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Abstract

Motivation: With its capacity for high-resolution data output in one region of interest, chromosome

conformation capture combined with high-throughput sequencing (4C-seq) is a state-of-the-art

next-generation sequencing technique that provides epigenetic insights, and regularly advances

current medical research. However, 4C-seq data are complex and prone to biases, and while speci-

alized programs exist, an unbiased, extensive benchmarking is still lacking. Furthermore, neither

substantial datasets with fully characterized ground truth, nor simulation programs for realistic

4C-seq data have been published.

Results: We conducted a benchmarking study on 66 4C-seq samples from 20 datasets, and

developed a novel 4C-seq simulation software, Basic4CSim, to allow for detailed comparisons of

4C-seq algorithms on 50 simulated datasets with 10–120 samples each. Simulations and

benchmarking were adapted to address different characteristics of 4C-seq data. Simulated data

were compared with published samples to validate simulation settings. We identified differences

between 4C-seq algorithms in terms of precision, recall, interaction structure, and run time, and

observed general trends. Novel differential pipeline versions of single-sample based 4C-seq

algorithms were included in the benchmarking. While no single tool was optimally suited for

both near-cis and far-cis, and both single-sample and differential analyses, choosing a high-

performing algorithm variant did improve results considerably. For near-cis scenarios, r3Cseq,

peakC and FourCSeq offered high precision, while fourSig demonstrated high overall F1 scores in

far-cis analyses. Finally, 4C-seq simulations may aid in the development of improved analysis

algorithms.

Availability and implementation: Basic4CSim is available at https://github.com/walter–ca/

Basic4CSim.

Contact: carolin.walter@uni-muenster.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Circular chromosome conformation capture combined with high-

throughput sequencing (4C-seq) is a next-generation sequencing

(NGS)-based technique to identify three-dimensional chromosomal

contacts between a chosen point of interest (‘viewpoint’), and other

regions of the genome (Gheldof et al., 2012).

One 4C-seq experiment typically yields millions of reads, which

originate from a specific set of genomic fragments defined by the

chosen restriction enzymes. Due to inherent characteristics of the

4C-seq technology, resulting read distributions can suffer from a

number of biases, depending on the properties of the fragments of

origin (van de Werken et al., 2012a). Among those are the distance
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of a 4C-seq fragment to the experiments’ viewpoint, and the pres-

ence or the absence of a second restriction enzyme site within a 4C-

seq fragment (‘non-blind’ and ‘blind’, respectively). Consequently,

these properties have to be respected during the analysis of 4C-seq

data to prevent misinterpretation. 4C-seq is characterized by a re-

gion of high-information density around the chosen experimental

viewpoint (‘near-cis’), combined with relatively sparse data on the

remainder of the chromosome on which this viewpoint is located

(‘far-cis’), or other chromosomes (‘trans’). Taking into account the

structural differences of the signal for these two regions can poten-

tially improve 4C-seq analysis (van de Werken et al., 2012b). While

the analysis of a single 4C-seq sample is not trivial, the analysis of

samples in a differential setting with a condition and control group

becomes even more complex. Since differential questions are regu-

larly encountered in biology and medicine, supporting analysis strat-

egies are of increasing importance. Various algorithms are available

to identify near-cis or far-cis interactions (or both). Some algorithms

work on one single sample at a time, while others identify differen-

tial interactions between two groups of samples. Results are pre-

sented graphically (van de Werken et al., 2012a) or as interval sets

for predefined P-values or false-discovery rate levels; some tools

offer additional statistics and visualizations. Output form, candidate

interaction structure, run time or requirements differ between all

programs. Therefore, comparing the performance of the algorithms

for different tasks, situations and parameter settings is complicated,

but necessary to achieve an optimized analysis. With a lack of fully

characterized 4C-seq benchmarking datasets, simulated 4C-seq data

with a known ground truth is critical for a detailed comparison;

however, to our best knowledge, a flexible 4C-seq simulation pro-

gram which can create realistic 4C-seq fragment data with charac-

teristic biases is still missing.

Hence, we developed a novel 4C-seq data simulation tool,

Basic4CSim, which respects the basic structure of experimental

4C-seq data, and can be adapted to simulate different interaction

characteristics and noise levels. We then evaluated the precision,

recall and F1 score of 5 available 4C-seq analysis programs on

20 published datasets with 66 samples and 87 confirmed interac-

tions in total, and used simulated data to assess the performance and

candidate interaction structure of the algorithms in more detail. We

focused on assessing the precision and recall of the chosen programs

for varying levels of background noise, interaction lengths, signal

strengths, restriction enzymes, forms of interactions, levels of signifi-

cance and control sample interaction strength. Furthermore, we

included differential pipelines for single-sample-based algorithms in

the benchmarking, compared the F1 score for all algorithm variants,

evaluated the similarity of candidate interactions for replicate data

with the help of the Jaccard index (Intersection over Union), and

tested the stability and usability of the presented programs.

