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Abstract Fault frequency of catenary is related to meteo-

rological conditions. In this work, based on the historical

data, catenary fault frequency and weather-related fault

rate are introduced to analyse the correlation between

catenary faults and meteorological conditions, and further

the effect of meteorological conditions on catenary oper-

ation. Moreover, machine learning is used for catenary

fault prediction. As with the single decision tree, only a

small number of training samples can be classified cor-

rectly by each weak classifier, the AdaBoost algorithm is

adopted to adjust the weights of misclassified samples and

weak classifiers, and train multiple weak classifiers.

Finally, the weak classifiers are combined to construct a

strong classifier, with which the final prediction result is

obtained. In order to validate the prediction method, an

example is provided based on the historical data from a

railway bureau of China. The result shows that the mapping

relation between meteorological conditions and catenary

faults can be established accurately by AdaBoost

algorithm. The AdaBoost algorithm can accurately predict

a catenary fault if the meteorological conditions are

provided.

Keywords High-speed rail � Catenary � Trip � Fault
prediction � Data processing � Meteorological conditions

1 Introduction

In recent years, the high-speed rails (HSRs) of China have

developed rapidly, which means that both scale of opera-

tion and catenary expand greatly. The traction power

supply system (TPSS) of HSRs requires a very high reli-

ability [1–3]. Catenary is a key component of the TPSS, but

there is no standby catenary in TPSS. Meanwhile, the

stability and reliability of the catenary system are directly

related to the operation state of HSRs. Therefore, an

accurate fault prediction of the catenary system and timely

warning is crucial to improving the reliability of the entire

HSR system.

Zhao et al. [4] established a reliability model of the

TPSS based on the Weibull distribution, used the proposed

model to predict reliability, and obtained the reliability

evolution process. However, this model is applicable only

when fault occurrence follows the Poisson distribution, but

this is not the case in practice. Moreover, Zhao et al.

ignored the influence of meteorological conditions. The

catenary system is completely exposed to the external

meteorological conditions. The meteorological conditions

have a significant influence on the catenary system opera-

tion [5]. Recently, Wang et al. [6] studied the influence of
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external environment on running state of the catenary

system, and established the reliability evaluation model in

three-state weather.

In power systems, the influence factors such as the

external environment on power load forecasting, life pre-

diction, and fault prediction has been highlighted [7, 8].

The power load forecasting methods, which consider the

influence of weather conditions, have made significant

progress in the weather-sensitive load [9, 10]. In addition,

using the real-time electricity price, He et al. [11] proposed

a method for forecasting the probability density of the

power load. In terms of life prediction, scholars [12–14]

used the rough set theory, cross-entropy theory, stochastic

process simulation, and other methods to predict the

equipment remaining life, and considered the influence of

the external service environment on electrical equipment.

Andre et al. [15, 16] used the Monte Carlo simulation to

develop a model for the prediction of fault rate, fault type,

and fault duration of transmission line and bus, and fore-

casted the annual outage times of the power system. Their

model was based on the history of fault data, but the

influence of the external environment on transmission lines

was ignored. In [17], indexes including the meteorological

sensitivity rate, difference of fault number, outage time

were introduced to reflect the difference of transmission

line risks for different meteorological disasters. In [18, 19],

the temporal characteristics of transmission line faults were

analysed, the time-varying fault rate simulation model was

established, and the fault time distribution was simulated

for risk assessment of a transmission line. A fault warning

method based on the support vector machine (SVM) and

AdaBoost method were proposed in [20]. All the above-

mentioned studies consider the influence of external

meteorological environment on power system on various

levels, which can provide a reference for catenary fault

prediction. As there are great improvements in the data

acquisition, monitoring, and system management, catenary

fault prediction can be supported with comprehensive data.

Thus, it is significantly important to consider the overall

influence of meteorological conditions on the fault pre-

diction of catenary system.

The main objective of this work is to develop a catenary

fault prediction method which can accurately and timely

predict the catenary fault based on the external meteoro-

logical conditions, and provide decision support for the

operation and maintenance of HSRs. In this paper, based

on the AdaBoost algorithm, a method is proposed to predict

the catenary fault. The proposed method establishes the

mapping relation between meteorological conditions and

catenary faults. It can predict catenary fault accurately if

the meteorological conditions are provided.

The remainder of this paper is organized as follows.

Section 2 introduces the influence of meteorological

conditions on catenary faults. Section 3 briefly describes

the AdaBoost and single decision tree algorithms. Sec-

tion 4 presents the pre-processing method for historical

statistical data and construction of training samples. A case

study and the result analysis are provided in Sect. 5, fol-

lowed by the conclusions in Sect. 6.

