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Rapidly increasing e-bike use in China has resulted in new traffic problems including rising accident rates at intersections related
to e-bike drivers’ decision-making during multiple signal phases. Traditional one-step decision models (such as GHM) lack
randomness and cannot adequately model e-bike drivers’ complex behavior. Therefore, this study used a Hidden Markov Driving
Model (HMDM) to analyze e-bike drivers’ decision-making process based on high-resolution trajectory data. Video data were
collected at three intersections in Shanghai and processed for use in the HMDM model. Five decision types (pass, stop, stop-pass,
pass-stop, and multiple) composed of speed and acceleration/deceleration information were defined and used to analyze the impact
of flashing green signals on e-bike drivers’ behavior and decision-making processes. Approximately 40% of drivers made multiple
decisions during the flashing green and yellow signal phases, in contrast to the traditional GHM model assumption that drivers only
make one decision. Distance from stop-line had the most obvious influence on the number of decisions. The use of flashing green
signals nearly eliminated the dilemma zone for e-bike drivers but enlarged the option zone, inducing more stop/pass decisions.
HMDM can be applied to improve the accuracy of traffic simulation, the fine design of traffic signals, the stability analysis of traffic

control schemes, and so on.

1. Introduction

Drivers approaching a signalized intersection during a signal
change from green to yellow must quickly decide whether
to enter the intersection or stop until the next green. This
situation can make drivers anxious and result in incorrect
decision-making. Several methods can be used to reduce
the probability of incorrect decisions during signal-change
intervals, including the application of flashing green signals.
For example, most Chinese cities use a 3 s flashing green
followed by a 3 s yellow.

In recent years, the use of e-bikes (bicycles equipped
with electric motors) has drastically increased in China. As
a result, smooth traffic flow in many cities is being increas-
ingly disrupted, while the operational efficiency and safety
of intersections are deteriorating. For example, data from
Shanghai’s Songjiang District indicate that 70% of accidents

at intersections occur during signal phase transitions, mostly
relating to collisions between motor vehicles and e-bikes
[1]. This is similar to patterns observed in other Chinese
cities, where many such accidents involve undisciplined
driver behavior such as red-light violations related to either
intentional violations or incorrect stop/pass decisions. In
China, motorized and nonmotorized traffic is controlled
using the same signals at signalized intersections, so e-bike
drivers’ indecision or improper reactions during flashing
green or yellow (along with insufficient clearance time) have
become the major causes of collisions between vehicles and
e-bikes. Thus, a better understanding of decision-making
behavior and mechanisms during the flashing green phase
is crucial for improving the safety performance of signalized
intersections.

Drivers’ stop/pass decision-making behavior at the end
of a green phase was initially modeled by Gazis et al. in 1960,
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which is usually referred to as the Gazis-Herman-Maradudin
(GHM) model [2]. According to the GHM model, at a closer
distance than the minimum stopping distance, a vehicle
cannot safely stop before the stop-line. At a larger distance
than the maximum crossing distance, a vehicle cannot safely
pass the intersection during the yellow interval. Traditional
GHM model is based on the maximum crossing distance and
the minimum stopping distance, assuming that the driver
makes only one decision (at the onset of the yellow light).
However, many past studies have argued that observed driver
behavior was considerably different from the theoretical
assumptions of the GHM model. Some studies [3, 4] have
shown that decision-making behavior during flashing green
and yellow is more complex and drivers may adjust their
stop/pass decisions several times. In addition, compared with
motorized vehicles, e-bikes are more variable in size, power,
control, performance capability, and driving characteristics,
so previous research based on motorized vehicles may not
apply to such nonmotorized vehicles.

Most relevant studies primarily consist of empirical
analysis and lack analytical modeling of driver decision-
making mechanisms in response to a combination of flashing
green and yellow, while ignoring drivers’ decision chain
during the entire transition interval. As a result, the mecha-
nisms of driver decision-making in these contexts have been
improperly interpreted. In addition, insufficient research
has focused on e-bike decision-making behavior, so further
analysis is necessary in understanding the impacts of flash-
ing green on e-bikes’ stop/pass decision-making. Thus, this
study investigated the mechanisms of Chinese e-bike users’
stop/pass decision-making processes during flashing green
and yellow intervals at intersections. The results may help
decrease incorrect stop/pass decisions during flashing green
and yellow situations and contribute to greater e-bike safety
at intersections.