2 Materials and methods

Open source 4C-seq analysis programs were identified and down-

loaded as of August 2018. Web-interfaces or algorithms based on

graphical output were excluded from the analysis. Since we were

interested in results for both single-sample analyses and differential

questions, we created pipeline versions of single-sample algorithms

in R (https://www.R-project.org/, R Core Team, 2018). For each of

these algorithms, their native candidate interactions per sample were

called, combined and used as a basis for the differential expression

algorithm DESeq2 (Love et al., 2014) to create differential analyses

(Fig. 1). Basic statistics for the chosen algorithms are provided in

Table 1, details regarding the differential pipelines are included in

Supplementary Note S1.

2.1 4C-seq algorithms
Splinter’s algorithm (Splinter et al., 2012) is an R-based far-cis ex-

clusive single-sample analysis algorithm that complements the

graphics-based and near-cis focused 4cseqpipe (van de Werken

et al., 2012a). Splinter’s tool includes a permutation approach, in

which fragment counts within a smaller central window are com-

pared against the distribution of fragments in a longer background

window. Splinter’s algorithm does not consider total read counts per

restriction fragment, but binarizes the fragment count data.

The R-package r3Cseq (Thongjuea et al., 2013) is integrated

into the Bioconductor environment, and focuses on the analysis of

one sample at a time, with optional consideration of a control sam-

ple. The algorithm relies on function fitting and background scaling;

candidate interactions are identified with the help of windows with

Fig. 1. Benchmarking workflow: after a standardized preprocessing, candi-

date interactions were called for all 4C-seq analysis algorithms, and analyzed.

Single-sample-based algorithm results were combined to allow for additional

differential analyses

Table 1. Properties of 4C-seq algorithms chosen for the benchmarking

Algorithm Analysis Region Input format Source code Language

4C-ker Differential All Tab-delimited count files https://github.com/rr1859/R.4Cker R

FourCSeq Differential All Binary alignment/map (.bam) https://bioconductor.org/packages/release/bioc/

html/FourCSeq.html

R

peakC Single sample/

groups

Near-cis

focus

Wiggle track format (.wig) https://github.com/deWitLab/peakC R

r3Cseq Single sample All Binary alignment/map (.bam) https://bioconductor.org/packages/release/bioc/html/

r3Cseq.html

R

fourSig Single sample All Sequence alignment/map (.sam) https://sourceforge.net/projects/foursig/ R, Perl

Splinter Single sample No near-cis Wiggle track format (.wig) Publication supplement (Splinter et al., 2012) R

Note: Single-sample exclusive algorithms were combined with the differential expression algorithm DESeq2 to provide differential results.
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customizable length in base pairs (bp). For each candidate inter-

action, P-values are calculated based on the comparison of residues.

The single-sample-based algorithm fourSig (Williams et al.,

2014) is written in R and Perl. The tool uses a similar permutation

approach as Splinter’s algorithm, but takes fragment read counts

into consideration. Additionally, fourSig offers a heuristic filtering

strategy that allows to prioritize candidate interactions more likely

to be true positives. The program includes routines to mask the

viewpoint region, which is recommended for far-cis analyses.

The R/Bioconductor package FourCSeq (Klein et al., 2015)

allows both single-sample and differential analyses and requires

groups (n>1) of samples for each condition; an analysis with one

sample per condition is technically possible with previous versions,

but not recommended (Love et al., 2014). FourCSeq’s main analysis

strategy involves the fitting of curves to fragment read counts, and

the analysis of residues.

4C-ker (Raviram et al., 2016) is programmed in R and, similar

to FourCSeq, relies on the presence of replicate samples for a full dif-

ferential analysis due to the utilized DESeq2 functionality. As prep-

aration for its differential interaction calling, the tool utilizes a

Hidden Markov Model to partition the genome into low-interacting

or high-interacting regions, and regions without interactions.

Separate functions are included for near-cis, far-cis and trans 4C-seq

analyses.

peakC (Geeven et al., 2018) is a non-parametric algorithm, writ-

ten in R, and based on rank-products. If replicates are present for a

dataset, peakC offers a combined analysis, which uses information

from all samples to improve precision.

2.2 Datasets and simulation strategy
We used simulated and published 4C-seq datasets as a basis for the

benchmarking, and considered both mouse and human data, and

different restriction enzyme combinations used in the 4C-seq library

preparation.

