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Abstract
People living in highly-populated cities increasingly suffer an impoverishment of their
quality of life due to pollution and traffic congestion problems caused by the huge number
of circulating vehicles. Indeed, the reduction the number of circulating vehicles is one of
the most difficult challenges in large metropolitan areas. This PhD thesis proposes a
research contribution with the final objective of reducing travelling vehicles. This is done
towards two different directions: on the one hand, we aim to improve the efficacy of ride
sharing systems, creating a larger number of ride possibilities based on the passengers
destination activities; on the other hand, we propose a social media analysis method,
based on machine learning, to identify transportation demand to an event.
Concerning the first research direction, we investigate a novel approach to boost ride
sharing opportunities based, not only on fixed destinations, but also on alternative des-
tinations while preserving the intended activity of the user. We observe that in many
cases the activity motivating the use of a private car (e.g., going to a shopping mall) can
be performed at many different locations (e.g. all the shopping malls in a given area).
Our assumption is that, when there is the possibility of sharing a ride, people may ac-
cept visiting an alternative destination to fulfill their needs. Based on this idea, We thus
propose Activity-Based Ride Matching (ABRM), an algorithm aimed at matching ride
requests with ride offers to alternative destinations where the intended activity can still
be performed. By analyzing two large mobility datasets, we found that with our approach
there is an increase up to 54.69% in ride-sharing opportunities compared to a traditional
fixed-destination-oriented approach.
For the second research contribution, we focus on the analysis of social media for inferring
the transportation demands for large events such as music festivals and sports games. In
this context, we investigate the novel problem of exploiting the content of non-geotagged
posts to infer users’ attendance of large events. We identified three temporal periods:
before, during and after an event. We detail the features used to train the event attendance
classifiers on the three temporal periods and report on experiments conducted on two
large music festivals in the UK. Our classifiers attained a very high accuracy, with the
highest result observed for Creamfields festival (∼91% accuracy to classify users that will
participate in the event). Furthermore, we proposed an example of application of our
methodology in event-related transportation. This proposed application aims to evaluate
the geographic areas with a higher potential demand for transportation services to an
event.

Key-words: Ride-sharing, Matching Algorithms, Activity-Based, Social Media, Atten-
dance Prediction.



Resumo
Pessoas que vivem em cidades altamente populosas sofrem cada vez mais com o declínio
da qualidade de vida devido à poluição e aos problemas de congestionamento causados
pelo enorme número de veículos em circulação. A redução da quantidade de veículos em
circulação é de fato um dos mais difíceis desafios em grandes áreas metropolitanas. A
presente tese de doutorado propõe uma pesquisa com o objetivo final de reduzir o número
de veículos em circulação. Tal objetivo é feito em duas diferentes direções: por um lado,
pretendemos melhorar a eficácia dos sistemas de ride-sharing aumentando o número de
possibilidades de caronas com base na atividade destino dos passageiros; por outro lado,
propomos também um método baseado em aprendizagem de máquina e análise de mídia
social para identificar demanda de transporte de um evento.
Em relação à primeira contribuição da pesquisa, nós investigamos uma nova abordagem
para aumentar o compartilhamento de caronas baseando-se não apenas em destinos fixos,
mas também em destinos alternativos enquanto que preservando a atividade pretendida
do usuário. Observamos que em muitos casos a atividade que motiva o uso de um carro
particular (por exemplo ir a um shopping center) pode ser realizada em muitos locais difer-
entes (por exemplo todos os shoppings em uma determinada área). Nossa suposição é que,
quando há a possibilidade de compartilhar uma carona, as pessoas podem aceitar visitas
a destinos alternativos para satisfazer suas necessidades. Nós propomos o Activity-Based
Ride Matching (ABRM), um algoritmo que visa atender às solicitações de caronas usando
destinos alternativos onde a atividade pretendida pelo passageiro ainda pode ser execu-
tada. Através da análise de dois grande conjuntos de dados de mobilidade, mostramos
que nossa abordagem alcança um aumento de até 54,69% nas oportunidades de caronas
em comparação com abordagens tradicionais orientadas a destinos fixos.
Para a segunda contribuição nos concentramos na análise de mídias sociais para inferir
as demandas de transporte para grandes eventos tais como concertos musicais e eventos
esportivos. Investigamos um problema que consiste em explorar o conteúdo de postagens
não geolocalizadas para inferir a participação dos usuários em grandes eventos. Nós iden-
tificamos três períodos temporais: antes, durante e depois de um evento. Detalhamos as
features usadas para treinar classificadores capazes de inferir a participação de usuários em
um dado evento nos três períodos temporais. Os experimentos foram conduzidos usando
postagens em mídias sociais referentes a dois grandes festivais de música no Reino Unido.
Nossos classificadores obtiveram alta accuracy, com o maior resultado observado para o
festival Creamfields (∼91% de accuracy para classificar os usuários que participarão do
evento). Propusemos também uma aplicação de nosso método que visa avaliar as áreas
geográficas com maior potencial de demanda por serviços de transporte para um evento.

Palavras-chaves: Compartilhamento de caronas, Algoritmos de Matching, Activity-
Based, Mídias Sociais, Predição de participação.



Sommario
Le persone che vivono in città densamente popolate subiscono sempre più un impover-
imento delle loro qualità della vita a causa dell’inquinamento e dei problemi di conges-
tione del traffico causati dall’enorme numero di veicoli circolanti. La riduzione dei veicoli
circolanti è una delle sfide più difficili nelle grandi aree metropolitane. Questa tesi di dot-
torato propone un contributo di ricerca con l’obiettivo finale di ridurre i numeri di veicoli
in viaggio. Questo eśtato sviluppato verso due direzioni: da un lato, vogliamo migliorare
l’efficacia dei sistemi di ride sharing, aumentando la possibilità di ricevere e dare passaggi
in base alla attività di destinazione dei passeggeri. D’altra parte, vogliamo proporre un
metodo basato sul machine learning e analisi dei social media, per identificare demanda
de transporte a un evento.
Per quanto riguarda il primo contributo di ricerca, abbiamo studiato un nuovo approc-
cio per aumentare la condivisione dei passagi non solo su destinazioni fisse, ma anche su
destinazioni alternative preservando l’attività prevista dall’utente. Osserviamo infatti che
in molti casi l’attività che motiva l’uso di un’auto privata (ad es. andare in un centro
commerciale) può essere eseguito in molti luoghi diversi (ad esempio tutti i centri com-
merciali in una determinata area). La nostra ipotesi è che, quando c’è la possibilità di
condividere un passaggio, le persone possono accettare di visitare una destinazione alter-
nativa per soddisfare i loro bisogni. Basato su questa idea, proponiamo Activity-Based
Ride Matching (ABRM), un algoritmo che mira a soddisfare le richieste di carpool utiliz-
zando destinazioni alternative, dove l’attività desiderata dal passeggero può ancora essere
eseguita. Attraverso l’analisi di due grandi insiemi di dati di mobilità, mostriamo che il
nostro approccio raggiunge un aumento fino al 54,69% nelle opportunità di condivisione
di car pooling rispetto agli approcci tradizionali rivolti a destinazioni fisse.
Per il secondo contributo della ricerca ci concentriamo sull’analisi dei social media per in-
ferire le richieste di trasporto verso grandi eventi come concerti musicali e giochi sportivi.
In questo contesto, indaghiamo sul nuovo problema dello sfruttamento del contenuto di
non geotagged post per inferire la presenza di utenti a grandi eventi. Abbiamo identificato
tre periodi temporali: prima, durante e dopo un evento. Descriviamo in dettaglio le carat-
teristiche utilizzate per addestrare i classificatori per inferire la partecipazione all’evento
sui tre periodi temporali. Riportiamo gli esperimenti condotti su due grandi festival musi-
cali nel Regno Unito. I nostri classificatori raggiungono una alta accuracy, con il risultato
più alto osservato per il festival Creamfields (∼91% di accuracy per classificare gli utenti
che parteciperanno all’evento). Inoltre, abbiamo proposto un’applicazione della nostra
metodologia che ha come scopo valutare le aree geografiche con il maggior potenziale di
domanda di servizi di trasporto per un evento.