2 Influence of meteorological conditions
on catenary faults

The catenary system is completely exposed to the complex

environment. According to field surveys by a railway

bureau, the meteorological conditions are one of the

influential factors that cause catenary faults. In this work, a

trip of the TPSS caused by the catenary system is regarded

as a catenary fault, and the influence of meteorological

conditions on the catenary fault occurrence is analysed

quantitatively.

2.1 Temporal distribution characteristics

of catenary faults

The number of catenary faults and their causes can be

collected by field surveys. The results in [21] show that the

working state of a catenary system is highly influenced by

the external meteorological conditions, such as thunder-

storms, gale, snow, and others. The number of catenary

faults on a monthly basis under various meteorological

conditions was collected by the railway bureau in north-

west China from 2012 to 2015, as shown in Fig. 1.

According to Fig. 1, the most influential meteorological

conditions in northwest China are, respectively, the gale

and dense fog from March to April, the thunderstorm and

gale from May to October, and the snow and gale from

November to February. Meanwhile, when the days of the

most influential meteorological condition increase or

decrease, the number of catenary faults changes corre-

spondingly. Therefore, there is a strong correlation

between the meteorological conditions and the number of

catenary faults.

2.2 Spatial distribution characteristics of catenary

faults

In order to depict the spatial distribution characteristics of

catenary faults, the catenary fault frequency (CFF) is

introduced and defined as

CFF ¼
Pz

i¼1 oiPz
i¼1 li

; ð1Þ
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where CFF indicates the catenary fault frequency in a year

per kilometre, li the length of line i, oi the number of

catenary faults in a year, and z the number of lines.

According to the data for central China in the period of

2012–2015, the corresponding CFF for each power supply

section of Wuhan Bureau is shown in Fig. 2, which

is calculated by Eq. (1).

As can be seen in Fig. 2, catenary fault frequency is

diverse across regions. Namely, the CFF of Wuchang

region is the largest, reaching the maximum of 0.85 times/

km in 2012, and then followed by those of the Hanyang and

Huangzhou regions with the CFF of more than 0.5 times/

km in three statistical years. There was no catenary fault in

the Jingzhou region during 2013–2015 and in the Wuxue

region in 2012 and 2013. Meanwhile, the CFF of the

Huangpo region is the lowest within the whole statistical

period. Therefore, it can be concluded that CFF is strongly

correlated to the geographical locations.

In order to reveal the temporal and geographical corre-

lation between the meteorological conditions and number

of catenary faults, the fault data from the railway bureaux

in northwest and central China are statistically analysed on

a monthly basis, and the results are shown in Fig. 3.

Figure 3 indicates that the catenary faults in these two

regions are mainly concentrated in June, July, and August.

However, in December and January, the proportion of

catenary faults in northwest China is higher than in central

China. In view of the meteorological characteristics of the

two regions, the main reasons for such results may be

concluded as follows. Both in central and northwest China,

there is the maximum amount of thunderstorm, gale, rain

and high temperature in June, July, and August. Besides,

snow and low temperature mainly occur in December and

January. In central China, the summer lasts for a long time,
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Fig. 1 Number of catenary faults and different meteorological days for 2012–2015
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and the weather conditions do not fluctuate drastically

during winter. In addition, the catenary system is almost

unaffected by icing due to fewer snow and low tempera-

ture. Therefore, the fault distribution of the catenary system

in central China can be approximated by a ‘‘single-peak’’

model. In contrast, the northwest region has a longer winter

with snow and ice. Therefore, the fault distribution of

catenary system in the northwest region can be approxi-

mated by a ‘‘peak-valley’’ interlaced model.

2.3 Analysis of meteorological conditions influence

on catenary faults

The influence of meteorological conditions on catenary

faults is always reflected in factors such as precipitation of

rainstorm, heavy rain, moderate rain, thunderstorm, shower

and light rain, wind speed, and temperature [21, 22].

1. Influence of precipitation. On the one hand, precipi-

tation affects air humidity and insulation performance,

and causes flashover because of the damp. Moreover,

the water flow on the equipment surface can easily

cause a short circuit. On the other hand, if there is

lightning in rainy days, the lightning may lead to

overvoltage and insulation damages; moreover, the

overvoltage may invade the substation and cause trip.

2. Influence of wind speed. First, high wind speeds lead

to catenary wire tension. Second, the gale causes the

vibration of catenary wire and affects the current

collection performance of the pantograph. Most

importantly, the branches, plastics, and other foreign

bodies blew by the gale may hang from the catenary,

resulting in the short circuit.