For the single-sample-based algorithm benchmarking, 6�2

replicate samples and 6 pairs of samples with the same viewpoint,

but different biological conditions were selected from 12 datasets

or subsets in total. The number of selected viewpoints and sam-

ples was limited to two and four per study, respectively, in order

to reduce possible biases and increase variety. We chose another

eight datasets with two or more different conditions per study

and at least two replicates per condition to allow for differential

analysis and benchmarking. For the differential benchmarking, all

available replicates were used to increase statistical power. Details

regarding datasets and samples are provided in Supplementary

Note S3.1.

Most studies with the same restriction enzyme length setup

showed similar proportions of aligned reads, reads on the viewpoint

chromosome or viewpoint region reads (Fig. 2A), with a high degree

of similarity for replicates of the same dataset. The majority of

chosen datasets fulfilled van de Werken’s basic quality parameters

(Fig. 2B).

All simulations were conducted with the novel 4C-seq simulation

tool Basic4CSim, which is based on basic structural attributes

deduced from a set of 33 published 4C-seq samples (Supplementary

Table S3). Briefly, we extracted information regarding background

noise, near-cis read distribution, and interaction structure from the

datasets, and created simulated data with predefined noise levels,

viewpoint regions and interacting regions (Supplementary Note S2

and Table S4). Data quality, e.g. noise and signal strength, was var-

ied between sets of simulated data. Different settings with regard to

maximum background noise per fragment, percentage of noise frag-

ments, average length and strength of simulated interactions were

included. All simulated datasets consisted of two different simulated

conditions, with five replicates each. The second condition displayed

a subset of the first condition’s interactions, therefore acting as a

control for the first group. In total, 18 sets of cis data with 12 sub-

sets each and 6 sets of near-cis data with 32 subsets in total were

simulated (Supplementary Table S5). Each set consisted of two con-

ditions with five replicates. Since no sufficient data on different

properties between far-cis and trans interactions were available, we

approximated trans interactions with simulated low-density far-cis

interactions.

2.3 Standardized data preprocessing and algorithm

settings
All datasets were subjected to a standardized data preprocessing.

Parameter choices depended on the specifics of the respective test

scenario, with default choices otherwise. Window sizes of algo-

rithms were varied wherever possible, and the resulting algorithm

variants were evaluated separately. Details are provided in

Supplementary Note S3.2.

2.4 Algorithm performance analysis
For the experimental data we assessed the algorithms’ precision,

recall and F1 score, though this approach was limited due to the lack

of fully characterized viewpoint datasets with validated positive as

well as negative interaction sites. We decided to use a base pair level

resolution for the majority of analyses, intending to differentiate be-

tween programs that solely identified the highest interacting frag-

ments of an interacting region (‘summits’), and tools which output

the majority of a whole interaction (‘peaks’). Results per interaction

interval with a minimum overlap of 1 bp were provided as compari-

son for chosen datasets. Information regarding the position of true

interaction intervals was either provided directly in the reference

papers, or approximated from the associated publication figures.

Further details are provided in Supplementary Note S3.3, definitions

Fig. 2. Data quality of published datasets (square/dashed line: 6þ 4 bp restric-

tion enzyme combination, circle/dotted line: 4þ 4 bp setup). (A) Read count

per sample before and after alignment, on the viewpoint chromosome and in

the viewpoint region. (B) Quality criteria of van de Werken et al.: boxplots

show fragment coverage in the viewpoint region (ideally >80%), additional

diamonds indicate remaining quality statistics. Positions of the diamonds rep-

resent the cis/trans ratio (ideally >40%), and the diamonds’ brightness indi-

cate the number of aligned reads (samples with <1 million reads depicted in

black, samples with the recommended >1 million reads in light grey)
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and examples for precision, recall and F1 score are given in

Supplementary Note S3.4.

3 Results

Since real and simulated 4C-seq data are prone to differ in both

known and previously unconsidered features and statistics, we eval-

uated both groups of datasets separately. Furthermore, a number of

tools offered specific settings for use in near-cis or far-cis analyses

due to the inherent differences in signal strength between these

regions in 4C-seq samples. Since algorithm performance may vary

between near-cis and far-cis, benchmarking was split by setting.

Splinter’s algorithm is far-cis exclusive, and was therefore excluded

from the near-cis benchmarking. Default window sizes for 4C-ker

change in 4C-seq experiments with different restriction enzyme

lengths; furthermore, there are general differences in fragment

lengths and structure for these experimental setups. We therefore

evaluated the algorithm performance separately on 6 and 4 bp pri-

mary restriction enzyme sets before combining the results.

3.1 Comparison between real and simulated 4C-seq

data
While simulating data is a powerful tool in performance evaluations

due to an implicit knowledge of the underlying ground truth, its use-

fulness depends on the similarity between simulated and real data.

We therefore tested our simulated 4C-seq samples for adequate re-

semblance with published 4C-seq datasets.