Parole chiave: condivisione di passaggi, algoritmo di matching, condivisione di passaggi
basato su attivitá, reti sociali, predizione di parteipazione.
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1

1 Introduction

In large cities, mobility is one of the most critical issues for a proper functioning of urban
areas. Inappropriate transportation infrastructures and services produce several negative
impact on the quality of life, such as increasing pollution and traffic congestion.

Many studies have shown the future of mobility to be a major focus of research for the
next decade and beyond (URRY, 2016; SPICKERMANN; GRIENITZ; HEIKO, 2014; WEGENER,
2013). A recent study by TomTom (TOMTOM, 2017) shows how the traffic situation is
often critical and heavily affects people mobility in cities like Istanbul (Turkey), Mexico
City (Mexico), Rio de Janeiro (Brazil) and Moscow (Russia). Istanbul is the worst city
in this unenviable ranking, with a daily average delay of 29 minutes for a 30 minutes
commute. Moreover, traffic is not just a discomfort for drivers, but it can also harm the
environment and brings negative consequences for the economy. In the United States,
transportation studies report the annual cost of congestion at $160 billion, which includes
7 billion hours of time lost to sitting in traffic and an extra 3 billion gallons of fuel burned
(ALONSO-MORA et al., 2017).

A multidisciplinary topic of research that addresses issues raised by the uncontrolled
growth of urban centers is the development of Smart Cities (FARKAS et al., 2015; TOWNSEND,
2014; ALKANDARI; ALNASHEET; ALSHEKHLY, 2012). In (BENEVOLO; DAMERI; D’AURIA,
2016), the authors define Smart City as a set of urban strategies using technology to
improve the quality of life in urban spaces, by improving the environmental quality and
delivering better services to citizens. Specifically, when dealing with mobility issues in
large urban centers, Smart Cities rely on one of its most promising pillar: the Smart
Mobility services (BENEVOLO; DAMERI; D’AURIA, 2016). A Smart Mobility environment
offers a whole ecosystem of solutions for reducing congestion and fostering faster, greener,
and cheaper transportation options. This ecosystem is composed of several solutions using
advanced technology aimed at providing alternative sustainable and integrated options of
transportation (PFRIEMER, 2017; MASRI et al., 2017). Thus, in an increasingly connected
and populated society, the Smart Mobility Ecosystem provides access not only to the
full range of public transport options but also to all the add-ons, such as car-sharing,
bike-sharing and ride sharing services, such as Uber and Lyft, currently growing globally
(FLÜGGE, 2017; CHIANG et al., 2018; JIANG et al., 2018).

The focus of this thesis is on improving ride sharing systems as a possible solution to
reduce the number of circulating vehicles. Ride sharing consists of the sharing of a vehicle
by two (or more) persons who move along similar itineraries and time schedules. Thus, it
is designed around individual mobility needs and it relies on a simple resource: the empty
seats in cars (STIGLIC et al., 2016; MASRI; ZEITOUNI; KEDAD, 2017; MA; WOLFSON, 2013).
In (FURUHATA et al., 2013), the authors identify three major challenges for ride sharing
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systems: design of attractive matching mechanisms, proper ride arrangement, and building
of trust among unknown travelers in online systems. Hence, most of these systems deal
with an optimization problem: how to determine the routes and schedules of the vehicles,
including how to assign the demand of rides to drivers, solving conflicting objectives, such
as maximizing the number of participants, minimizing the trip cost or minimizing the
passenger inconvenience (AGATZ et al., 2012).

Indeed, every day millions of people drive alone in parallel with neighbors who very of-
ten are driving to similar locations. A recent study by the U.S. Census Bureau (FLORIDA,
2015) has shown that three out of four Americans (76.4%) report driving to work alone.
Almost ten percent (9.4%) carpool, though this figure has actually declined significantly
from a high of nearly 20 percent in 1980. These empty seats in cars represent a huge
waste of resource in transportation system, but potentially also a huge opportunity for
improvement. In this scenario, many works in literature have proposed ride sharing solu-
tions to avoid single vehicle occupancy trips and attract enough participants to achieve
a satisfactory mass of users (STIGLIC et al., 2016; GEISBERGER et al., 2010; FURUHATA et

al., 2013; TRASARTI; GIANNOTTI; NANNI, 2011).
The prearrangement process to match the supply and demand is a key characteristic

of ride sharing. In this context, (FURUHATA et al., 2013) classify service providers into two
types: matching agencies and transportation service operators. With matching
agencies we refer to service providers which facilitate ride sharing services by matching
between individual car drivers and passengers. Example of these kind of services are the
popular known BlaBlaCar 1, Lyft 2 and Uber 3. These services exploit different kinds
of matching algorithms to find the best allocation of ride offers to ride requests. These
algorithms are typically based on the spatial and temporal aspects of the rides.

With transportation service operators we refer to organizations which provide ride
sharing services identifying and supplying the demand of rides with their own vehicles
and drivers, such as airport and hotel shuttles. Current researches in this context include
both routing algorithms for optimal supply of the demand of rides and inference of rides
demand to support transportation planning.

This thesis provides a research contribution in both these scenarios. We propose a ride
matching algorithm for alternative destinations and a classification method to identify
potential users for a transportation service towards large events.

The present chapter discusses the motivations that guided this PhD thesis in Section
1.1, introduces the objectives of the thesis in Section 1.2 and illustrates the structure of
the thesis in Section 1.3.
1 www.blablacar.com
2 www.lyft.com
3 www.uber.com
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1.1 Motivation
As we have introduced in the previous section, this thesis proposes a twofold novel re-
search contribution: improving ride matching algorithms with alternative destinations and
identifying potential users for transportation services by exploring the content of posts
on microblogging platforms. They both have the final objective of reducing the number
of circulating vehicles.

We discuss the specific motivations and approach for each research line in the following.

Improving the efficacy of ride matching algorithms. Ride matching algorithms
are used to find feasible associations between driver and passengers (FURUHATA et al.,
2013). Basically, the drivers offer rides using their vehicles and, in turn, the riders seek for
available rides to reach their desired destination. A feasible matching must satisfy certain
spatial-temporal constraints such as: passenger’s pick-up time, pick-up location and des-
tination, and drivers’ route and departure time (FURUHATA et al., 2013). However, when
there are few ride offers available, it might be difficult to find feasible matches (WANG

et al., 2016; STIGLIC et al., 2016). Therefore several methods to enhance the number of
possible matchings have to be developed in the literature. A largely adopted solution to
improve ride-sharing opportunities consists in relaxing the spatio-temporal constraints
(STIGLIC et al., 2016; GEISBERGER et al., 2010; FURUHATA et al., 2013; AGATZ et al., 2012)
such as delay and walking distance tolerance of the passengers or drivers’ route detours.
However, these approaches focus only on spatial and temporal constraints for the match-
ing between ride offers and ride requests, without exploring a valuable dimension: the
semantics behind the ride requests. Here, with semantic we refer to the activity that is
going to be performed by the passenger at the trip destination. Some research proposals
related to human movement behavior have investigated important factors in trip-making
choices and identified that the activity to be performed at the destination plays a crucial
role (CHEN et al., 2016; PELEKIS; THEODORIDIS, 2014; KITAMURA, 1988).

Recent studies of human mobility highlight the significant potential for continued and
future uptake of sustainable forms of urban mobility (RODE et al., 2015; STEG; VLEK,
2009), while at the same time investigating the tendency to be regular or not in choosing
the places where to perform some activities (LIRA et al., 2014; WU; LI, 2016).

Based on these observations, we postulate that changing mobility habits can be reward-
ing under some aspects, like avoiding traffic congestion or saving money. As a consequence,
people can accept to change their trip destination to some alternative location, when there
is the possibility of sharing a ride, thus saving time and/or money and enforcing their
pro-environment behavior (STEG; VLEK, 2009).

We observe that, for some activities, such as grocery shopping or ATM services, people
often have a set of alternative places that they use for the same purpose. Such findings, in
the context of ride sharing, open space for a novel investigation toward the massification
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of ride sharing system by exploring a new input dimension: “Can the usage of ride sharing
system be boosted by exploiting alternative destinations based on the intended activity of
the passenger”?
Identifying transportation demands for large events. Large events like important
music concerts, religious celebrations or sports matches, attract thousands of participants.
These events cause the movement of thousands of people to a specific location at a given
time. In general, a large event requires careful transportation planning to facilitate the
attendees’ arrival at the event location from their diverse departure locations. For this
reason, often the event organizers provide the participants with dedicated transportation
services (e.g. bus, carpooling, shuttle) to supply the demand for rides. However, for large
events involving a massive number of attendees, the identification of this demand of
rides might not be a straightforward process, requiring new methods to devise them
(SINNOTT; CHEN, 2016a). As a second contribution of this thesis, we investigate: “How
can we identify the actual attendance to a given event for a potential passenger of a
transportation service?”.