3. Influence of temperature. The high temperature leads

to the large tension of contact wires and short

insulation distance, resulting in the short circuit.

Meanwhile, under the low temperature, ice accumu-

lates on a wire, which interrupts the current flow from

contact wire to the pantograph.

2.4 Statistical analysis on influential factors

of catenary faults

The influential factors are analysed using the actual data of

the Beijing–Shanghai HSR (with a length of 1318 km)

collected in the period of 2012–2015. The statistical results

are shown in Table 1. Moreover, weather-related fault rate

(WRFR) is introduced to represent the correlation between

various meteorological conditions and the number of

catenary faults. It indicates the frequency of catenary faults

under a particular meteorological condition:

WRFR ¼
Pz

i¼1 qi

tWB �
Pz

i¼1 li
; ð2Þ

where, qi denotes the number of catenary faults on line

i under the particular meteorological condition, li denotes

the length of line i, tWB is the statistical time of a certain

weather condition, and z is the number of lines.

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50
2011
2012
2013
2014
2015

Month

Pr
op

or
tio

n 
of

 c
at

en
ar

y 
fa

ul
ts

(%
)

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Month

Pr
op

or
tio

n 
of

 c
at

en
ar

y 
fa

ul
ts

(%
)

2013
2014
2015

(a) Central China               (b) Northwest China 

Fig. 3 Proportion of catenary faults in different regions in China

Table 1 Statistical results of the data form Beijing–Shanghai HSR in the period 2012–2015

Weather condition Gale Dense fog Thunder storm Moderate rain Heavy rain Normal weather

Statistical time (day) 6 7 58 1 2 26

Number of faults 27 30 261 5 11 65
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Using the statistical data given in Table 1 and the

Eq. (2), the WRFR can be calculated as shown in Fig. 4.

As can be seen in Fig. 4, the WRFR under the gale,

dense fog, and rain is higher than that under the normal

weather. The highest fault rate is under the heavy rain

condition. In general, the worse the weather is, the greater

the possibility of a fault is. The influence of multiple

uncertain factors makes it difficult to build an accurate

mathematical model for catenary faults. In fact, there is a

coupling relationship between various meteorology condi-

tions. The catenary faults prediction is to determine whe-

ther the system could work healthily in the next period of

operation with the current system state. It is often based on

the massive multi-source data provided by the monitoring

system. The fault prediction can be viewed as a classifi-

cation prediction problem with supervised learning. In

most cases, the learner accuracy is significantly influenced

by training data and its distribution, and it is hard to build

accurate classifiers directly. However, it is easier to gen-

erate a relatively accurate weak classifier. The AdaBoost

algorithm is one of the most widely used machine learning

methods for training different weak classifiers using the

same training set. After training, the weak classifiers can be

combined into a strong classifier. Namely, by combining

the attributes of weak classifiers, the resultant classifier can

possess a stronger generalization ability.

3 AdaBoost algorithm

3.1 Basic theory of AdaBoost algorithm

The AdaBoost algorithm is an important characteristic

classification algorithm for machine learning, and it is

widely applied to the power system fault warning [20],

wind speed prediction [23], and other fields [24, 25]. Zhang

et al. [26] compared the prediction accuracy of SVM, BP

neural network, and AdaBoost, and indicated the superi-

ority of AdaBoost algorithm.

The basic idea of the AdaBoost algorithm is to integrate

a large number of weak classifiers that have a general

classification ability to form a classifier with a strong

classification ability. The specific steps of the AdaBoost

algorithm are as follows.

1. Select a weak learning algorithm C based on a single

decision tree, and construct a training set G which is

expressed as G = {(x1, y1), (x2, y2),…, (xp, yp),…, (xm,

ym)}, where m denotes the number of samples.

2. Assume that the sample weight distribution Vn repre-

sents the weight of a sample in the nth iteration.

Initialize the sample weights, V1 = (v1, v2, …, vm)

= (1, 1, …, 1)/m, n = 1, 2, …, N, where N denotes the

number of iterations.

3. When n = 1, 2, …, N, train a weak classifier Cn(X) by

the single decision tree method and classify the

original training set X by Cn(X); the classification

result is expressed as Cn (aj), X = (x1, x2, …, xp, …,

xm).

4. Calculate the classification error rate of Cn(X) by

en ¼
Xm

i¼1

Vn pð Þ � I Cn aj
� �

6¼ yp
� �

; ð3Þ

where I Cn aj
� �

6¼ yp
� �

is equal to 1 when Cn aj
� �

6¼ yp;

otherwise, I Cn aj
� �

6¼ yp
� �

is equal to 0.