Violin plots (https://CRAN.R-project.org/package¼vioplot;

Adler, 2005) indicated that the distribution of reads and thus the

chosen signal strength and background noise of the viewpoint region

and viewpoint chromosome for the simulated 4C-seq data were

within the expected range of real-world 4C-seq samples. Near-cis

fragment distributions were varied for the Dixon, Groeschel and

Lonfat datasets, and ranged from samples with low median read

counts and triangular shape of the corresponding probability density

to samples with a higher median read count and curved violin plot;

similar changes in the general shape of read distributions were

achieved for near-cis simulation data by varying the number, signal

strength and length of the simulated 4C-seq interactions (Fig. 3A).

For all far-cis samples, the majority of fragments had no or few

reads, with a limited number of high-signal fragments (Fig. 3B).

The ratio of near-cis to cis reads varied from 0.11 to 0.84 in the

real-world samples; the simulated data showed ratios of 0.26–0.81

depending on the simulation settings. Median near-cis fragment

coverage between both data types was comparable, with 77.01%

for the real-world samples and 70%–95% for the simulated data-

sets. The range of total read numbers in cis of 0.5–10.1 million reads

(excluding knockout samples) was matched between real-world and

simulation data.

Details regarding the workflow and results of the simulation are

provided in Supplementary Note S2.

3.2 Benchmarking: published data
3.2.1 Precision, recall and F1 score

For the chosen real 4C-seq samples with a 6þ4bp restriction en-

zyme setup (n¼28), both fourSig and its heuristic filter version

fourSig* showed a consistent median recall of 1.0 in near-cis for any

tested window size between 3 and 101 fragments, and a median re-

call of 0.84 for fourSig-1 (Fig. 4A). The corresponding median preci-

sion and F1 scores did not exceed 0.05, with smaller values for

higher window sizes. Results for r3Cseq were more varied, with

increased median precision, lower median recall and generally

higher median F1 scores than fourSig or fourSig*. r3Cseq’s precision

and F1 score were maximal for a window size of one fragment on

the chosen datasets (0.17 precision, 0.24 F1). Fixed window lengths

of 2–100 kb yielded increasing recall with a local maximum in preci-

sion and F1 score for a window length of 10 kb. peakC’s general

Fig. 3. Violin plots for log2-transformed fragment read counts. (A) Near-cis

simulation data for sample 1 of the condition and control group from datasets

a1, b1, c1 and d1 (left), and published data samples with comparable number

of near-cis fragments (right). The central part of each ‘violin’ corresponds to a

standard boxplot, with a grey dot as marker for the median; symmetric curves

at the sides depict the probability density. (B) Far-cis simulation data B1, B3,

C2 and D4 (left), and published datasets with comparable number of cis frag-

ments (right)

Fig. 4. Benchmarking results for published data in near-cis. (A) Boxplots of

single-sample-based F1 scores for 4C-seq algorithm variants, including

markers for precision and recall, restricted to 6þ4 bp data only. (B) Similar to

(A), but restricted to 4þ4bp data only. (C) Similar to (A), with all interactions

and samples included. (D) Approximated lengths of the actual 4C-seq inter-

action intervals. (E) Number of identified single-sample interactions per algo-

rithm (78 total). Upper/dark: 6þ4bp, lower/bright: 4þ4bp. (F) Similar to (E),

but with number of identified differential interactions per algorithm (9 total)
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performance was comparable to r3Cseq-2k and r3Cseq-5k, but

showed higher variance between the datasets and window sizes.

FourCSeq’s F1 score varied notably, with values between 0.01, 0.49

and no results at all for three datasets, while 4C-ker presented a me-

dian recall level of 0.5 for the smaller window choices, matched

with a low precision and F1 score for the test datasets.

We observed similar trends for the 4þ4 bp samples (n¼38),

namely high median recall and low median precision for fourSig and

fourSig*, increased recall and decreased precision with growing win-

dow sizes, and generally low F1 scores (Fig. 4B). r3Cseq’s precision

and F1 score were highest for a window size of 5 kb (precision

P¼0.09, F1¼0.13), while peakC-31’s median F1 score was maximal

for the 4þ4bp subset (F1 ¼ 0.18). FourCSeq’s did not identify inter-

actions for the majority of the samples, and 4C-ker’s F1 score did

not exceed a median of 0.04. Consequently, r3Cseq-5kb and

r3Cseq-10kb attained the highest overall median F1 scores for the

whole group of samples (F1 ¼ 0:16), with the highest median preci-

sion for all algorithms, combined with medium recall (Fig. 4C).

These window sizes matched the prevailing interaction length of 5–

10 kb found in the samples (Fig. 4D). peakC’s precision and F1 score

were slightly lower than those of the r3Cseq variants (F1 ¼ 0:14 for

peakC-31). An overview of identified interactions per sample and al-

gorithm is shown in Supplementary Table S4.