This paper is organized as follows. First, past studies
on stop/pass decision-making behavior and the impacts of
flashing green signals are reviewed. Second, the study sites
are defined and the collection and processing methods for the
trajectory data and important decision-making parameters
are presented. Third, the basic theory of the Hidden Markov
Model (HMM) is described, details of model development
are given, an analytical model based on the HMM is devel-
oped, and the model estimation and validation results are
presented. Fourth, e-bike users’ stopping behavior with and
without flashing green before yellow and their decision-
making mechanism during flashing green are discussed.
Finally, conclusions are presented and future research is
summarized.

2. Literature Review

The GHM model initially proposed by Gazis et al. [2] is the
most widely used for stop/pass decision modeling and has
been further developed by other researchers [5-14]. In this
model, drivers are assumed to make their stop/pass decision
when approaching an intersection based on the maximum
crossing distance or the minimum stopping distance at the
onset of yellow, as determined by perception-and-reaction
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time, approach speed, and acceleration capability. The GHM
model has two limitations: (a) as a kinematic and determin-
istic model, it is not capable of assessing the randomness
inherent in driving behavior, and (b) it assumes a one-step
decision process that only accounts for behavior parameters
at the onset of a yellow signal. For these reasons, several
stochastic models such as the probit model, the logit model,
and the fuzzy logic model have been developed to explain the
randomness and uncertainty of stop/pass decision behavior
[5-7, 15-23].

Many studies have considered flashing green signals in
the past several decades. For example, Mahalel and Zaidel
[24] defined the dilemma zone, option zone, and indeci-
sion zone based on behavioral considerations, finding that
flashing green increased the size of the indecision zone and
consequently increased the probability of rear-end collisions.
Newton et al. [25] concluded that flashing yellow could
reduce red-light violations and increase the size of the
indecision zone, causing more rear-end collisions. Koll et
al. [3] also found that flashing green reduced the dilemma
zone and increased the option zone while increasing the
possibility of rear-end collisions. These studies are consistent
in showing that flashing green reduces red-light violations
that may result in right-angle collisions but increases conflicts
during approach that may result in rear-end collisions that
call for immediate action rather than preparatory warnings.
In addition, Tang et al. [26] and Dong et al. [27, 28] studied
the impact of flashing green on e-bike driving behavior
and found that potential time is the dominant independent
factor explaining the stop/pass decision of e-bike drivers.
In these cases, flashing green seemed to enlarge the option
zone, bringing the indecision zone earlier and resulting in
more aggressive driving behavior with regard to passing
through intersections. Overall, driver behavior at intersec-
tions with a flashing green is more complicated and uncertain
than at intersections lacking this feature. Thus, the GHM
model’s simplification of the stop/pass decision to a one-step
process may be suitable for intersections with only yellow
but cannot fully reflect decision-making at a flashing green
intersection.

3. Data Preparation

3.1. Field Study Site Description. Studying e-bike decision-
making behavior during the signal phase transition requires
accurate individual driving behavior data, which can be
obtained by field survey. Thus, three intersections in Shanghai
were selected for data collection on traffic operation and e-
bike behavior; each was a typical four-leg intersection with
the following characteristics (details summarized in Table 1):

(A) A dual-lagging, left-turn, four-phase plan (bicycles
and pedestrians are released with the motorized traffic
flow of the same direction);

(B) An exclusive bicycle lane at each of the approaches
and exits;
(C) A 3 s red-and-yellow signal and a 3 s flashing green

signal displayed before the green onset and the red-
and-yellow onset, respectively;
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TaBLE 1: Characteristics of the studied intersections in Shanghai.

Wuning Rd. & Daduhe
Rd. (Westbound)

Guoding Rd. & Huangxing
Rd. (Eastbound)

Dalian Rd. & Siping
Rd. (Westbound)

Traffic volume 1380 veh/h
Speed limit 50 km/h
Width 40m
Cycle length 220's
Number of phases 3
Green time 53s
Flashing green 3s
Yellow time 3s
All-red time ls

Transition signals Flashing green and yellow

1917 veh/h 1607 veh/h
50 km/h 50 km/h
45 m 45 m
161's 178 s
4 4
40s 38s
3s 3s
3s 3s
ls ls

Flashing green and yellow Flashing green and yellow

(D) An available on-site tall building allowing for easy
mounting of detection equipment for monitoring
bicycle volumes during the survey period.