5. Calculate the weight of Cn(X) by

an ¼
1

2
ln

1� en
en

� �

; ð4Þ

6. Update sample weight distribution:

Vnþ1 pð Þ ¼ Vn pð Þ
Zn

� e�an ;Cn aj
� �

¼ yp
ean ;Cn aj

� �
6¼ yp

�

¼ Vn pð Þ
Zn

� e�anypCn ajð Þ; ð5Þ

where Zn ¼
Pm

p¼1 Vn pð Þ � e�anypCn ajð Þ denotes the normal-

ization factor, such that
Pm

p¼1 Vnþ1 pð Þ ¼ 1.

7. Repeat Steps 3–6 for N times to obtain N different

weak classifiers.

8. Combine all the trained weak classifiers into one

strong classifier which is defined by

y ¼ C Xð Þ ¼ sgn
XN

n¼1

anCn aj
� �

" #

: ð6Þ

3.2 Construction of weak classifiers

In this work, the single decision tree [27, 28] is chosen to

construct weak classifiers. The decision tree makes a

decision by using the threshold division method for a single

feature vector. This method has the following advantages:

short computation time, fast calculation, and certain

accuracy. In addition, this method can be well adapted to
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the AdaBoost algorithm. The specific steps of the single

decision tree are as follows.

1. Assume a weight vector Vn= (v1, v2, …, vp, …, vm),

where m is the number of samples.

2. Extract the characteristic values of each column in

matrix G to form a new vector

aj ¼ x1�j; x2�j; . . .; xp�j; . . .; xm�j

� �T
, j = 1, 2, …, s,

where s is the number of the characteristics.

3. Determine the threshold Hk according to the data size

of vector aj:

Hk ¼ min aj
� �

þ k � 1ð Þ � Hstep

Hstep ¼ max aj
� �

�min aj
� �� ��

K

�

; ð7Þ

where k = 0, 1, 2, …, K, k is the number of steps; Hstep is

the step length; max aj
� �

and min aj
� �

are the maximum and

minimum values in the vector.

4. Initialize an m 9 1 column vector bj, and classify each

element of vector aj by mode 0 and mode 1 to obtain

the classifications b0j and b1j , respectively.

5. Initialize an m 9 1 column vector e, and compare the

corresponding elements of b0j , b1j and

Y ¼ y1; y2; . . .; ymð ÞT. If the obtained values are the

same, the elements in the respective location of e are

modified to 0, and the modified vectors are denoted as

e0K and e1K . Then, use Eq. (8) to calculate the error rate

of the two classification methods by

Er
K ¼ Vne

0
K ; model 0

Vne
1
K ; model 1

�

; ð8Þ

where r is equal to 0 or 1, and it expresses the classification

method.

6. Repeat Step 3–5 K times, and record the error rates of

classifiers with the corresponding thresholds and

classification models.

7. Repeat Step 2–6 s times, and select the eigenvector aj,

whose threshold equal to HK and classification models

correspond to the minimum error rate. Finally, calcu-

late the classification function of a weak classifier by

Ct aj
� �

¼

�1; xp�j [HK

1; xp�j �HK
model 0

or
�1; xp�j �HK

1; xp�j [HK
model 1

8
>><

>>:
: ð9Þ

4 Fault prediction on catenary system

4.1 Statistic and process input data for AdaBoost

As the field data contains much complex information, it is

difficult to predict the catenary faults directly. Namely, the

data should be first screened for validity. The required data

can be divided into two types: historical running-state data

and meteorological data. It also includes the catenary

operating states, catenary fault types, protection informa-

tion, catenary outage time, operation conditions, and

weather information during the predicted period. The data

types and sources are presented in Table 2. The meteoro-

logical data should be standardized and transformed into a

mathematical form by attribute construction and

discretization.

4.1.1 Attribute construction

The attribute sets of meteorological conditions include the

precipitation grades, mean temperature grades, and wind

scales during daytime and night.

4.1.2 Discretization of meteorological data

1. According to the rainfall intensity, the precipitation is

divided into seven grades as shown in Table 3.

2. Use the equal-width division method to discretize the

continuous temperature variables:

Table 2 Data types and sources

Data type Specific data Data sources

Historical running-state data Catenary operating state

Catenary fault type

Protection action information

Outage time of TPSS

Fault time

Faults and maintenance information

recorded by the railway bureau

Historical meteorological

data

Meteorological information during three successive days, including

the precipitation, wind speed, and temperature

Faults record from the railway bureau

Meteorological monitoring system

Meteorological information system

Meteorological data during

the predicted period

Meteorological information during the predicted period including the

precipitation, wind speed, and temperature

Meteorological information system

Weather forecasting

216 S. Lin et al.
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Pf ¼ Tmin þ f � 1ð Þ Tmax � Tmin

F
; Tmin þ f

Tmax � Tmin

F

� 	

;

ð10Þ

where Pf refers to the range of the temperature level, f = 1,

2, …, F, F is the number of divisions, and Tmax and Tmin

denote the maximum and minimum temperatures in the

statistical time, respectively.