Our investigation starts from observing that large events are well reflected in social
media (e.g. Facebook, Foursquare, Instagram, Twitter). Indeed, people can connect to
“the event” by expressing through posts their feelings, experiences or opinions about
the event well in advance with respect to its planned date. Moreover, social media have
been often exploited to extract valuable information concerning human dynamics and
behaviors (CHO; MYERS; LESKOVEC, 2011; CESARIO et al., 2016; QUERCIA et al., 2010).
Due to this vast applicability, social media analytics is a fast growing research area,
aimed at extracting useful information from user generated data (ALBUQUERQUE et al.,
2016; SOKOLOVA et al., 2016; GAL-TZUR et al., 2014a).

Thus, given the attention to popular events reflected in social media, this thesis ad-
dresses a new challenging problem: “Is it possible to infer from social media posts the
actual attendance of the media user to the cited event?”. If we could classify user posts
discussing an event on the basis of the actual attendance of the user to the event, we
could enable or enhance several practical applications not only in ride sharing, but also
for example, of targeted advertising and mobility management. Furthermore, from this
analysis, we want to derive the key point of our investigation: “Is it possible to infer past,
current and future user attendance to large events through posts on social media to fore-
cast the demand of rides?”. By inferring the future attendance, we can predict the users
who will attend the event and potentially identify the ride demands to reach the event’s
location. While, by inferring current and past attendance, we aimed at understanding
who were the users who moved to the location of the event. These two latter subsets can
support future transportation planning for the next editions of the event.

The simplest way of inferring the presence of users at events is considering the location
associated with their media posts: the geotag, or “check-in", indicates the user presence at
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the time of the event at the event location. We observe, however, that this approach suffers
from two drawbacks. The first drawback is that a low number of social media users enable
geotagging of their posts (in Twitter the percentage of geotagged posts is reported at about
2% (LEETARU et al., 2013; SLOAN et al., 2013)). Geolocation information is geographically
accurate, but geotagged media posts represents very sparse data source. Using sparse
data to learn attendance prediction classifiers becomes extremely difficult and produces
models with limited applicability. The second drawback of using only geolocated posts
is that they represent the actual presence of the user at the event but not the intention
of the user to participate in the event. Indeed, we aim to infer the user participation
to not only the event before, but also after the event takes place. The early knowledge
of the possible user attendance can be extremely useful for enabling innovative services
and applications in the fields of transportation planning and crowd safety management
(KAISER et al., 2017).

The next section of this chapter details the objectives of this thesis.

1.2 Thesis Objectives
The aim of the present thesis is two-fold. Firstly, we aimed at investigating how ride
matching algorithms can be improved in efficacy by taking advantage of passenger flexi-
bility. For this purpose, we propose Activity-Based Ride Matching (ABRM), an algorithm
aimed at matching ride requests with ride offers possibly reaching alternative destinations
where the intended user activity can be performed. By exploiting the knowledge of the
activity motivating ride requests, ABRM can boost users’ mobility demands by means of
existing ride offers. The approach proposed is completely orthogonal and possibly com-
plementary to popular ride sharing services like BlaBlaCar4, UberPool5 and Lyft Line6.
Indeed, providing the user with activity-based ride options could enable novel business
strategies to be incorporated in these services. For example, the service could support
user’s flexibility and increase her engagement by proposing the most convenient rides to
alternative destinations where the intended activity can be performed.

Secondly, we aim at deriving the demand of rides for large events through the use of
social media. In order to do that, we want to overcome the issues of inferring the actual
attendance of users based on geo-tagged post by taking a novel strategy which relies on the
content of non-geotagged posts only, without considering any spatial features. Moreover,
we perform our event attendance classification by distinguishing three temporal intervals
identifying when the posts have been shared on social media: before, during or after the
event. The posts shared before the event may express the interest of the users in the
upcoming event and their intention to attend, or their regrets for not being able to attend
4 www.blablacar.com
5 www.uber.com/ride/uberpool/
6 www.lyft.com/rider
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it. During the event, people may express their feelings about the event, may report issues
with the provided services or may also share photos and videos. After the event, users
may report feelings and comments on their experience at the event. The analysis of posts
shared before the event acts as a prediction of the users’ actual attendance, during the
event reflects the actual participation of users at the event, while after the event it gives
a view of past attendance. To solve this challenge, we use machine learning techniques to
explore features extracted from event-related posts to identify attendees of large events.

Thus, the novel contributions of this thesis can be shown as follows:

1. In the context of ride sharing matching algorithms, we propose an algorithm for
boosting ride sharing usage by exploiting alternative destinations based on the user
intended activities.

a) We propose a novel ride sharing matching algorithm that considers alternative
destinations to improve efficacy;

b) We define a number of ride matching features for the evaluation of the qualities
of the rides retrieved by the proposed matching algorithm;

c) We design and run extensive experiments exploiting mobility datasets repre-
senting real user activities and mobility demands for these activities at a large
scale;

d) We analyze and discuss in depth the potential environmental impact of the
proposed solution compared to state-of-the-art techniques.

2. In the context of ride sharing service operators, we propose a method to estimate
the demand of rides to large event by inferring event-attendance through posts on
social media. The idea is to understand transportation demand by using machine
learning to infer the past, present and future users’ attendance based on the content
of the event-related posts.

a) We propose a classification task for inferring users’ attendance to events by
using posts on social media;

b) We define relevant post-based features for the classification task;

c) We design and run extensive experiments for assessing the accuracy perfor-
mance of our classifiers;

d) We apply the proposed approach in a real world application for the identifica-
tion of the demand of rides, using a real large event.

The next section presents the structure of the remaining chapters of this thesis.
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1.3 Structure of the Thesis
The rest of this document is organized as follows:

• Chapter 2 describes the basic concepts of this thesis including the main charac-
teristics about ride sharing systems.

• Chapter 3 presents the results of a bibliographic survey. The focus is to review the
main strategies used by the matching algorithms to increase the amount of matching
in a ride sharing system and, subsequently, to optimize ride assignments between
drivers and passengers. In this chapter, we also present how large events in social
media have been extensively studied for inferring event attendance.

• Chapter 4 introduces the first research contribution of the thesis, the Activity-
Based Ride Matching (ABRM) algorithm. This algorithm takes into account the
intended activity of the passenger to suggest possible rides to alternative destina-
tions. Additionally, a rank model is proposed to sort candidate rides according to
the ride request requirements. Finally, a demo using ABRM is shortly presented.

• Chapter 5 introduces the second research contribution of the thesis, a machine
learning approach using social media data to infer event attendance to large events.
We also introduce and discuss a real world application of the proposed approach
that estimates demand of rides to a music festival in UK.

• Chapter 6 closes this thesis by providing a summary of the contributions and a
discussion about their limitations. This chapter also presents some possible future
research directions exploiting our results. Finally, it exhibits the list of scientific
publications achieved during this PhD research.

1.4 Conclusions
This chapter presents the contextualization, the motivations, the objectives and structure
of this thesis. The following chapter presents the basic concepts in ride-sharing systems
that are needed for the understanding of this thesis.
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2 Basic Concepts

This chapter presents the basic concepts needed to facilitate the comprehension of this
thesis proposal. Section 2.1 highlights the differences among Car sharing, Carpooling
and Ride sharing. Section 2.2 discusses the characteristic of Ride Sharing Systems, while
the Section 2.3 introduces two types of Ride Sharing Providers: Matching Agencies and
Transportation Operators. Finally, the Section 2.4 concludes this chapter.