3.2. Data Collection. The field survey was conducted during
off-peak hours from 12:00 to 16:00 on 10 normal weekdays in
2014 under sunny weather conditions. Two high-resolution
cameras were used at each intersection (Figure 1). One was
placed on a building at a height of 20 m, approximately 60 m
upstream of the intersection, perpendicular to the approach
lanes. This camera was intended to obtain trajectories for e-
bike stop/pass decision-making processes while approaching
the intersection. The other camera was positioned at the
roadside of the approach lane, angled across the intersection,
in order to record the trajectories of e-bikes within the inter-
section. Signal timing and phase transitions were collected at
the same time.

3.3. Data Reduction. Over 60 h of video data (approximately
1,800 cycles) were recorded and analyzed. Only the last-to-
stop e-bikes after the onset of flashing green were selected for
the analysis to avoid the influence of existing leading vehicles.

The image processing software George 2.1, developed by
Nagoya University [1, 26] with a resolution of 1/30 s, was used
for data reduction. This allowed every e-bike’s position to be
tracked after it entered the cameras scope along with signal
states for each time. The raw trajectory data were used to
automatically reproduce a complete e-bike trajectory with a
very high accuracy. A total of 344 travel trajectories, including
230 passes and 114 stops, were obtained during signal phase
transitions (Figure 2).

4. Model Development

4.1. Hidden Markov Model. A Markov chain is a sequence of
stochastic states that are determined only by the immediately
previous state. A Hidden Markov Model (HMM) indicates
that the sequence of states producing the observable data is
not available (hidden) even though outputs are dependent
on them. Observed states are associated with hidden states
by probability distributions. The output results present real
information about the sequence of states with the help of an

HMM. Therefore, the HMM can be considered as a double
stochastic process or a partially observed stochastic process
[29].

The Markov process has been proved to be capable of
modeling highly stochastic systems in the field of trans-
portation, such as path choice and traffic control strategy
[30, 31]. The use of Markov models in microcosmic driving
behavior research has gradually increased in recent years, but
the prediction of decision-making behavior based on Markov
models is still in its infancy [1, 32, 33].

4.2. Model Construction. As the stop/pass decision-making
process is comprised of multiple discrete action states that
are partially observable, these states can represent driver
maneuvers since observed e-bike movements are the con-
sequences of drivers actions. Thus, this study developed a
driving model based on HMM using behavioral recognition
including continuous trajectories or discrete sequences of
measurable properties such as position, speed, and accel-
eration/deceleration. The resulting Hidden Markov Driving
Model (HMDM) can present a series of dynamic states
revealing e-bike drivers’ decision-making processes during
signal phase transitions.

An HMDM can be formulated using (1), in which Q, O,
A, B, and 1 are defined by (2)-(6), respectively,

A=(Q,0,A,B,n) (1)
Q=1{q19} 2
O 011’.. 01]’ ”oil"”oij}
(Vl’al) vl,a]) (3)
(viray),- v aj)
Ao [Pu PIZ] (4)
P P2
B [pll le] )
P Pom
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FIGURE 1: Diagram of trajectory collection at intersections. Blue camera was mounted 20 m above the road and red camera at road height.
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FIGURE 2: Observed e-bike trajectories at study intersections.

n = {m,m,} (6)

where Q is the finite set of the hidden states and is regarded
as a driver’s time-dependent decision on whether to stop or
pass; O is the finite set of the observed states O; defined
by the states of speed v = {v,v,,...,v;} and acceleration
a = {ay,ay,...,a;}; A is the transition matrix, in which a;; =
P{Q; = q; | Q; = g} is the transition probability from

state i to state j, representing a time sequence of probability
that drivers change their decision from pass to stop (or vice
versa) at each time step; B = {b;} is the emission matrix,
where b; = P{Q; = 0; | Q, = g} is the probability of the
observation state j when the hidden state is 7, referring to a
time sequence of probability that a driver decides to stop or
pass at each time step under a given observed state; 7 is the
initial probability of stop or pass at the onset of flashing green
under a given observed state, which can be estimated from
empirical data; m is the total number of observable states
defined by Oy; 7w = {m;} is the initial probability distribution;
and m; = P{Q, = q;} is the initial probability of hidden state,
where m; = Py{Q, = q;}, 1, = P){Q, = ¢,} = the probability
of the initial state.

4.3. Solution Procedure and Algorithms. As both of the
observed and the hidden states are time-dependent and
each state must be defined on a basis of a time step,
this is appropriate for capturing the mechanism of drivers’
decision-making behavior. A time step of 0.1 s was used
in the proposed model, such that 60 observation and
hidden states are included during the entire phase transi-
tion period, composed of a 3 s flashing green and a 3 s
yellow.
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According to the basic concepts behind HMMs, there
are three fundamental problems that need to be solved:
the estimating problem, the decoding problem, and the
training problem. These can be solved by the Forward-
Backward algorithm, the Viterbi algorithm, and the Baum-
Welch algorithm, respectively, using methods presented in
full by Tang et al. [1].