3. Classify the wind power into 0–12 grades according to

the standard of China Meteorological Administration.

4.2 Construction of sample set

The catenary fault may be caused by impact effect

of weather conditions. For example, lightning or strong

wind leads to short-circuit trip of the TPSS. On the other

hand, it may be a product of cumulative effects from

external meteorological conditions, such as short circuit

due to low sag of contact line over long time of high

temperatures and flashover of the insulation device caused

by continuous rainfall.

The external meteorological conditions are considered

as a characteristic vector X that affects the catenary fault

occurrence, and Y that denotes whether there is a fault on

catenary. The sample set is constructed according to

Sect. 4.1. Suppose that there are m data samples; then, the

constructed sample set can be expressed as matrix G, where

p = 1, 2, …, m, j = 1, 2, …, s, and s is the number of

characters that could be taken into account, and the matrix

G is expressed as

G¼

x1�1 x1�2 � � � � � � � � � x1�j � � � � � � � � � x1�s y1
x2�1 x2�2 � � � � � � � � � x2�j � � � � � � � � � x2�s y2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

xp�1 xp�2 � � � � � � � � � xp�j � � � � � � � � � xp�s yp

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

xm�1 xm�2 � � � � � � � � � xm�j � � � � � � � � � xm�s ym

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

;

ð11Þ

where xp-j denotes a set of influential factors such as

precipitation, temperature, and wind scale on sample p;

yp = (- 1_1), the value of - 1 means no catenary fault,

and the value of 1 a catenary fault.

4.3 Catenary fault prediction based on AdaBoost

The catenary fault prediction based on the AdaBoost

algorithm includes the following steps.

1. Input the training data, including the catenary fault

data and meteorological data.

2. Set the initial weight V1 and iteration number N, and

initialize the AdaBoost algorithm.

3. Update the weights through the iterative computation.

Train the optimal decision tree by different weights of

Vn. Construct multiple weak classifiers, and combine

them with the weights to generate a strong classifier.

4. Use the future meteorological data provided by the

Weather Forecast as an input data for fault prediction,

and obtain the final prediction result using the trained

strong classifier.

The specific calculation flow chart is shown in Fig. 5.

Table 3 Precipitation grade classification

Precipitation event Rainstorm Heavy rain Moderate rain Thunderstorm Shower Light rain No rain

Grade 6 5 4 3 2 1 0

No

Start

Input training data and 
the number of iterations

Initialize weight V1

Construct optimal single layer decision 
tree to generate weak classifier Cn(X)

Calculate the classification error 
rate of Cn(X) by Eq.(3)

Calculate the weight of 
classifier Cn(X) by Eq.(4)

n=n+1

n=N

Combine weak classifier to generate a 
strong classifier by using Eq. (6)

Output prediction results
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Fig. 5 Flow chart of the catenary fault prediction
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5 Case study

5.1 Data selection and standardization

During data pre-processing, we found that the real-time

meteorological data records in 2014 were not complete, as

they could not match the catenary operation records.

Therefore, we selected the real-time meteorological and

catenary operation data in 2011, 2012, 2013, and 2015

from the railway bureau. The statistical data collected in

June 2011, June 2012, and June 2013 were selected as the

training data, and the data collected in June 2015 was

selected as the test data. The training data consisted of 43

events, including 10 fault events and 33 normal events. The

test data consisted of 18 events, including 2 fault events

and 16 normal events.

The historical data was pre-processed by the steps

introduced in the previous chapter. The field data analysis

revealed that in the selected samples, there is no fog-related

fault. At the same time, the Meteorological Information

System showed that there was no foggy day in the seasons

of study. Therefore, fog was not considered in the training

and test data. In the selected samples, the lowest temper-

ature was 17 �C, and the highest temperature was 33 �C.
The detailed temperature classification calculated by

Eq. (10) is given in Table 4.

The data samples include the recording time, precipi-

tation grade, temperature grade, wind scale, and catenary

state. Through data pre-processing, the training sample set

and test sample set are presented in Tables 5 and 6.

5.2 Construction of strong classifier

The training data was divided into two categories. One

category only shows the influence of precipitation, and the

other one shows the joint influence of precipitation, wind

scale, and temperature. For simplicity, we only take the

influence of precipitation grade as an example to illustrate

the processes of constructing the weak classifiers based on

the single decision tree and training the weak classifier

based on the AdaBoost.