2.1 Car sharing vs Carpooling vs Ride sharing
Often the concepts of “car sharing”, “carpooling” and “ride sharing” cause misunder-
standing among them. These concepts are the result of evolution over time and of the
progressive importance that the collaborative economy is taking on. However, all these
three services are seen as emerging alternative transportation modes. They are eco-friendly
and sustainable as they enable people to save time, share resource costs, reduce emission
and traffic congestion (GALLAND et al., 2014). Then, here we clarify these possibilities,
outlining the main features of each services:

• Car sharing. Consists of the rental of a car owned by third parties, generally
short-term, often by minute or hour, in urban areas. The same car is made avail-
able to more drivers who use it individually for a limited time (MARTIN; SHAHEEN;

LIDICKER, 2010; WEIKL; BOGENBERGER, 2013). The renting organization may be
a commercial business.

• Carpooling. It is intended that sharing of the trip does not provide a gain for the
driver but only a sharing of costs, or a courier transport activity. It can also be seen
as a particular kind of ride sharing, where one of the users shares her own car to
offer rides to other passengers (CORREIA; VIEGAS, 2011; GALLAND et al., 2014).

• Ride sharing. Refers in general to the activity of sharing car-rides, also in order
to produce a profit (in this case called “rides on demand”) (FURUHATA et al., 2013).

Since in this thesis we do not focus on the business models of these approaches, but on
the sustainable aspects, we consider both terms Carpooling and Ride sharing as similar
from the practical point of view of the sharing of rides between drivers and passengers.

2.2 Ride Sharing
Ride sharing is not new. In 1942, during World War II, the U.S. government encouraged
ride sharing arrangements in workplaces when no other transportation options were avail-
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able in order to save rubber (CHAN; SHAHEEN, 2012). In the 1970s, the oil crisis and spike
in gasoline prices encouraged another period of ride sharing. However, today’s ride sharing
revolution was made possible by the development of GPS, smart phone technology, and
electronic payments (AGATZ et al., 2012).

The term ride sharing literally means to share a ride. Ride sharing is a mode of
transportation consisting of two (or more) persons sharing a vehicle to move along similar
itineraries and time schedules. While public transit options, like the bus, may be cheap,
they are plagued by inconvenient schedules, stops and unexpected rider problems, a ride
sharing system can be seem as a system that can combine the flexibility, the convenience
and the speed of private cars with reduced cost (STIGLIC et al., 2016; FURUHATA et al., 2013;
MA; WOLFSON, 2013). Furthermore, from a business point of view, the idea of sharing car
rides is part of a global trend, called “Sharing economy”, that follows the principle of
sharing goods, experiences and knowledge and collaborate to get the best from the shared
resources. A mindset shift is needed to get into the idea that sharing can bring more value
than ownership since everyone gets more benefit (GARGIULO et al., 2015).

Indeed, carpooling or ride sharing has been an effective way for people with similar
schedules and work locations to help meet the demands of one another (CAULFIELD, 2009;
FURUHATA et al., 2013). Thus, ride sharing offers advantages for the participants (both
drivers and passengers), to the society, and to the environment in addition to saving travel
cost, reducing travel time, mitigating traffic congestions, conserving fuel, and reducing air
pollution (JIANG et al., 2018).

A successful ride sharing requires coordination with respect to itineraries that include
the specification of the passenger’s pick-up and drop-off (AGATZ et al., 2011; FURUHATA

et al., 2013). This coordination can, in addition, take into account other issues, such as
travel cost, compensation for alternative ride provision, gender, and reputation of drivers
and passengers. The prearrangement can start when ride requests or offers are submitted
to the service providers, which then aim to match the supply and demand for rides.

2.3 Types of Ride Sharing Service Providers
(DAILEY; LOSEFF; MEYERS, 1999) defines a trip as a single instance of travel from one
geographic position to another. In this context, a ride can be seen as joint-trip of at
least two travelers (one driver and at least one passenger or in a near future at least two
passengers been transported by a self-driving car) that share a vehicle. Each participant
has a demand for her trip consisting of the origin and the destination. It is not relevant
if both participants share the same trip motivation, but necessarily they have similar
itineraries and schedules.

Peculiar characteristics on the way how the rides are arranged rule the distinctions
among the ride sharing systems. The arrangement of a ride is strictly associated to the
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mobility purpose of the travelers. The demand might be to travel long distances, for
example when crossing cities, or even short distance, moving from home to a bar. In
some systems, rides can be arranged on demand or on real time requiring a short-term
agreement that can take just few minutes, in other cases instead, it might involve long-
term agreement, usually pre-established days or hours before. For these reasons, several
ride sharing service providers operate for different kinds of mobility demands and, as
consequence, there is not a unique business strategy ruling these systems.

As proposed by (FURUHATA et al., 2013), we divide ride sharing service providers into
two groups:

• Transport Service Operators: operate ride sharing services using their own ve-
hicles and drivers.

• Matching Agencies: facilitate ride sharing services by performing matching be-
tween individual car drivers and passengers.

Ride sharing takes on different characteristics when it is run by service operators
and when is it coordinated by matching agencies. These groups are futher discussed in
subsections 2.3.1 and 2.3.2.

2.3.1 Transportation Service Operators

This group of systems is more traditional. Representative examples of service operators
are vanpooling and airport shuttle transportation services. Typically, they accept requests
from passengers and assign these ride requests to vehicles that they operate. Here, the
driver is often an employ of the company providing the transportation service (FURUHATA

et al., 2013).
Some service operators specify either a fixed and common pick-up or drop-off location

for all the passengers, while others allow passengers to choose both. For example, for the
airport shuttle, travelers may be picked-up from different hotels to head to a common
destination, the airport. Pick-up and drop-off times can sometimes require some amount
of slack time. One challenge faced by these systems is to solve the Vehicle Routing Problem
(VRP) for the determination of the optimal set of routes to be performed by a fleet of
vehicles to serve a given set of passengers (TOTH; VIGO, 2002). In general, the ride demand
must be known in advance to guarantee a proper operation and a optimal routing plan.

Figure 1 shows a transportation service operation schema. We notice that the trans-
portation demands and the vehicles are the inputs for the logistic problem solver, while
optimal vehicle routes are the output of this operation.
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Figure 1 – A transportation service operation schema

2.3.2 Matching Agencies

In contrast, matching agencies focus on ride-matching services between individual car
drivers and passengers. Unlike service operators, matching agencies do not provide vehicles
and drivers. Instead, individual drivers have their own trip plans and provide unoccupied
seats for passengers to share their travel expenses (FURUHATA et al., 2013). Furthermore,
more recent systems such as Uber and Lift, allow part-time drivers to use their own car
to find riders and get paid for the rides.

Matching agencies use ride offers and ride requests received from drivers and passen-
gers, respectively, to find suitable ride sharing matches. A ride offer represents a vehicle
trip with available seats to other passengers (riders). This could be for example private
cars performing a regular trip going home from work at 5pm of working days or perform-
ing a trip between two cities, or could be even a shared taxi serving a ride. On the other
hand, the ride request represents the intention of the rider(passenger) to move from a
initial point to destination by means of a ride. This could be for example, a rider at home
intending to move to a shopping center at 6 pm or even a rider looking for rides toward
a specific city.

For a matching, all of the participants must agree on the costs and schedules, which
depends on the routes used, including the pick-up and drop-off locations of passengers. In
general, the ride arrangement is performed in a short time taking minutes or even seconds
for the agreement between drivers and passengers. However, the ride matches involving
long trips as border-crossing might require a longer-term agreement. Matching agencies
use ride sharing matching algorithms to find feasible ride matchings. The value of a ride
matching algorithm depends on how efficiently and effectively suitable matches can be
found (FURUHATA et al., 2013).

A ride sharing matching algorithm can be conceptually described by the schema in
Figure 2. It takes as input two sets: ride offers of users willing to share their trips, and ride
requests of users searching for a lift to a destination. A Ride Matching phase retrieves a
subset of ride offers that may supply a ride to a given ride request. In this phase, the system
finds all matchings that are compatible with spatial and temporal constraints specified
by the user. After the possible matchings have been identified, the Ride Allocation phase
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uses some criteria to allocate ride requests to offers, limited by the vehicle capacity and
based on the matchings. Usually an optimization strategy is applied at this phase aimed
at optimizing the allocation between driver and passenger according to a specific criteria
such as maximization of the number of participants or minimization of the trip cost for
the participants involved. Since it is desirable that both passengers and drivers find a
ride matching that best meets individual preferences, the User Acceptance phase checks
which suggestions have been accepted by the users and, in case of rejection, looks for an
alternative allocation repeating the previous step of Ride Allocation. To maximize the
probability of successfully matching, it is crucial to provide the Ride Allocation phase
with a large set of candidates.