3.2.2 Further analyses

Given the strikingly low general precision in the base pair level ana-

lysis due to lack of fully characterized near-cis regions in real data-

sets, excess candidate interactions for algorithms with longer

window sizes, or partly missed interactions for algorithms with

shorter windows (Supplementary Figs S13 and 14), we asked how

many interactions were identified by the chosen tools in total.

Results were generally proportional to the algorithms’ recall, with

more false-negatives for r3Cseq and FourCSeq, and a full set of iden-

tified single-sample interactions by fourSig variants (Fig. 4E and F).

Furthermore, we found patterns for candidate interaction structures,

with r3Cseq and FourCSeq usually identifying the central part of

interacting regions (‘summits’), and fourSig’s and 4C-ker’s interac-

tions overlapping the whole intervals (‘peaks’). peakC calls

fragment-based intervals and tended to cover peak regions for win-

dow sizes close to its default value. Accordance between replicate

results varied between algorithms and datasets (Supplementary Note

S4.1).

3.3 Benchmarking: near-cis simulation
The setup for the near-cis simulation data analysis was kept similar

to the benchmarking for real-world data. Notable differences

included a larger proportion of available differential interactions,

fully characterized high-signal regions, and an increased number of

replicates per condition (n¼5). Consequently, more options for

combining single-sample candidate interval sets were available; we

chose to focus on a base pair union (�1 parallel candidate interac-

tions in five replicates), majority vote (�3 in five) and overlap strat-

egy (all five samples with candidate interaction intervals) as base for

the differential DESeq2 pipeline approach.

3.3.1 Strong-signal, high-noise data

For the high noise dataset c6 with strong interactions of 1500–3000

maximum reads per peak fragment, the resulting precision and recall

for most algorithms was comparable to the real-world datasets.

Interactions for fourSig and fourSig* were scattered throughout the

viewpoint area, and showed maximum recall for single-sample

analyses and window sizes w � 3 fragments (Fig. 5; Supplementary

Fig. S17A); fourSig’s single-sample precision was highest for

fragment-based fourSig. Corresponding absolute values for precision

and F1 score were notably higher than in the published datasets,

however, the increase were proportional to the increase in length of

the characterized near-cis interactions. r3Cseq’s interactions were

mainly located at the local maxima of interactions, with increasing

coverage of the interacting intervals for longer window lengths. The

program’s precision reached its maximum of P¼0.91 for a window

size of 2 kb for single samples, while its recall generally increased for

longer windows; for the chosen dataset, r3Cseq-10k had the high-

est overall F1 score (median F1 ¼ 0:66). peakC-1 had the highest

overall precision of P¼0.91 in group-mode, but a lower F1 score

than r3Cseq due to lower recall, and reduced precision for

single-sample analyses. While FourCSeq did identify single-sample

interactions for test data with <5 replicates per condition only,

4C-ker’s high-interacting regions were characterized by a recall of

r¼0.71 for the default median window length, combined with a

precision P¼0.37, and increasing precision and recall for our

tested window sizes.

Regarding differential interactions, the DESeq2 pipeline for

union r3Cseq-2kb had the highest F1 score of all tested algorithm

variants (Supplementary Fig. S17D). In general, r3Cseq’s precision

dropped for longer window sizes, while its recall increased; candi-

date interactions were located at interaction summits for fragment-

based windows. fourSig and fourSig* usually had higher recall with

decreased precision for window lengths between 3 and 11 frag-

ments, and did not identify any differential interactions for larger

window sizes. While peakC’s differential pipeline versions retained

their high precision, maximum recall dropped to r¼0.05 for

peakC-11 and the test dataset. Similarly, FourCSeq identified the

summits of a subset of the simulated interactions (Fig. 5), resulting

Fig. 5. Viewpoint overview for simulated data with strong signal: near-cis

overview plot with locally weighted scatterplot smoothing (LOESS) for frag-

ment counts in pooled condition (cond) and control samples. Interactions and

the viewpoint position are marked with black triangles and a grey bar

throughout the plot, ‘þc’ denotes regions with added control signal.

Candidate interactions are depicted per chosen algorithm variant: default val-

ues (‘4C-ker med’) for 4C-ker, default values (‘FourCSeq-40’) and reduced

minimum reads per fragments (‘FourCSeq-20’) for FourCSeq, default values

and default aggregation per condition for peakC, window sizes of 2000 (‘2k’)

base pairs for r3Cseq, window sizes of 1 fragment for fourSig, and 3 frag-

ments for fourSig*. Intervals with black borders indicate differential candidate

interactions. cond-u: union of all condition replicate results, cond-mv: major-

ity vote, cond-o: overlap
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in low recall. In contrast, 4C-ker’s candidate interactions envel-

oped most simulated interactions, but also included added noise

intervals. As a consequence, FourCSeq’s F1 score was 0.04 for a

bp-based analysis, while 4C-ker’s default values resulted in an

F1 score of 0.37.