The representation matrix of training data about pre-

cipitation grade was as follows:

G ¼

x1�1 x1�2 x1�3 x1�4 y1

x2�1 x2�2 x2�3 x2�4 y2

� � � � � � � � � � � � � � �
xp�1 xp�2 xp�3 xp�4 yp

� � � � � � � � � � � � � � �
xm�1 xm�2 xm�3 xm�4 ym

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼

R1td R1tn R1y R1b y1

R2td R2tn R2y R2b y2

� � � � � � � � � � � � � � �
Rptd Rptn Rpy Rpb yp

� � � � � � � � � � � � � � �
Rmtd Rmtn Rmy Rmb ym

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

;

ð12Þ

where, Rptd, Rptn, Rpy, and Rpb indicate the precipitation

grades in the current daytime, current night, the average

precipitation grade on the previous day, and the average

precipitation grade for 2 days before the current day with

respect to sample p, respectively.

Then, the weights were initialized as V1 = (1, 1, …, 1)/

43. Following the weak classifier calculation process, the

optimal decision feature vector of the first weak classifier

was obtained as a2= (x1-2, x2-2, …, xp-2, …, x43-2)
T, and the

classification function was given as:

C1 a2ð Þ ¼ �1; xp�2 � 5:4
1; xp�2 [ 5:4

�

; ð13Þ

Table 4 Temperature classification

Temperature (�C) [17–20) [20,23) [23,25) [25,28) [28,31) [31–33]

Grade 1 2 3 4 5 6

Table 5 Training sample set

Time Weather Average precipitation Temperature Wind scale Running state

In day In night Previous day Two days before In day In night In day In night

2011.06.03 2 4 0 0 4 1 2 2 - 1

2011.06.05 0 1 3 3 4 2 5 4 1

– – – – – – – – – –

2013.06.30 2 0 1 1 5 4 2 2 - 1
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where xp-2 represents the eigenvalues of an eigenvector a2
in a line p, and 5.4 is the threshold value calculated by

Eq. (7).

Finally, the error rate of each classifier was calculated

and the weights were adjusted to obtain a strong classifier

by the AdaBoost algorithm. Using the two above-men-

tioned categories, two different training sets were obtained,

respectively. Then, the accuracy on each training set was

calculated, as shown in Fig. 6.

In Fig. 6, the accuracy on both training sets increases

with the number of weak classifiers. In Fig. 6a, the maxi-

mum accuracy is 0.9535, and the curve tends to become

stable when the number of classifiers reaches the value of

64. In Fig. 6b, the maximum accuracy of 1 is achieved

when the number of classifiers reaches the value of 53.

Thus, in the case of joint influence of precipitation, wind,

and temperature, the accuracy of classification is higher

and less number of weak classifiers is required compared

with the case of a single influence of precipitation.

By comparison, it is observed that the results of the first

training set have more oscillations and lower accuracy.

Thus, we select the precipitation, wind, and temperature as

influential factors to construct weak classifiers.

5.3 Results of catenary faults prediction

The proposed fault prediction method was evaluated

through a comparison with the decision tree and BP neural

network algorithm on the test data, and the obtained results

are shown in Table 7. And the bold number in Table 7

indicates the inaccurate prediction result.

According to the results presented in Table 7, the pre-

diction accuracy of the AdaBoost was 88.89%, and almost

all the catenary faults were correctly predicted except for

two errors. The first one was the data on 02 June 2015, and

the second one was the data on 26 June 2015. The Ada-

Boost algorithm predicted that there was a high fault

probability on catenary under current meteorological con-

ditions, which is a false alarm. With more sample data, the

prediction accuracy of the AdaBoost algorithm can grad-

ually stabilize at about 90% [24, 26].

The prediction accuracy of the decision tree is 77.8%

and the BP algorithm is 83.3%, which were lower than that

of the AdaBoost algorithm. In this paper, the single deci-

sion tree algorithm is the weak classification algorithm to

construct the strong algorithm. Therefore, the prediction

accuracy will be significantly lower than the AdaBoost

algorithm. For the BP neural networks, although the

Table 6 Test sample set

Time Weather Average precipitation Temperature Wind scale Running state

In day In night Previous day Two days before In day In night In day In night

2015.06.01 4 6 0 0 6 3 5 2 1

2015.06.02 4 1 5 0 4 3 2 2 - 1

– – – – – – – – – –

2015.06.30 4 4 0 0 5 2 2 2 - 1

Number of weak classifiers
Number of weak classifiers

A
cc

ur
ac

y
of

cl
as

sif
ic
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n

(a) Influence of precipitation (b) Joint influence of precipitation, wind and 
temperature 

Fig. 6 Classification accuracy under different meteorological conditions
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training accuracy can reach 100%, the generalization effect

is worse than the AdaBoost algorithm. Moreover, because

of randomness in the learning phase, the BP algorithm may

converge to local minima. In conclusion, the strong clas-

sifier constructed by the AdaBoost algorithm had a stronger

generalization ability than the single decision tree and BP

neural network.