Ride 
Offers

Ride 
Requests

Ride 
Matching

Ride 
Allocation

User
Acceptance Finish

No

Yes

Figure 2 – A ride matching algorithm conceptual schema

2.3.3 Ride Matching Problem (RMP)

The central element in a matching agency system is the ride matching. For this reason,
we need a clear comprehension of what is the ride matching problem and what are the
constraints involved.

The ride matching problem consists in finding feasible matchings between ride offers
and ride requests under certain constraints. Furthermore, given the different possible
combinations of matchings between these elements, the ride-matching problem can be
treated as a combinatorial optimization problem (TEODOROVIĆ; DELL’ORCO, 2008). The
following are potential objective functions of this optimization problem: (a) minimize the
total vehicle distance traveled; (b) minimize the total delay; (c) make vehicle utilization
relatively equal; and/or (d) minimize travel costs.

For the retrieval of feasible ride matchings, three important constraints must be con-
sidered: spatial, temporal and capacity constraints. In principle, a feasible ride matching
must satisfy all these three constraints. We discuss them in the following subsections.

2.3.3.1 Spatial Constraints

In ride matching systems, a ride request can be matched with a driver having a similar
itinerary that includes both the requested pick-up location and to the intended destina-
tion. The pick-up location represents the meeting point between the driver and one or
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more passengers, it is basically the point where the ride starts. The drop-off location in-
stead represents the end of the ride in a point nearly the passenger’s intended destination.
In ride matching, as requirement, both the pick-up and the drop-off locations must be
agreed.

Furuhata et. al. in (FURUHATA et al., 2013) classified ride sharing matchings according
to these two positional elements. Here, we extend their proposed classification, aligning
it with the current state of the art and classifying ride sharing matches into four spatial
patterns. In the following, we describe these patterns for the single passenger case. To
facilitate the comprehension, we present some symbols and notations of the elements of a
ride. Let us denote 𝑔 as a passenger and 𝑅𝑖 as an original route of a driver 𝑖. The passenger
𝑔 has his origin and destination locations defined by 𝑂 and 𝑉 , respectively. We denote
𝑃 as a pick-up location and 𝐷 as a drop-off location. Consider also the functions 𝑑𝑒𝑡𝑜𝑢𝑟

and 𝑤𝑎𝑙𝑘. The function 𝑑𝑒𝑡𝑜𝑢𝑟 performs a detour in the original route 𝑅𝑖. Instead, the
function 𝑤𝑎𝑙𝑘 represents the walking of the passenger 𝑝 from one location 𝐴 to a location
𝐵.

• Inclusive Matching: Both the origin 𝑂 and the destination 𝑉 of passenger 𝑔 is
on the way of an original route 𝑅. Figure 3 illustrates an inclusive matching. Thus,
𝑂 = 𝑃 , 𝐷 = 𝑉 and 𝑃, 𝐷 ∈ 𝑅.

Figure 3 – Inclusive matching example

• Partial Matching: Either the origin 𝑂 or the destination 𝑉 or both of the pas-
senger 𝑔 is not on the way of the route 𝑅. However, by walking either to pick-up
point 𝑤𝑎𝑙𝑘(𝑂, 𝑃 ) or to drop-off point 𝑤𝑎𝑙𝑘(𝐷, 𝑉 ) or to both, then both the pick-up
location 𝑃 and drop-off location 𝐷 of passenger 𝑔 are on the way of an original route
R. Figure 4 illustrates a partial matching. Thus, 𝑂 ̸= 𝑃 , 𝐷 ̸= 𝑉 , and 𝑃, 𝐷 ∈ 𝑅.

• Detour Matching: Either the pick-up location 𝑃 or drop-off location 𝐷 or both
are not on the way of an original route 𝑅. However, by taking a detour, 𝑑𝑒𝑡𝑜𝑢𝑟(𝑅)
covers one or both the pick-up and drop-off locations. In general, the detour of
any participant is calculated as the ratio between the minimal additional distance
necessary for a driver to match the ride request and the original route 𝑅 of the driver.
Figure 5 illustrates a detour matching. Thus, 𝑂 = 𝑃 , 𝐷 = 𝑉 and 𝑃, 𝐷 ∈ 𝑑𝑒𝑡𝑜𝑢𝑟(𝑅).
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Figure 4 – Partial matching example

Figure 5 – Detour matching example

• Multi-hop: The driver 𝑎 picks-up the passenger 𝑔 at the location 𝑃 𝑎 that is on
the way of 𝑅𝑎. The first drop-off location 𝐷𝑎 of the ride is not at the destination
location 𝑉 , but it is close to another route 𝑅𝑏 performed by the driver 𝑏. Then,
the driver 𝑏 picks-up the passenger 𝑔 at the location 𝑃 𝑏 and drops the passenger
𝑔 at his destination 𝐷. Thus, 𝑂 = 𝑃 𝑎; 𝐷𝑎 = 𝑃 𝑏; 𝐷𝑏 = 𝑉 ; 𝑃 𝑎, 𝐷𝑎 ∈ 𝑅𝑎; 𝑉 ̸∈ 𝑅𝑎;
𝑃 𝑏, 𝐷𝑏 ∈ 𝑅𝑏; 𝑃 𝑎 ̸∈ 𝑅𝑏. This classification of ride-sharing system can also consider
that the passenger can walk a short distance to reach the pick-up points.

Figure 6 – A pool ride Multi-hop

It is important to mention that traditional matching agencies do matching between
ride offers and ride requests via proximity rather than the exact locations. Note also that,
usually, when a partial matching occurs, the pick-up and drop-off locations are either
given input as if their origins and destinations are located on major streets or determined
by negotiations. In addition, passengers need to find an alternative transportation method
to complete their trips or just walk.

The path between the pick-up 𝑃 and the drop-off 𝐷 of a passenger defines the ride
length. In many matching agencies, the ride length is the main criteria for the definition
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of the cost of the trip that will be shared among the participants of the ride.

2.3.3.2 Temporal Constraints

A ride matching requires also an agreement between the driver and the passengers with
respect to the schedule of the pick-up and the drop-off times. Basically, the pick-up time
is the time at which the passenger joins into the ride and, in turn, the drop-off time is
the time at which the passenger leaves the ride. Thus, the ride duration is defined by
the difference between the drop-off and the pick-up times.

This constraint could limit the amount of matchings since it is very unlikely that a
ride request finds a ride offer at the exact time of the request. A common approach to
overcome this problem is to relax the temporal constraint by using time windows either
for departure or for arrival, or both. Thus, in the context of ride sharing, the time window
represents acceptable delays or anticipation in time.

To facilitate the understanding of these concepts, we introduce the following notations:
let 𝑃𝑒 and 𝑃𝑙 be the earliest and the latest pick-up time. Similarly, let 𝐷𝑒 and 𝐷𝑙 be the
earliest and the latest drop-off time. These notations are illustrated in Figure 7.

The pick-up time window is the temporal interval during which a passenger can be
join a ride, comprising the range [𝑃𝑒, 𝑃𝑙]. The pick-up time window is defined either by
the passenger or by a ride sharing system’s policy that may inform a maximum tolerance
delay for the driver to pick-up the passenger. For example, if the pickup time is 10:00 AM
and the passenger has a maximum delay tolerance of 15 minutes, then the pickup time
window is between 10:00 AM and 10:15 AM. Of course, the wider the time-window, the
wider the possibility for the passenger to find a ride.

Similarly, the drop-off time window comprises the temporal range [𝐷𝑒, 𝐷𝑙], defining
a minimum and a maximum time at which the passenger may arrive at the drop-off
location. The use of drop-off time windows is less common or not used as constraint for
the ride matching problem.

Figure 7 – Pick-up and drop-off time windows
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2.3.3.3 Capacity constraints

The demand of a ride is defined by the number of passengers that will be delivered from
the pick-up to the point of drop-off. This can be specified on the request, indicating the
number of passengers needing a ride. Of course, in a ride, the number of participants
that simultaneously join the ride cannot be higher than the vehicle’s capacity. Some
ride-matching algorithms might accept the pool of the vehicle, picking up more passengers
along the trip in different pick-up locations.

2.4 Conclusions
This chapter presents the theoretical basis necessary for understanding this thesis, in
which concepts and characteristics related to ride sharing systems and the matching al-
gorithms for ride sharing were described.