A structural comparison based on the Jaccard index between

candidate interactions for the simulated data yielded similar results

to the corresponding analysis for the published 4C-seq samples.

In general, variants of the same program with small differences in

window size had similar candidate interactions, indicating a certain

degree of stability for the algorithm results. Differential results

were more heterogeneous between algorithm variants. Details are

provided in Supplementary Note S4.2.

3.3.2 Interaction length

We assessed the algorithms’ performance on simulated datasets with

different interaction lengths, and confirmed general trends from the

published datasets and the first set of near-cis simulations

(Supplementary Note S4.2).

3.3.3 Level of significance

Default levels of significance a were defined for all 4C-seq algo-

rithms, but the influence of variations in a was considerable. We

therefore chose algorithm variants with overall good performance in

the near-cis benchmarking, and tested their precision and recall for

progressively lower significance levels.

The recall of most 4C-seq programs decreased for lower values

of a, while their precision increased or remained stable (Fig. 6). This

general trend was true for simulated datasets with 6 and 4 bp pri-

mary restriction enzymes, varying peak lengths and changing levels

of background noise. 4C-ker’s precision increased constantly for all

chosen near-cis datasets up to a ¼ 0:001, with small decreases in

recall.

3.3.4 Influence of control samples

Since the comparison of different conditions can be relevant in biol-

ogy and medicine, we simulated a series of samples with constant

signal strength as a control sample group, but increased the inter-

action strength for the corresponding condition samples progressive-

ly over six datasets. This setup was used to assess the precision and

recall of the chosen differential algorithm variants for increasingly

divergent signal strengths between conditions. Maximum peak

height for the condition samples was adapted, with scaling factor

s¼0.5, 1.0,. . ., 3.0. Condition samples were simulated with a fixed

set of 10 interactions; a subset of 5 interactions was also included in

the control samples, while the background noise varied

(Supplementary Fig. S20A and B). We then determined the extent of

identified differential control peaks in base pairs. Of all algorithms,

only 4C-ker identified more than 10% of the control peaks, with re-

call r¼0.46 for scaling factor s¼2.0, and r¼0.59 for s¼3.0

(Supplementary Fig. S20C).

3.4 Benchmarking: far-cis simulation
While some algorithm variants performed similarly with regard to

their F1 score in near-cis and far-cis, other programs’ precision and

recall changed considerably. FourCSeq and r3Cseq continued to

show high precision, with reduced recall for r3Cseq in case of longer

interactions. fourSig variants retained their high recall, but gained

higher precision, while 4C-ker and single-sample peakC lost preci-

sion in a number of far-cis datasets. However, peakC’s differential

pipeline version showed high precision for most window sizes and

simulation settings (Supplementary Note S4.3). Far-cis exclusive

Fig. 6. Precision-recall curves for differential near-cis settings and varying lev-

els of significance a, with a ¼ 0:05; a ¼ 0:01; a ¼ 0:001; a ¼ 10�4; a ¼ 10�7 and

a ¼ 10�10. Smaller and more opaque symbols depict results for more strin-

gent levels of a. (A) Dataset c6, medium-length peaks, high noise, 4þ 4bp. (B)

Dataset a6, short peaks, medium noise levels, 4þ4bp. (C) Dataset d1, long

peaks, low noise, 4þ 4bp. (D) Dataset g6, long peaks, medium noise, 6þ4bp

Fig. 7. Far-cis benchmarking overview for dataset B1: precision and recall for

a subset of the chosen benchmarking algorithm variants in differential set-

tings on a low-noise dataset with strong interaction signal; the full algorithm

variant set is presented in Supplementary Figure S21. Size of symbol glyphs

depict recall, the precision is mapped to saturation (color intensity). Maximal

values are shown on the right side of the plots for comparison (‘max’), differ-

ent levels for precision and recall are visualized at the top of the plot. A union

of single-sample results was used in the pipeline approach for single-sample

4C-seq algorithms fourSig, fourSig*, r3Cseq and Splinter. Datasets 1–12 are

sorted by the simulated interactions’ fragment coverage rate (100, 90, . . ., 10,

5, 1%)
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Splinter’s algorithm had similar precision and recall as fourSig var-

iants with matching window sizes (Fig. 7).

General trends for algorithm precision and recall were quite stable

regarding different background noise levels, interaction lengths, inter-

action forms, signal strengths and enzyme choices (Supplementary

Note S4.3). The run time of most programs was low (Supplementary

Note S4.4); usability depended on the algorithm and the chosen type

of analysis (Supplementary Note S4.5).