However, the method of machine learning needs to be

improved in the following aspects. First, the AdaBoost

algorithm uses the single decision tree for weak classifiers

construction in this work. Since only the decision tree is

used in the training process, the accuracy of prediction

results with decision tree is not high enough, which further

decreases and limits prediction accuracy of the strong

classifier. This problem may be solved by using better

classification methods such as support vector machine

(SVM). Furthermore, the AdaBoost algorithm constructs a

strong classifier by updating the weights of different weak

classifiers, but it pays more attention to the misclassified

samples in the training process. Thus, the weights of

samples that are easily misclassified will gradually increase

with the number of iterations. This leads to the imbalance

of samples and causes the decrease in classification accu-

racy. This problem can be solved by optimizing the

weights updating process of the classifiers.

6 Conclusions

The external meteorological conditions, including the

precipitation, wind speed, and temperature, have a signif-

icant impact on catenary fault. In this paper, the relation-

ship between the catenary fault and meteorological

conditions is analysed. The cumulative effect of meteoro-

logical conditions on the catenary system is taken into

account in catenary fault prediction, and the AdaBoost

algorithm is utilized to construct a strong classifier to

predict the catenary fault by using the historical meteoro-

logical data. The obtained prediction results demonstrate

that the AdaBoost algorithm could provide prediction for

the catenary faults with an accuracy of 88.89% by con-

sidering the external meteorological conditions.
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Table 7 Fault prediction results on the test set

Sample data 2015.06.01 2015.06.02 2015.06.03 2015.06.04 2015.06.06 2015.06.07

Actual state 1 - 1 - 1 - 1 - 1 - 1

Prediction result

AdaBoost 1 1 - 1 - 1 - 1 - 1

Decision tree 1 - 1 1 - 1 - 1 - 1

BP neural network 1 - 1 - 1 - 1 - 1 1

Sample data 2015.06.13 2015.06.14 2015.06.15 2015.06.16 2015.06.17 2015.06.20

Actual state - 1 - 1 - 1 1 - 1 - 1

Prediction result

AdaBoost - 1 - 1 - 1 1 - 1 - 1

Decision tree - 1 - 1 - 1 1 1 1

BP neural network - 1 - 1 - 1 - 1 1 - 1

Sample data 2015.06.21 2015.06.23 2015.06.24 2015.06.25 2015.06.26 2015.06.30

Actual state - 1 - 1 - 1 - 1 - 1 - 1

Prediction result

AdaBoost - 1 - 1 - 1 - 1 1 - 1

Decision tree - 1 - 1 - 1 - 1 1 - 1

BP neural network - 1 - 1 - 1 - 1 - 1 - 1

220 S. Lin et al.

123 J. Mod. Transport. (2019) 27(3):211–221

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


References

1. Feng D, Lin S, Sun XJ et al (2017) A technical framework of

PHM and active maintenance for modern high-speed railway

traction power supply systems. Int J Rail Trans 1(5):1–25

2. Feng D, He ZY, Lin S et al (2017) Risk index system for catenary

lines of high-speed railway considering the characteristics of

time-space differences. IEEE Trans Transp Electr 3(3):739–749

3. Wang Z, Feng D, Lin S, et al (2016) Research on reliability

evaluation method of catenary of high-speed railway considering

weather condition. In: International conference on probabilistic

methods applied to power systems, Beijing, China

4. Zhao F, Zhang QP, Wang SH (2015) Research of reliability

prediction and modelling for traction power supply system.

J Railw Sci Eng 12(3):678–684

5. Cheng HB, He ZY, Wang Q (2015) Analysis method for mete-

orological factor associated accident model of high-speed rail-

way. Electr Power Autom 35(9):49–54

6. Wang Z, Lin S, Feng D et al (2018) Reliability evaluation method

of catenary system considering the weather condition. J China

Railw Soc 40(10):49–56

7. Chen P-C, Kezunovic M (2016) Fuzzy logic approach to pre-

dictive risk analysis in distribution outage management. IEEE

Trans Smart Grid 7(6):2827–2836

8. Park C-H, Jang G, Thomas RJ (2008) The influence of generator

scheduling and time-varying fault rates on voltage sag prediction.