The following chapter presents the results of a bibliographic survey discussing the most
recent approaches that address the problem of ride matching. Furthermore, we discuss
some works that study event attendance through the use of social media.



17

3 Related Work

In this chapter, we discuss several works that have common purposes with this thesis.
Section 3.1 details several studies that address the problem of matching between ride
offers and ride requests. In turn, Section 3.2 discusses recent work in literature concerning
studies of user attendance in large event through the use of social media. Finally, Section
3.3 presents the final considerations respect to all the papers evaluated.

3.1 Ride Sharing Matching Algorithms
In a ride sharing system, it is expected that both the driver and the passenger can be joint
into a shared trip. In other words, the drivers expect to find riders for their offered trips,
and in turn, the passengers expect to find rides that supply their mobility necessities.

The ride sharing matching agencies discussed in Section 2.3.2 of this thesis manage the
matching between the ride offers and the ride requests. For this purpose, a ride matching
algorithm is used to find a subset of ride offers that may supply a given ride request.
The subset is composed by feasible ride matchings that satisfy several spatial-temporal
constraints involved in a ride sharing matching problem (FURUHATA et al., 2013).

In general, the spatial constraints are imposed by both the pick-up location, which
requires a common location where both driver and passenger can meet and then start the
trip, and the drop-off location, which requires that the passenger should be dropped at his
intended destination. In turn, the temporal constraints refer to the pick-up and drop-off
times, including in some cases, a certain tolerance for delays. Many matching agencies
may also include some other constraints such as user reputation or some social aspects,
such as genders, age, common friends, driver’ and passenger’ reviews (GUIDOTTI et al.,
2015; BERLINGERIO et al., 2017).

A ride sharing system is effective when it is able to find feasible rides to their users
under the many constraints involved. A largely adopted solution for reaching this objective
consists in relaxing spatio-temporal constraints of ride offers and requests (STIGLIC et al.,
2016; WANG et al., 2016). By relaxing the constraints, a ride sharing system can represent
some particular user’s flexibilities and take advantage of them to increase the possibility
of ride matchings between drivers and passengers. However, it can bring more complexity
to the ride matching algorithms.

In the next sections, we discuss some of these strategies to improve efficacy by adding
flexibility to the constraints involved in a ride sharing matching, specifically we group them
into the following groups: (a) Temporal flexibility (Section 3.1.1); (b) Spatial flexibility
with detour (Section 3.1.2); (c) Spatial flexibility with slugging (Section 3.1.3); (d) Multi-
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hop ride sharing (Section 3.1.4); (e) Social constraints (Section 3.1.5); (f) Activity-based
flexibility (Section 3.1.6).

3.1.1 Temporal Flexibility

A common approach to increase the number of matchings is to consider that both the
participant drivers and passengers have temporal flexibility: they can specify an earliest
possible departure time and latest possible arrival time.

A recent work showed that even a small flexibility in terms of desired departure time
or maximum detour time can significantly impact the expected matching rate, especially
when the number of ride offers in the system is not large (STIGLIC et al., 2016). They found
out that for a proper operation of the dynamic ride sharing systems, drivers and riders
need to be flexible in terms of departure and arrival times (at least 10–15 min depending
on origin and destination locations).

Using a similar approach, in (WANG; DESSOUKY; ORDONEZ, 2016) the authors study
how the optimal routes change as a function of incentives for ride sharing, for example,
inclusion of HOV (High Occupancy Vehicle) lanes, they modified existing pick-up and
delivery problem with time windows to consider changes in passenger travel time and
the cost of the travel due to vehicle load. In their approach, each driver participating
in ride sharing provides his/her start location, end location, earliest departure time, and
latest arrival time. A 0-1 integer programming model is formulated to solve the problem
optimally. The authors proposed an algorithm called Adjust Pickup Time Algorithm to
reduce the total cost and the customer ride time. They consider that each ride request
provides its start location, end location, time windows for pickup and delivery, and the
number of people who need to be served. Their results show that, as a participant in
ride sharing becomes more flexible in time, the less she/he should pay for his/her trip.
Moreover, their experiment results confirm the intuitive assumption that, with more ride
offers, higher is the possibility of finding ride sharing matches.

3.1.2 Spatial flexibility with route detours

Analogously, other approaches explore the spatial flexibility of users in terms of ride
detours or walking distance to catch the ride. Detour ride sharing considers a scenario
where the driver accepts to make a detour from her original itinerary if this brings a
satisfactory ride matching (GEISBERGER et al., 2010; CICI et al., 2014; STIGLIC et al., 2016).

Geisberger et. al in (GEISBERGER et al., 2010) propose an innovative detour route
planning algorithm that efficiently minimize the ride detour of ride requests with arbitrary
starting and destination points. They address the ride sharing problem in a scenario
involving vehicle trips between cities. Using a public dataset of ride sharing offers from
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Germany, the results of their experiments show an improvement of the matching rate of
20% compared to a baseline matching algorithm which do not consider route detours.

Cici et. al in (CICI et al., 2014) develop an efficient algorithm for matching users with
similar mobility patterns, considering a range of constraints, including social distance and
route detour. The algorithm is based on heuristics used to solve the Capacitated Facil-
ity Location Problem with Unsplit Table Demand (KORUPOLU; PLAXTON; RAJARAMAN,
2000). Experiment results using a dataset containing mobility data extracted from 3G
call description records from the city of Madrid indicate a significant overlap in people’s
commute. Furthermore, in a scenario where rides can be shared only with neighbors with
nearby home and work, even with a modest detour of 1 km they have observed a great
potential reduction of 59% of the single-occupancy vehicle trips present in their dataset.

Furthermore, in (STIGLIC et al., 2016), besides the temporal flexibility, the authors
also investigate the detour flexibility, representing the willingness of driver to make a
detour in order to supply a ride request. They use a hierarchical optimization approach
in which maximizes first the number of matches and subsequently maximize the system-
wide vehicle miles savings for this maximum cardinality matching. They instantiate the
optimization problem as an ILP, solving it by using CPLEX 1. Their results show that
participant flexibility is a very important in easing the matching process, specially when
there are a low number of participants. They concluded that for a proper operation of ride
sharing system, drivers and riders need to be flexible in terms of departure and arrival,
but, most importantly, drivers need to be flexible in terms of the detour that they are
willing to make.

Similar, in (WANG et al., 2016), the authors also study possible incentive to take detours
to pick up additional passengers to qualify for High Occupancy Vehicles (HOV) lanes or
discounted toll rates. Experiment results indicate that passengers are more encouraged to
take detours (participate in ride sharing) to save ride time as time savings on HOV lanes
increase.

3.1.3 Spatial Flexibility with Slugging

Orthogonally, some works investigated the possibility that the passenger could walk to
a meeting point to join a ride (KELLEY, 2007; MINETT; PEARCE, 2011; MA; WOLFSON,
2013; STIGLIC et al., 2015). In literature, this approach is also known as slugging.

In (KELLEY, 2007), the author publish a theoretical study that exploits slugging in
areas with HOV is proposed. Their study focus on the Casual carpooling which correspond
to a kind of the ride sharing where the matching between the driver and passengers is
not established in advance but coordinated on the spot. The author also addresses some
shortcomings associated with casual carpooling such as personal safety, the “free-rider”
problem, and the maximization of the number of passengers sharing a ride.
1 www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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Minett and Pearce (MINETT; PEARCE, 2011) investigate the impact of slugging in
gasoline consumption. For this purpose, in their analysis they computed and compared
the energy consumption by: (a) single occupant vehicles; (b) carpool vehicles; (c) and a
mix of buses and single occupant vehicles. They estimate that slugging in San Francisco
can save from 1.7 to 3.5 million liters of gasoline per year, much of which comes from the
indirect impact on the rest of the traffic.

In (MA; WOLFSON, 2013), the authors formally define the slugging problem and pro-
pose two heuristics for the matching problem aimed at saving total distance traveled
by vehicles, namely: Greedy-Benefit and Greedy-AVG-Benefit. They consider vehicle ca-
pacity and travel time delay constraints. Both heuristics work in an iterative way, for
each iteration, the Greedy-Benefit chooses the ride offer with individual maximum bene-
fit, intuitively the Greedy-AVG-Benefit, choose the ones that in average have maximum
average benefit. They provide proofs of their computational time complexity, proving the
NP-completeness of the problem. They performed experiments using real taxi cabs trips
in Shanghai, and reported a saving up to 59% in the total distance traveled by vehicles,
whereas the optimal slugging plan achieves at most 70% savings.