5. HMDM Model Building

5.1. Determination of Initial Conditions

5.1.1. Observation & Hidden States. Measured e-bike behavior
is usually predefined as a set of discrete events or states in
HMDMs. In the case of e-bike decision-making processes,
these behaviors could be sequences of acceleration, decel-
eration, or cruising, and drivers’ attitudes can be character-
ized by driving parameters such as speed and acceleration.
Therefore, this study’s HMDM started with e-bike speed and
acceleration as the observed states and driver attitudes (stop
or pass) as the hidden states.

Statistical analysis of all e-bike samples found that most
drivers chose to stop at speeds below 10 km/h and to
pass at speeds above 30 km/h. Therefore, the total set of
speeds was divided into four groups: v = {v, (0-10 km/h),
v, (10-20 km/h), v5 (20-30 km/h), and v, (> 30 km/h)}.
As the 85% percentile acceleration/deceleration was +0.15
m/s®, this was set as the threshold for identifying e-bike
acceleration/deceleration, defining the three basic states of e-
bike dynamicsasa = {a, (<-0.15 m/s?), a, (-0.15t0 0.15 m/s%),
and a; (> 0.15 m/s%)}. Finally, 12 combinations of speed and

B 0.00 0.00 0.00 0.00 0.08 0.00 0.04 0.68 0.04 0.02 0.13 0.01
~10.00 0.00 0.04 0.00 0.28 0.15 0.01 0.35 0.14 0.00 0.02 0.01

5.2. Analysis of Learning Results. The HMM toolbox in MAT-
LAB software was used to solve the HMDM,; learning results
are shown in Figure 3. Observation states 6 and 8 contributed
most to the hidden state “stop”, while observation states 8 and
11 contributed most to the hidden state “pass.” The transition
probability from “pass” to “stop” was 0.21, and that from
“stop” to “pass” was 0.13.

Setting aside the model’s prediction accuracy, hidden
states at successive time steps tended to remain as the
previous state. However, there were still many conversions
between the two states, especially from “pass” to “stop.” A
more detailed analysis of these hidden state changes using
mechanism analysis of e-bike decision-making process is
presented in a subsequent section.

6. Comparative Analysis between GHM Model
and HMDM Model

6.1. GHM Model Specification

6.1.1. Model Building. Considering the influence of speed at
decision point and distance from decision point to stop-line

acceleration/deceleration were defined as observation states
for the HMDM. In addition, the hidden states were defined
as 1 (pass) and 2 (stop).

5.1.2. Initial State Vectors. The initial state vectors were
determined by analysis of the observed data during flashing
green and yellow lights; for stop (77;) and pass (77,), these were
0.67 and 0.33, respectively.

5.1.3. Initial Transition Matrix. In order to reduce errors
from the initial state vector set, this study adopted the
A Priori method to determine the initial transfer matrix.
Taking half of all samples for model training (n = 172)
produced 115 passes samples and 57 stops. Comparative
analysis of the initial and final states for these training samples
found that the initial 115 passes contained 91 passes and 24
stops, while the initial 57 stops contained 50 stops and 7
passes. Hence, the initial transition matrix can be calculated
as

91 24
e 0.79 0.21 -
7 50 0.13 0.87
57 57

5.1.4. Initial Confusion Matrix. Setting 12 observation states
and 2 hidden states in the HMDM formed a 2 x 12 confusion
matrix: {0 < v< 10, 10 £ v < 20,20 < v < 30, v > 30} x{a <
—-0.15, —0.15 < a < 0.15, a > 0.15}. The initial and final state
of each training sample was used to calculate initial confusion
matrix:

(8)

during the decision-making process, GHM model is con-
structed, which is a binary logistic regression model. In
order to make the model more accurate and forward: LR is
used to screen the independent variables. Forward stepwise
regression method based on maximum likelihood estimation
is used to select the independent variables based on Core test
statistics. The rejected variables are based on the likelihood
ratio test results of maximum partial likelihood estimation.
The results are shown in Table 2.
The fitted logistic regression model is as follows:

logit (p) = 0.541 + 0.123V — 0.084S. 9)

Namely,

1
1+ 1/(0.541 +0.123V — 0.084S)

P (pass) =1 (10)

In (9) and (10), V is the instantaneous speed at decision
point and S is the distance from decision point to stop-line.