IEEE Trans Power Del 23(2):1243–1250

9. Tucci M, Crisostomi E, Giunta G et al (2016) A multi-objective

method for short-term load forecasting in European countries.

IEEE Trans Power Syst 31(5):3537–3547

10. Gao YJ, Sun YJ, Yang WH et al (2017) Weather-sensitive load’s

short-term forecasting research based on new human body ame-

nity indicator. Proc Chin Soc Electr Eng 37(7):1946–1954

11. He YY, Liu Y, Han AY et al (2017) Short-term power load

probability density forecasting method based on real time price

and support vector quantile regression. Proc Chin Soc Electr Eng

37(3):768–778

12. Li LL, Zhang SN, Li ZG (2016) The life prediction method of

relay based on rough set theory and relay’s initial life informa-

tion. Trans Chi Electr Soc 31(18):46–53

13. Li R, Liu HL, Lu Y et al (2014) A combination method for

distribution transformer life prediction based on cross entropy

theory. Power Syst Prot Control 42(2):97–103

14. Lei YG, Li NP, Lin J (2016) A new method based on stochastic

process models for machine remaining useful life prediction.

IEEE Trans Power Deliv 65(12):2671–2684

15. Dos Santos A, Barros MTCD (2015) Stochastic modelling of

power system faults. Electr Power Syst Res 126:29–37

16. Dos Santos A, de Barros MTC (2016) Predicting equipment

outages due to voltage sags. IEEE Trans Power Deliv

31(4):1683–1691

17. Wang J, Xiong XF, Liang Y et al (2016) Geographical and

meteorological factor related trans-mission line risk difference

assessment method and indexes. Proc Chin Soc Electr Eng

36(5):1252–1259

18. Wang J, Xiong XF, Liang Y et al (2016) The distribution of

weather-related transmission line failure and its fitting. Electr

Power Autom Equ 36(3):109–115

19. Wang J, Xiong XF, Liang Y et al (2016) Time-varying failure

rate simulation model of transmission line and its application in

power system risk assessment considering seasonal alternating

meteorological disasters. IET Gener Transm Distrib

10(7):1582–1588

20. Wang J, Xiong XF, Liang Y et al (2016) Early warning method

for transmission line galloping based on SVM and AdaBoost

bilevel classifiers. IET Gener Transm Distrib 10(14):3499–3507

21. He ZY, Feng D, Lin S (2016) Research on security risk assess-

ment for traction power supply. J Southwest Jiaotong Univ

51(3):418–429

22. Gu SQ, Feng WX, Zhao C (2015) Method of lighting hazard risk

evaluation for traction electric network of high-speed railway.

High Volt Eng 41(5):1526–1535

23. Wu JL, Zhang BH, Wang K (2012) Application of AdaBoost-

based BP neural network for short-term wind speed forecast.

Power Syst Technol 36(9):221–225

24. Li PF, Yan YD, Zhang KB et al (2018) Influence of training data

on engine fault diagnosis based on AdaBoost. J Xi’an Polytech

Univ 32(06):670–677

25. Cao YL, Gao S, Kan YX (2018) Influence of training data on

engine fault diagnosis based on AdaBoost. J Civ Aviat Univ

China 36(06):16–20

26. Zhang W, Sheng WX, Liu KY et al (2018) A prediction method

of fault risk level for distribution network considering correlation

of weather factors. Power Syst Technol 42(08):2391–2398

27. Zhang XF, Chen DQ, Yang YS et al (2018) Remote sensing

inversion of highway land use based on decision tree. Highway

63(09):191–199

28. Hao JW (2017) Research in aircraft maintenance and tracking

system based in data classification and prediction technology.

North China Electric Power University

A fault prediction method for catenary of high-speed rails based on meteorological conditions 221

123J. Mod. Transport. (2019) 27(3):211–221


	A fault prediction method for catenary of high-speed rails based on meteorological conditions
	Abstract
	Introduction
	Influence of meteorological conditions on catenary faults
	Temporal distribution characteristics of catenary faults
	Spatial distribution characteristics of catenary faults
	Analysis of meteorological conditions influence on catenary faults
	Statistical analysis on influential factors of catenary faults

	AdaBoost algorithm
	Basic theory of AdaBoost algorithm
	Construction of weak classifiers

	Fault prediction on catenary system
	Statistic and process input data for AdaBoost
	Attribute construction
	Discretization of meteorological data

	Construction of sample set
	Catenary fault prediction based on AdaBoost

	Case study
	Data selection and standardization
	Construction of strong classifier
	Results of catenary faults prediction

	Conclusions
	Acknowledgements
	References