4 Discussion

Currently there is a lack of gold standard validation datasets with a

sufficient number of validated 4C-seq interactions in near-cis and

far-cis, while different algorithms for candidate interaction identifi-

cation are available. We therefore simulated 4C-seq data based on

parameters extracted from published and novel 4C-seq experimental

data, and compared the 4C-seq programs with regard to their preci-

sion, recall, F1 score, interaction length, pairwise overlap and gen-

eral candidate interaction structure for a number of real datasets,

and simulated samples with varying interaction strengths and inter-

action forms. Given the sparse data on predominant 4C-seq noise

patterns, we simulated a variety of interferences in the form of back-

ground noise and interaction fragments without signal.

4.1 General results
Taking together the results of the different simulation settings and

published data, we conclude that currently there is no algorithm

that performs optimally for all possible conditions and interaction

structures of a 4C-seq experiment. While each algorithm identified

most simulated interactions in low-noise, strong-signal simulations

with a focus close to the experiment’s viewpoint, false-positive and

false-negative calls increased with rising noise levels and degrading

signal strength. Algorithm-specific patterns emerged, including spe-

cifics regarding the general number, length or location of most can-

didate interactions. Such patterns were mostly independent from

specific simulation settings, and also robust between replicates.

Despite this, we observed noticeable differences in a subset of the

chosen published biological replicate samples, indicating possible

variation in the underlying cells, or technical artifacts during the cre-

ation of those 4C-seq samples.

We found a certain degree of stability for most programs’ results

in simulated cis datasets with high interaction fragment coverage

rates. Reductions of the fragment coverage rate from 100% down to

30% did not lead to proportional losses of precision or recall for

most algorithms and variants or combination strategies, as long as

the background rate was significantly lower, and the simulated

interactions were still characterized by a certain length and read

coverage per fragment. However, most algorithms could not reliably

identify simulated interactions with fragment coverage rates close to

the background coverage rate, even if the interaction strength per

fragment was higher than the background noise. With Splinter’s

binarization approach, this behavior was expected, but fourSig and

fourSig* also suffered from decreased precision and recall.

Despite their inherent specialization, benchmarking results do

not suggest that the currently available differential 4C-seq

algorithms’ performance is superior to single-sample-based algo-

rithms when combined with a differential DESeq2 setup. For the

algorithms with customizable window sizes, optimum performance

in terms of the F1 score was generally achieved when the size of the

simulated interactions corresponded to the chosen window size.

This behavior was partly caused by the chosen evaluation strategy,

which focused on base pair interactions, and therefore penalized

both additional overhangs in candidate peaks and restrictions to

summit regions. However, large windows generally have a higher

chance to miss smaller regions of high interaction signals by diluting

the total signal regardless of the chosen analysis strategy, while

small windows often cause an algorithm to ignore larger segments

of a chromosome with lower, but consistent signal enrichment.

Consequently, comparisons of results for different window lengths

usually showed a more pronounced maximum for the F1 score at the

matching interaction size for both simulated and real-world 4C-seq

data. Since the median interaction size per sample is not inherently

known for real-world 4C-seq samples, however, recommended

approximations are dependent on the respective algorithm.

Splinter’s algorithm and fourSig offer a form of adaptive window

sizes, and merge resulting intervals for smaller window sizes if the

signal strength is appropriate. This approach allows for a certain

flexibility, and usually leads to high precision and recall for smaller

windows sizes up to the matching window length that corresponds

to the expected interactions, unless the high-interacting viewpoint

region is close by. Given the benchmarking results, we recommend

window lengths of 5–11 fragments for fourSig*, 1–11 fragments for

fourSig, 11–20 fragments for Splinter’s algorithm in cis and

fragment-based fourSig for differential near-cis analyses. If possible

with regard to expected points of interest in near-cis, the viewpoint

region should be masked out for fourSig analyses. r3Cseq’s max-

imum window size is 100 kb, with less frequent overlaps and merges

between bp-based interacting regions in contrast to the fragment-

based techniques; fragment-based r3Cseq reports interaction lengths

depending on the actual fragment sizes. With the high number of

shorter fragments in a 4þ4bp experiment, fixed windows of 2–5 kb

with union or majority vote combination were found most promis-

ing for r3Cseq in near-cis, while fragment-based r3Cseq’s greater

adaptability for candidate unions was beneficial for 6 bp primary re-

striction enzyme samples and cis analyses. 4C-ker’s default window

sizes appeared to be sufficient for near-cis analyses, but the program

benefited from lower significance levels a up to a ¼ 0:0001 on data-

sets with medium noise levels. Similar to the other tools, peakC’s

performance varies with its chosen window size; window sizes be-

tween 11 and 31 yielded high precision and F1 scores for most

datasets.