In the model, the regression coefficient of speed is positive
and the regression coefficient of distance is negative, which



6 Journal of Advanced Transportation
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6
0< V<10 0< V<10 0< V<10 10<V <20 10< V <30 10< V<20
o a<-0.15 -0.155« < -0.15 a>0.15 a > 1.04 a <-0.62 -0.62< a <1.04
B
Q
B
[ Scene 7 Scene 8 Scene 9
20< V<30 20< V<30 20< V<30
o a<-0.15 -0.155a < -0.15 a>0.15
FIGURE 3: Training results for e-bike behavior.
TABLE 2: Variables in the equation.
0y
B SE,  Wad df Sig Exp(B) C.L for EXP(B)
Lower Upper
Speed at the decision p+-oint 123 032 14.895 1 .000 1131 1.062 1.204
Step1°  Distance between decision point and stop-line ~ -.084  .019  19.001 1 .000 .920 .886 .955
Constant .541 .702 .594 1 441 1.717

a. Variable(s) entered on step 1: speed at the decision point, distance between decision point and stop-line.

indicates that the larger the vehicle speed and the smaller
the distance from the stop-line, the higher the probability of
choosing the decision-making, which is consistent with the
actual situation.

6.1.2. Model Estimation. 'The GHM model test is divided into
significance test and goodness-of-fit test. The test results are
shown in Table 3.

6.2. Comparison between GHM Model and HMDM. The
prediction accuracy of HMDM was obtained by comparison
between the hidden state of the final time step predicted by
the model and the actual states from observed data, and the
GHM model was developed to test the accuracy of HMDM
(results presented in Figure 4).

The hit ratio reached 97.1% for stopped and 84.6% for
passing e-bikes, with an overall hit ratio of 88.74%. The
relatively low prediction accuracy for passing e-bikes could
be explained by a commonly observed pattern in which
some e-bikes, especially those with a high speed, decel-
erated rapidly when approaching the intersection but still
crossed the stop-line. Such trajectories with a large decel-
eration rate were wrongly classified as being stopped in the
model.

100% - 97.10%
88.74%
0y
& Lo 81.60%
2 80% -
3 X 72.10%
S 60% - SRS S
2 45.60% SR SRS
£ 40% | 8 2555 :
[ X 5 % 5
=) £ X S
§ 20% - )(53}( LERLK o
5 5% RS 3K
~ 2 3 X
0% e
pass stop total of passes & stops
Prediction accuracy
v,/ HMDM
B2 GHM Model

FIGURE 4: Comparison of prediction accuracy between HMDM and
GHM model.

The total hit ratio of the HMDM was significantly higher
than that of the GHM model, particularly for the pass
hit ratio, suggesting that the HMDM was very capable of
interpreting e-bike drivers’ decision-making processes and
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TABLE 3: Variables in the equation.

Chi-square df Sig.
Omnibus Tests of Model Coeflicients 3031 2 0
30.51 0
30.51
Hosmer and Lemeshow test Chi-square df Sig.
14.787 8 0.063
-2 Log likelihood ~Cox & Snell R Nagelkerke R*
182.204" 0.169 0.233

Model summary

a. Because the change range of parameter estimation is less than 0.001, the estimation terminates

at 4 iterations.

Sig. of Omnibus Tests of Model Coefficients less than 0.05, indicating that it is significant; Sig. of Hosmer and Lemeshow test greater than 0.05, indicating that
goodness-of-fit test of the model is significant; -2 Log likelihood, Cox & Snell R, and Nagelkerke R? showing that the fitting degree of the model is reasonable.

more effective at identifying their decision states compared
with the GHM model.

7. HMDM Model Application

The predicted hidden state sequence of 1 (pass) and 2 (stop)
can represent the vehicle driver’s decision-making process
and is closely related to the observation states of speed
and acceleration/deceleration. To identify how many times
an individual e-bike driver modified his decisions during
flashing green and yellow lights, five decision types were
defined according to analysis of trajectory data, similar to
methods used in Tang et al. [1]:

(i) Type 1: one-step decision (pass)
(ii) Type 2: one-step decision (stop)
(iii) Type 3: two-step decision (stop-pass)
(iv) Type 4: two-step decision (pass-stop)
(v) Type 5: multiple-step decision

Based on these five types, the estimated frequencies
of each group among all e-bike samples were analyzed;
the results with typical speed and acceleration/deceleration
profiles are presented in Figures 5 and 6.

