows the demand distributions of two typical
stations in the Beijing subway. CY (CHANG YANG) station
on Line FS is chosen as a suburban station, while XZM (XI
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Figure 13: The top 50 stations with the largest number of shifted passengers.

ZHIMEN) station located on Line 2 is selected as a city center
station. It can be clearly seen that the temporal distribution of
demand differs distinctly, and the peak time of CY station is
much earlier than that of XZM station.

Using the retiming elasticity functions and the detailed
demand data, the number of shifted passengers can be
estimated according to (5). Figure 15 shows the demand

changes before and after the 50% discount price with the end
time of 7:00 a.m. The effect of the discount price for the CY
station ismuch greater than that for the XZM station for peak
demand shift.

Taking XZM station as a case to further observe the influ-
ence of differential valid time for discount price, Figure 16
shows the performance of the discount price with differential
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Figure 14: Distribution of station demand of two typical stations.
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Figure 15: Estimated changes in peak demand after the 50% discount fare policy with the end time of 7:00 a.m.

end times. We can see that the effect of the discount price is
strongly related to the end time of the discount price. The
main reason is that the effective time range of the discount
fare is very limited (almost less than 30 minutes). Hence, a
proper valid time window of the discount has a significant
impact on the effect of the policy.

However, it will be inconvenient for passengers if each
station has a different valid time of the fare discount. In
practice, the end time of the discount price can be determined
region by region or line by line. Moreover, optimizations of
valid time for the discount price should also consider the
congestion and transport capacity in the view of network
systems. It is interesting and complex work and will be
addressed in our future works.

5.3. Discussion and Suggestions. According to the analysis
results above, the discount price policy can indeed shift some
passengers from peak periods to prepeak time. However,

policy makers are still acting conservatively with this strategy
and did not further implement it on a larger scale or on the
whole network. The main reason may be that no significant
reduction of peak demand can be observed in the pilot
implementation, and the effect of congestion relief is limited
(as shown in Section 2.2). How to improve the effect of the
fare strategy? Three aspects of this issue are discussed as
follows.

(a) Change fare structures. There are a variety of differ-
ential pricing structures (peak charge, ladder pric-
ing, prepeak discount and peak congestion charge
in combination, etc.). Undoubtedly, peak congestion
charges could shift peak demand forward or back-
ward. However, passengers may shift to bus or other
road traffic modes. It is not a wise choice to ease
subway congestion at the cost of increasing already
serious congestion in other traffic modes.
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Figure 16: Estimated changes in demand for XZM station with different end times of the discount price.

(b) Increase the percentage of the discount. Usually, the
greater the fare discount, the greater the demand
changes. The most special and extreme situation is
to offer free fares. The Melbourne subway has imple-
mented a free fare strategy (early bird ticket) during
morning peak hours and achieved good performance
[34]. The Beijing subway can further try to increase
the percentage of the discount fares but must con-
sider revenue loss. Currently, the Beijing government
provides large subsidies for public transit, including
50% of the operation costs for the subway and 70% for
buses. Increasing revenue is another prominent issue
for the Beijing subway, and revenue loss should be
taken into account when providing a higher discount.

(c) Optimize pricing schemes. As the retiming elasticity of
different passenger types is discrepant, the demand
structure can be an important factor to optimize pric-
ing schemes and thus select more suitable discount
stations. Moreover, there is a maximum threshold
of the influence time range of the discount fare
policy (approximately 30 minutes). A case study also
confirms that optimizing the valid time of the dis-
count fare has a significant impact on reducing peak
demand. Hence, valid time window optimization can
be regarded as a feasiblemeasure to improve the effect
of fare policies.

6. Conclusions

An analysis framework is proposed to measure the retiming
responses of travelers changing departure time due to a
prepeak discount pricing strategy using a new data source of
smart card transaction records. This work proves that smart
card data have great potential and value for the assessment
of traffic policies because of their traceable characteristics.

The unique ID of the smart card makes it possible to trace
behavior changes at the level of an individual passenger
over a long time period, and the actual trip information
gained from smart card data improves the accuracy of travel
demand and behavior research. However, the drawbacks of
smart card data are also quite demonstrable. Because the
smart card is always anonymous, trip information cannot be
linked to the personal and socioeconomic characteristics of
card holders, which limits the potential to mine original and
comprehensive reasons for behavior changes.

Some case-specific conclusions are also drawn. The
detailed retiming elasticity of Beijing subway passengers to
the discount fare is measured. Considering the heterogeneity
of passengers, an unsupervised clustering approach is applied
to segment passengers into groups, and the retiming elas-
ticities of different passenger types are also obtained. The
results show that low-frequency travelers are more sensitive
to fare discounts than high-frequency travelers, and they are
more willing to shift their departure time for the discount.
It is found that the retiming elasticity decreases greatly with
increasing shifted time, and it is difficult to change passengers’
departure times by more than 30 minutes for the discount.
Furthermore, the retiming elasticity functions of shifted time
are obtained through a data fitting approach, which provides
strong support for estimating demand changes according to
the temporal distribution of station demand. Applications of
fare scheme optimization confirm that the valid time window
of the discount has a significant influence on the effect of
discount fare policies. We suggest that optimizing the valid
time window of the discount price could be a useful and
feasible way to improve the policy effect, while changing fare
structures and increasing discounts are not a wise choice for
the Beijing subway.

Passengers’ responses to fare changes are very complex
and are related to various external factors. This work only
studies the travel responses of Beijing subway travelers, and it
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should be careful to apply these absolute values of elasticity to
other transport systems. For further research, first, retiming
responses of passengers in the long term (one year later
or longer) could be explored. Second, based on the results
of retiming elasticity, optimizing fare schemes to relieve
congestion on the network is our final goal. That work is
complicated and interesting and will be addressed in our
future works.

Data Availability

The origin and detailed smart card data [Dump File (.dmp)]
used to support the findings of this study were supplied by
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to these origin data should be made to [Fei Dou, Email:
heishenanhai@163.com].
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