Absolute values for precision and recall are noticeably low for a

majority of algorithm variants in the presented datasets. While this

is partly expected due to the chosen bp-based analysis strategy

(Supplementary Note S3.4), 4C-seq data analysis is non-trivial in

general, and issues with data quality may facilitate concerns regard-

ing algorithm performance. Thorough validation of candidate inter-

actions, as well as use of replicate data, are therefore required for

reliable analyses. This is furthermore indicated by the variance be-

tween biological replicate samples, and also emphasized by Geeven

et al. (2018). Additionally, replicates are a technical requirement for

any DESeq2-based tool, which makes multiple samples a necessity if

FourCSeq, 4C-ker or one of the presented pipeline versions of

single-sample algorithms is chosen to analyze an experiment.

Given the overall fast run times and adequate usability of all con-

sidered 4C-seq algorithms, computational 4C-seq analyses are gen-

erally not complicated by technical concerns once the overall

installation process of the chosen programs has been successfully

completed. Due to the comparably low read number of 4C-seq

experiments, physical disc space is not an issue either. However, the

actual 4C-seq program and associated parameters have to be chosen

with respect to the experimental settings and questions of interest,

as indicated by the presented benchmarking, and reasonable care
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should be exercised during the interpretation of the provided results.

Algorithm recommendations based on key results for typical 4C-seq

analysis use cases are provided in Supplementary Table S7.

4.2 Limitations
With a limited number of validated 4C-seq interactions in near-cis and

far-cis, the presented simulations and benchmarking do rely on transfer

and interpolation of available near-cis interaction structure information

to areas more distant from the viewpoints. In general, simulated data

does not carry the same inherent authenticity as real-world 4C-seq

data, and may include simulation-specific biases. While examples of

real-world interactions in near-cis and far-cis indicate that assumptions

of similarity are plausible, additional comparisons against validated cis

and trans interacting regions would allow for further tests with simula-

tions outside the actual viewpoint chromosome.

The standardized data preprocessing and alignment does not allow

for optimizations regarding single datasets. We therefore assume that

all algorithms might show a certain degree of improvement when more

specialized algorithms or adapted parameters are used. However, with

similar general results throughout both real and simulated datasets,

and good alignment statistics and van de Werken quality metric results

for the majority of real-world datasets and all simulated datasets, we

expect those improvements to be minor in most cases.

Technical issues with FourCSeq and 4C-ker for some datasets

prompted us to search for problems with the related workflows. For

the differential 4C-seq algorithm FourCSeq, a number of datasets did

not yield any results at all, and the number of exceptions on published

datasets was notable. Single-sample analysis for our simulation datasets

with five replicates did not yield significant candidate interactions;

since FourCSeq reported results if lower numbers of replicates were

analyzed in parallel, the amount of variance between all simulated rep-

licates was likely problematic. However, the program showed high pre-

cision on summits for differential interactions on the simulated data,

published datasets generally varied more with regard to data quality,

and comparable errors were reported by the authors of 4C-ker when

evaluating FourCSeq against their own algorithm. Therefore, we be-

lieve that the main issue in this case is related to the input data’s signal

properties, e.g. high variance between replicates, and not caused by the

data analysis workflow. The second differential analysis program, 4C-

ker, generally demonstrated a high recall, albeit with lower precision

than r3Cseq and FourCSeq in near-cis settings. Given the statements in

the authors’ paper, this is to be expected, since 4C-ker aims to identify

longer domains of medium to high interaction rates. For far-cis simula-

tion data, 4C-ker’s precision was generally low.

5 Conclusion

Benchmarking results indicate that none of the currently available

4C-seq algorithms is optimally suited for all evaluated tasks.

Consequently, different algorithms should be used for an optimized

4C-seq analysis, including differential pipeline versions of single-

sample algorithms. We recommend r3Cseq for single-sample near-

cis settings and the identification of summits in far-cis, peakC for

near-cis group analyses when replicates are present, and the

DESeq2-r3Cseq pipeline and FourCSeq for differential near-cis anal-

yses. 4C-ker is more suited for the identification of broader peaks

and domains in near-cis; it is also the most sensitive algorithm for

the detection of different signal strengths between conditions. For

most far-cis analyses, Splinter’s algorithm, fourSig* and their re-

spective differential pipeline versions provide candidate interactions

with high precision and recall. Given fourSig’s susceptibility to noise

in near-cis, the use of replicates and overlaps between candidate

intervals are recommended.

With reduced sequencing costs and rising amounts of data, new

4C-seq algorithms that address sensitive and precise single-sample

and differential analyses for the whole genome are highly desirable.
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