Approximately 60% of e-bike drivers did not change
their initial decision (Types 1 and 2), ~34% modified their
initial decision once (Types 3 and 4), and 6% modified their
decisions more than once (Type 5). Further analysis showed
that Type 4 mainly included two kinds of e-bike trajectories.
One consisted of drivers who decided to pass at the onset of
flashing green but later changed to stop. This transformation
was mainly due to changes in the surrounding traffic environ-
ment such as remaining flashing green or yellow light timing,
distance from stop-line, driving conditions (such as current
speed), and driving habits (e.g., conservative or aggressive).
The other consisted of those who had initially decided to
stop, but whose hidden states were identified as “pass” at
the beginning because they did not slow down obviously
until their distance to the stop-line was very short. Overall, a
large percent of e-bike drivers clearly made multiple decisions
during the signal phase transition instead of only one initial
decision as commonly assumed by GHM models.

8. Conclusion, Implications, and Future Works

Based on the high-resolution trajectory data of e-bikes, this
study developed a model for e-bike driver decision-making
under flashing green and yellow signal conditions based on
the HMM (i.e., a HMDM); five decision types related to
the speed and acceleration/deceleration of the e-bikes were
analyzed to determine the number and type of e-bike driver
decisions and the impact of flashing green on their decision-
making behavior. It was found that HMDM was able to
accurately identify e-bike drivers’ stop/pass decisions and
clearly revealed their decision-making mechanisms during
flashing green and yellow lights. Several conclusions are as
follows.

Because HMDM can reflect dynamic decision-making
process of e-bike drivers during signal change interval, there-
fore, compared with GHM model, the developed HMDM has
higher prediction accuracy of stop/pass decisions.

HMDM reveals that approximately 40% of e-bike drivers
made multiple decisions when they encounter a flashing
green or yellow light.

For e-bikes, flashing green mostly eliminated the dilem-
ma zone while significantly enlarging the option zone; this
caused earlier initial stop/pass decisions but also increased
subsequent changes in decision-making.

The distance to the stop-line at the decision point was the
most influential factor for the number of stop/pass decisions.
The power performance of e-bike is very prominent. The
acceleration and deceleration of e-bike are large and its
operation is flexible. However, unlike motor vehicles, e-bikes
are easily disturbed by other bicycles or pedestrians and
then adjust their speed. Therefore, the instantaneous speed
of e-bikes fluctuates greatly during decision-making process.
When encountering flash green or yellow light, e-bike drivers
first judge the approximate distance to the intersection. If the
distance is relatively small, they will immediately determine
whether to pass or stop. But if the distance is relatively far
from the intersection, they will not immediately determine
whether to pass or stop. Most of them try to pass first and
then adjust their decision of pass or stop in time according to
the distance to the intersection. Although the most essential
factor affecting pass/stop decision-making is the time to the
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FIGURE 5: Typical speed and acceleration profiles of each decision type: 1 (pass), 2 (stop), 3 (stop-pass), 4 (pass-stop), and 5 (multiple).

stop-line, the most direct and sensitive factor is the distance
to the intersection.

HMDM is a decision-making prediction model based on
fine-grained e-bike driving characteristic parameters and it
can be used to analyze the mechanism of the influence of
transition signals on decision-making behavior. The model
has several significant applications for intersections with
flashing green signals. Firstly, compared with the GHM

model, HMDM achieves a more accurate prediction of
stop/pass decisions by establishing the identified probabilistic
relationship between the driver’s time-dependent decisions
of stop or pass and its instantaneous acceleration rates
and speeds. Therefore, HMDM is helpful for traffic engi-
neers to proactively recognize potential wrong decisions and
dangerous driving behavior when encountering transitional
signals, to realize the reasonable processing of yellow light
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FIGURE 6: Profiles of each decision type: 1 (pass), 2 (stop), 3 (stop-
pass), 4 (pass-stop), and 5 (multiple).

dilemma zone and the fine design of transitional signals
such as yellow light, all-red light, and flashing green signal
and to improve traffic safety at intersections. Secondly,
the typical microscopic traffic simulation models such as
VISSIM are based on GHM model, and both motor vehicles
and nonmotorized vehicles adopt a unified model, which
cannot truly reflect nonmotorized drivers’ perception-and-
reaction process. HMDM can identify the dynamic change
of nonmotorized vehicle driver's decision-making behavior
and make a reliable prediction of decision chain and then
effectively improve the accuracy of traffic simulation.