Stiglic et. al in (STIGLIC et al., 2015) have shown that by considering the possibility for
passengers to walk to specific meeting points in a ride sharing system can substantially
improve a number of ride matching. It also allows a driver to be matched with multiple
riders without increasing the number of stops the driver needs to make. They modeled
their problem as a maximum weight bipartite matching problem and implemented an
algorithm that optimally matches drivers and riders in large-scale ride sharing systems
with meeting points. In their approach, riders may have to walk a short distance and may
have to plan their time more carefully so as to ensure that they arrive on time at the
meeting point where they are to be picked up (it is unlikely that drivers will be willing to
wait for a rider at a pickup point for more than a minute or two). Moreover, the use of
meeting points makes matches feasible predominantly because it allows a smaller detour
for the driver (only in a few cases, it makes rider and driver time windows compatible).
Without meeting points, approximately 90.6% of the riders have at least one feasible
match. With meeting points, this fraction increases to approximately 92.5%. They also
conclude that, as the number of meeting points increases, the number of feasible matches
grows steadily.

3.1.4 Multi-hop Ride Sharing

Other works investigate how to combine more than one ride offer to supply a single
ride request (HERBAWI; WEBER, 2012; DREWS; LUXEN, 2013; LIN et al., 2016; MASOUD;

JAYAKRISHNAN, 2017). This approach is called multi-hop ride sharing. Basically, if a ride
request can be matched with only one ride offer, then the problem is called single-hop
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ride matching. It is called multi-hop ride matching, if a request can be matched with two
or more ride offers at different times.

In (HERBAWI; WEBER, 2012), the authors have modeled the multi-hop ride matching
problem with time windows and provided a genetic algorithm to solve it. From their
experiment results, they conclude that the use of multi-hop ride matching can increase
the number of ride matching with the penalty of increasing the total travel time for riders
and drivers.

Drews and Luxen (2013) in (DREWS; LUXEN, 2013) presented an graph search algo-
rithm that solves the time-dependent multi-hop ride sharing problem with a fixed set of
stations. They modeled the multi-hop ride sharing considering that users travel between
a number of stations that is related to timetable networks for public transportation. Ad-
ditionally, they developed data structures and algorithms to efficiently compute matches.
One interesting result of their algorithm is that increasing the number of transfers to more
than two does not lead to significantly superior results on average anymore. However, the
authors do not have specific contribution for the optimization of the matching problem,
but instead they developed data structures and algorithms to efficiently compute matches.

In (LIN et al., 2016), the authors introduce multi-modal ride sharing considering the
possibility of the passenger walk to a meeting point in a multi-hop (multiple drop-off)
scenario. Their approach does not consider route detour and is mainly aimed for trans-
portation hubs, such as airports, railway stations, etc. Their approach consists of two
stages: (1) construction of a shareability graph, and (2) finding the maximum matching
using such graph. The first stage finds all the possible pairs that can be merged in a way
that satisfies the constraints of the two trips. In turn, the second phase, for an arbitrary
graph, they search for the merging of pairs which results in the minimum number of
merged trips in the pool. For finding the maximum matching, they use a standard ex-
isting algorithm (GALIL, 1986). They evaluated their approach by using 1.8 Million trips
originated from La Guardia Airport in New York City. The experiment results indicate a
trip-savings of about 25% when 75% of the passengers are willing to share the ride. Ad-
ditionally, they found out how walking is valuable in combination with multiple drop-off
ride sharing. For example, if passengers allow a 10-minutes walk, then the trips-reduction
by ride sharing increases from about 10% to about 30%. Considering that at airports
passengers often walk for 10 minutes from the gate to the curb, this assumption seems
reasonable.

In (MASOUD; JAYAKRISHNAN, 2017), the authors discuss the features of a flexible ride
sharing system and propose an algorithm to optimally solve the ride-matching problem
in a flexible ride sharing system in real-time. They propose a multi-hop system with the
ability to find itineraries for riders by means of optimally routing drivers. They imple-
mented an optimal and real-time ride-matching algorithm using dynamic programming
that maximizes the number of served riders in the system, while making the trips as
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comfortable as possible by taking into consideration users’ preferences on whom to ride
with, and by minimizing the number of transfers and waiting times for riders. Further-
more, their results suggest that allowing transfers can have a considerable impact on the
number of served riders.

3.1.5 Including Social Aspects in Ride Sharing

Recent works on carpooling and journey planning take into account, besides the spatial
and temporal constraints, also social constraints (CICI et al., 2014; GUIDOTTI et al., 2015;
CAMPANA; DELMASTRO; BRUNO, 2016; BERLINGERIO et al., 2017).

In (CICI et al., 2014), the authors focused their analysis also taking into account social
constrains such as friendship in social media. Their motivation is that people often hesi-
tant to ride with strangers. They inferred the social ties from call data records (CDRs), or
declared friendship (Twitter). In the city of Madrid using CDR and Twitter direct friend-
ship provides only a tiny traffic reduction of 1.1% and 1.2% respectively. However, when
relaxing the social constraints and allowing ride sharing with friends-of-friends, the ride
sharing potential increases significantly to 19% and 8.2% for friendship based on CDRs
and Twitter data, respectively.

In (GUIDOTTI et al., 2015), the authors’ methodology was tested on real data from
Rome and San Francisco. The authors define a multi-objective optimization model that
using a greedy approach first minimizes the number of cars, and afterwards tries to max-
imize the enjoyability of the user. For this purpose, the authors introduce a measure of
enjoyability based on people’s interests, social links, and tendency to connect to people
with similar or dissimilar interests. They evaluate the approach in terms of cars saved,
and average enjoyability of the users. From a study with more than 200 users reporting an
interest of 39% in the enjoyable solution. Moreover, 24% of people declared that sharing
the car with interesting people would be the primary motivation for carpooling.

The authors of (CAMPANA; DELMASTRO; BRUNO, 2016) address non-monetary aspects
and social considerations that may influence the individual willingness of sharing a ride.
They propose a recommender system for carpooling services that leverages on learning-to-
rank techniques to automatically derive a personalized ranking model for each user from
the history of her choices (i.e., the type of accepted or rejected shared rides). The system
builds the list of recommended rides by maximizing the estimated success rate of the
offered matches extracted from Foursquare check-in information. The results show that
the proposed solution quickly obtains an accurate prediction of the personalized user’s
choice model.

In (BERLINGERIO et al., 2017), the authors extend the work (GUIDOTTI et al., 2015)
by introducing a measure of enjoyability based on people’s interests, social links, and
tendency to connect to people with similar or dissimilar interests. Specifically, their en-
joyability measure takes into account two factors: (i) like-mindness, i.e. a topic similarity
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between any two users; and (ii) homophily, i.e. the tendency of a person to group with
similar ones. The authors address a ride sharing problem where they try to minimize the
number of recurring trips made by cars and also maximize the enjoyability the trip con-
sidering social aspects. In their experiments, they do the extraction of enjoyability and
mobility demand from Twitter. Their approach save up to 57% of the cars, while the total
enjoyability is up to double.

3.1.6 Activity-Based Ride Sharing

Most of related works do not consider in their models the activity as a flexibility attribute,
except the work by Cho et Al. (CHO et al., 2013) that first addresses activity-based car-
pooling. The authors propose the use of an ontology in an activity-based microsimulation.
While no explicit evidence is presented, the focus of the paper is recognizing that the on-
tology is a useful and appropriate method for activity-based microsimulation research.
Indeed, only a conceptual design and framework are suggested, and this study is a clearly
preliminary step.

In (WANG; KUTADINATA; WINTER, 2016), they propose an algorithm that expands
the potential destination choice set by considering alternative destinations that provide a
similar activity function as the originals. The matching is conducted considering a static
pre-planed daily schedules of all participants involved. The authors define a daily schedule
as a composition of multiple trip chains. Given the combinatorial computational com-
plexity in deciding the destination choice set for a chain of multiple flexible activities, the
author introduce a space-time filter algorithm to search for feasible rides. The algorithm
considers a reasonable time window, while still allowing a detour tolerance for each trip.
A global optimal matching is achieved by binary linear programming. The experiments
confirm the capability of activity-based ride sharing to increase successful matching rates.