For the improvement and application of the model,
several tasks need to be carried out in the future. Firstly, in
view of the adaptability of the model, it is necessary to extend
it to other cities besides Shanghai. Secondly, the analysis can
be extended to other road users such as cars and trucks.
Thirdly, in order to further improve the prediction accuracy
of the model, we can try to adjust the indicators reflecting
decision-making driving behavior. Fourthly, the application
of HMDM in the fine design of intersection signal control
and microscopic traffic simulation is also important for the
extension of the presented study.
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Supplementary Materials

Supplementary materials include three excel tables. Supple-
mentary Material 1 lists the e-bike trajectories data of stop
samples. Supplementary Material 2 lists the e-bike trajectories
data of pass samples. According to the data in Supplementary
Material 1 and Supplementary Material 2, the trajectory
diagram of all samples in the decision-making process can
be obtained (Figure 2 in Manuscript V3.0). Supplementary
Material 3 provides speed and acceleration data for some
typical e-bike samples. Based on these data, we can judge the
decision-making process of e-bike riders. Thus, five typical
decision-making types can be concluded and are shown in
Figure 5 of Manuscript V3.0. (Supplementary Materials)

References

[1] Tang K., S. Zhu, Y. Xu, and E Wang, “Analytical modeling
of dynamic decision-making behavior of drivers during the
phase transition period based on a hidden markov model,” in
Proceedings of the Transportation Research Board 94th Annual
Meeting, Transportation Research Board, Washington, DC,
USA, 2015.

[2] D. Gazis, R. Herman, and A. Maradudin, “The problem of the

amber signal light in traffic flow;,” Operations Research, vol. 8, pp.
112-132, 1960.

[3] H. Koll, M. Bader, and K. W. Axhausen, “Driver behaviour
during flashing green before amber: A comparative study,
Accident Analysis & Prevention, vol. 36, no. 2, pp. 273-280, 2004.

[4] R. Factor, J. N. Prashker, and D. Mahalel, “The flashing green
light paradox,” Transportation Research Part F: Traffic Psychol-
ogy and Behaviour, vol. 15, no. 3, pp. 279-288, 2012.

[5] D.S. Hurwitz, H. Wang, M. A. Knodler, D. Ni, and D. Moore,
“Fuzzy sets to describe driver behavior in the dilemma zone
of high-speed signalized intersections,” Transportation Research
Part F: Traffic Psychology and Behaviour, vol. 15, no. 2, pp. 132—-
143, 2012.

[6] C. Ma, W. Hao, E Pan, and W. Xiang, “Road screening
and distribution route multi-objective robust optimization for
hazardous materials based on neural network and genetic
algorithm,” PLoS ONE, vol. 13, no. 6, Article ID e0198931, 2018.

[7] C. Ma, W. Hao, R. He, and B. Moghimi, “A multiobjective
route robust optimization model and algorithm for hazmat
transportation,” Discrete Dynamics in Nature and Society, vol.
2018, pp. 1-12, 2018.

[8] C. Liu, R. Herman, and D. C. Gazis, “A review of the yellow
interval dilemma,” Transportation Research Part A: Policy and
Practice, vol. 30, no. 5, pp. 333-348,1996.

[9] G. M. Bjérklund and L. Aberg, “Driver behaviour in inter-
sections: formal and informal traffic rules, Transportation

Research Part F: Traffic Psychology and Behaviour, vol. 8, no. 3,
Pp. 239-253, 2005.


http://downloads.hindawi.com/journals/jat/2019/7341097.f1.zip

10

[10] M.-S. Chang, C. J. Messer, and A. ]. Santiago, Timing traffic
signal change intervals based on driver behavior, Transportation
Research Board, Washington, DC, USA, 1985.

[11] P. L. Olson and R. W. Rothery, “Driver response to the amber
phase of traffic signals,” Operations Research, vol. 9, no. 5, pp.
650-663, 1961.

[12] Y. Liu, G.-L. Chang, R. Tao, T. Hicks, and E. Tabacek, “Empirical
observations of dynamic dilemma zones at signalized intersec-
tions,” Transportation Research Record, no. 2035, pp. 122-133,
2007.

[13] E B. Lam and S. Vijaykumar, “Timing design of signal change
interval,” Traffic Engineering & Control, vol. 29, no. 10, 1988.

[14] H. Wei, Z. Li, P. Yi, and K. Duemmel, “Quantifying dynamic
factors contributing to dilemma zone at high-speed signalized
intersections,” Transportation Research Record, no. 2259, pp.
202-212, 2011.

[15] J. N. Prashker and D. Mahalel, “The relationship between an
option space and drivers’ indecision at signalized intersection
approaches,” Transportation Research Part B: Methodological,
vol. 23, no. 6, pp. 401-413, 1989.

[16] K. Tang, M. Kuwahara, and S. Tanaka, “Design of inter-
green times based on safety reliability,” Transportation Research
Record, no. 2259, pp. 213-222, 2011.

[17] P. Li and M. Abbas, “Stochastic dilemma hazard model at
high-speed signalized intersections,” Journal of Transportation
Engineering, vol. 136, no. 5, pp- 448-456, 2010.

[18] H. Rakha, I. El-Shawarby, and J. R. Setti, “Characterizing driver
behavior on signalized intersection approaches at the onset
of a yellow-phase trigger,” IEEE Transactions on Intelligent
Transportation Systems, vol. 8, no. 4, pp. 630-640, 2007.

[19] D. S. Hurwitz, M. A. Knodler, and B. Nyquist, “Evaluation
of driver behavior in type II dilemma zones at high-speed
signalized intersections,” Journal of Transportation Engineering,
vol. 137, no. 4, pp- 277-286, 2011.

[20] P.Chen, W. Zeng, G. Yu, and Y. Wang, “Surrogate safety analysis
of pedestrian-vehicle conflict at intersections using unmanned
aerial vehicle videos,” Journal of Advanced Transportation, vol.
2017, Article ID 5202150, 12 pages, 2017.

[21] Y. Guo,]. Zhou, Y. Wu, and Z. Li, “Identifying the factors affect-
ing bike-sharing usage and degree of satisfaction in Ningbo,
China,” PLoS ONE, vol. 12, no. 9, Article ID e0185100, 2017.

[22] Y. Guo, J. Zhou, Y. Wu, and J. Chen, “Evaluation of factors
affecting E-bike involved crash and E-bike license plate use
in china using a bivariate probit model,” Journal of Advanced
Transportation, vol. 2017, Article ID 2142659, 12 pages, 2017.

[23] Y. Guo, Z. Li, Y. Wu, and C. Xu, “Evaluating factors affecting
electric bike users’ registration of license plate in China using
Bayesian approach,” Transportation Research Part F: Traffic
Psychology and Behaviour, vol. 59, pp. 212-221, 2018.

[24] D. Mahalel and D. M. Zaidel, “Safety evaluation of a flashing-
green light in a traffic signal,” Traffic, Engineering and Control,
vol. 26, no. 2, pp. 79-81, 1985.

[25] C. Newton, R. N. Mussa, E. K. Sadalla, E. K. Burns, and
J. Matthias, “Evaluation of an alternative traffic light change
anticipation system,” Accident Analysis & Prevention, vol. 29, no.
2, pp. 201-209, 1997,

[26] K. Tang, S. Dong, F. Wang, Y. Ni, and J. Sun, “Behavior of riders
of electric bicycles at onset of green and yellow at signalized

intersections in China,” Transportation Research Record, vol.
2317, pp. 85-96, 2012.

Journal of Advanced Transportation

[27] S.Dong, K.Li, X. Fu, and J. Sun, “Non-motorized vehicle drivers
behavior with flashing green and green countdown at intersec-
tions: a comparative study;” in Proceedings of the Transportation
Research Board 90th Annual Meeting, Transportation Research
Board, Washington, DC, USA, 2011.

[28] S. Dong, J. Zhou, L. Zhao, K. Tang, and R. Yang, “Feasibility
analysis of phase transition signals based on e-bike rider
behavior,” Advances in Mechanical Engineering, vol. 7, no. 11,
2015.

[29] L. R. Rabiner and B.-H. Juang, “An introduction to hidden
Markov models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16,
1986.

[30] W. Recker, B. Ramanathan, X. Yu, and M. McNally, “Markovian
real-time adaptive control of signal systems,” Mathematical and
Computer Modelling, vol. 22, no. 4-7, pp. 355-375, 1995.

[31] G. Koole and O. Passchier, “Optimal control in light traffic
Markov decision processes,” Mathematical Methods of Opera-
tions Research, vol. 45, no. 1, pp. 63-79, 1997.

[32] Z. Xi and D. M. Levinson, “Modeling pipeline driving behav-
iors: hidden Markov model approach,” Transportation Research
Record, no. 1980, pp. 16-23, 2006.

[33] P. Li and M. M. Abbas, “A Markov process based dilemma
zone protection algorithm,” in Proceedings of the 2009 Winter
Simulation Conference, (WSC 2009), pp. 2436-2445, Austin,
Tex, USA, December 2009.



International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal ——  Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of ) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration


https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