3.1.7 Comparative Analysis

Table 1 summarizes the works previously discussed indicating the approaches used to
represent participants’ flexibility (e.g. temporal, spatial with detour, spatial with slugging,
multi-hop, social and activity-based) and their objectives. We can observe that most of
the works in literature relax the temporal constraints by representing the time as window
intervals. Moreover, the spatial flexibility plays an important role on finding matches
between drivers and passengers. This flexibility can be represented either by allowing the
drivers to perform detour on their trips or by considering that the passenger can walk to
a specific meeting point. The multi-hop ride sharing can increase the amount of possible
matchings, however it may cause more discomfort to the passenger given the necessity of
switching between vehicles.
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Similar to the works presented above, we try to increase the matching possibilities by
relaxing the constraints involved in ride sharing scenario. Particularly, we impose a higher
flexibility to the spatial constraints, by exploring a new dimension based on the intended
activity of the passenger. This represents the possibility of a passenger to choose one
among multiple destination choices where to go to perform her intended activity. Thus,
the approach presented in this thesis is completely orthogonal and possibly complementary
to the studies presented in this Section. For example, both approaches activity based and
route detour could be used by matching agencies to represent respectively the flexibility
of the passenger to have multiple destination options, and the flexibility of the driver to
perform detour on her original route to supply a ride request.

This thesis has similar motivations to Wang’s (WANG; KUTADINATA; WINTER, 2016).
In (WANG; KUTADINATA; WINTER, 2016), the authors also propose an approach for ex-
panding the potential destination choices set by considering alternative destinations look-
ing for places that provide similar activity function as the original. Among the difference
with the current work we can point out:

(a) They do not propose any mechanism to evaluate the quality of the ride in fitting
the requirement of the participants. We propose a ranking model that compute a set of
features from the ride options, scoring with high values the ones that best matches the
ride request requirements; (b) We use a slugging ride sharing approach where we consider
that the passenger is able to walk until the pickup-up point, while they use a detour
considering that the driver can make a detour on his route. In our study, we use slugging
to support a sustainable idea that people transportation can benefit from daily route of
other people; (c) Finally, they focus on finding a maximal optimal combination of matches
for a day schedule, assuming to know in advance all the daily schedule of the participants.
Instead, we do not consider the whole day trip of the users. We focus on a more realistic
scenario to optimize a set of on demand ride request rather than daily schedule of users.
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Table 1 – Literature on ride sharing matching algorithm
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3.2 Exploring Event Attendance Using Social Media
Large events like music festivals or religious celebrations attract thousands of participants.
In general, such events raise concerns regarding the mobility of the attendees to the area
of the event. A common practice is to provide transportation means to encourage people
to switch their mode of transportation from solo to shared driving. For example, if most
people arrive at the event destination via private cars, this creates traffic congestion and
parking overloading in areas around the event. As a means of overcoming this problem,
ride sharing transportation service operators (Section 2.3.1) as shuttle bus perform circu-
lated routes to supply the mobility demands to attendees of the event. From the logistic
perspective, the problem comprises the identification of the demand of rides to proper al-
locate the transportation vehicles. However, especially for large events, it is not a simple
and straightforward task to identify such demands (FEEHAN, 2006).

Chasing this problem, this thesis introduces an approach to infer such mobility demand
by investigating users’ attendance through the use of social media. Recent researches have
shown that social media play a role in understanding modern life, including transport
(EFTHYMIOU; ANTONIOU, 2012; GAL-TZUR et al., 2014b; D’ANDREA et al., 2015) and human
mobility analysis (CESARIO et al., 2016; MIKUSZ et al., 2016; HAWELKA et al., 2014). Large
events are usually well reflected in social media where interested users express, through
posts, their feelings, experiences or opinions about such events. The social media network
can therefore be seen as a channel between people and “the event” through the posts
referring to the event using an hashtag, or the event’s name or its user handle. Therefore,
we want to explore social media as a source of potential user event attendees to understand
mobility demand.

For this purpose, we rely on the post content to infer user’ attendance to large events.
In literature, many papers tackle the problem of estimating the current location of users
or their home from non geo-located posts (CHENG; CAVERLEE; LEE, 2010; CHANG et al.,
2012; MAHMUD; NICHOLS; DREWS, 2014; LEE et al., 2014; KINSELLA; MURDOCK; O’HARE,
2011; ONAN, 2017; BAKERMAN et al., 2018; EFSTATHIADES et al., 2016). Compared to
these proposals, we have a different objective as we do not want to estimate the exact
user location at the time of the post, but classify the single posts on the basis of user
future, current and past attendance to a given event. Understanding demand is an initial
and important phase for transportation demand management (ISLAM et al., 2016). Spe-
cially for large events, understanding the mobility demand may lead to more accurate
transportation services.

Therefore, we compare our approach with existing works in literature that study and
analyze event attendance using social media. Events in social media have been extensively
studied. The main aspects investigated in the literature are: (1) prediction of events
attendance in Event-Based Social Networks (EBSN) and Location-Based Social Network
(LBSN) (DU et al., 2016; ZHANG; ZHAO; CAO, 2015; GEORGIEV; NOULAS; MASCOLO, 2014);
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(2) recommendation of events to users (QUERCIA et al., 2010; MACEDO; MARINHO; SANTOS,
2015; GAO et al., 2016); (3), estimation of the number of attendees in a given event (BOTTA;

MOAT; PREIS, 2015), and, (4) modeling participants’ behavior during an event (CESARIO

et al., 2017; CESARIO et al., 2016; CESARIO et al., 2015).

3.2.1 Prediction of Events Attendance in EBSN and LBSN

Du et al. (DU et al., 2016) analysed an EBSN to predict users’ attendance by taking into
account the content, the spatial and temporal context, the users’ preferences and their
social influence. They used a singular value decomposition with multi-factor neighborhood
(SVD-MFN) algorithm to predict activity attendance on the Douban Events network.
Zhang et al. (ZHANG; ZHAO; CAO, 2015) proposed a supervised learning model to predict
event attendance based on semantic, temporal, and spatial features, representing how
frequently and when users attended similar events in the past, the semantic similarity
between events, the location preference when attending events and the home location of
the user. They trained three classifiers on a Meetup dataset with semantic descriptions
of all events organized.

Georgiev et al. (GEORGIEV; NOULAS; MASCOLO, 2014) addressed the extent to which
geospatial, temporal, and social factors influence the users’ preferences towards events for-
mulating a predictive modeling task trying to match a user’s mobility profile against the
collective past Foursquare check-in activity of potential event attendees. Zhang and Lv
(ZHANG; LV, 2017) proposed a group-based social influence propagation network to model
group-specific influences on events. In (ZHANG; LV, 2018), the same authors extended the
previous work proposing a group-based event participation prediction framework that
embeds and connects group context features and social related features using historical
event attendance logs. The authors extract the group-based social features by using a hy-
brid event-group/category-user network that captures intrinsic social relationships. Their
results show that these features are important for predicting event participation.

Compared to these approaches, we do not specifically deal with EBSN and LBSN, but
instead we focus on popular social media where events can have an “echo”. We do not use
users history or preferences as we aim at classifying single posts by disregarding the user
profile and specific events information.

3.2.2 Recommendation of events to users

Within the second category, event recommendation, papers (QUERCIA et al., 2010; MACEDO;

MARINHO; SANTOS, 2015; GAO et al., 2016; MO et al., 2018) and (WANG et al., 2016) ad-
dressed the challenge of recommending events within event-based social networks (EB-
SNs). Each of these approaches is challenged by the cold-start problem, and recommen-
dation evidence may resort to the events that are geographically closest (QUERCIA et al.,
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2010). The works in (GAO et al., 2016) and (LIU et al., 2017) study the influence of social
groups to improve the event recommendation performance. Gao et al. (GAO et al., 2016)
propose a new Bayesian latent factor model that combines social group influence and in-
dividual preference for event recommendation. In turn, Liu et al. (LIU et al., 2017) propose
a collective pairwise matrix factorization model to estimate users’ pairwise preferences on
events, groups and locations.

Macedo et al (MACEDO; MARINHO; SANTOS, 2015) propose a recommendation ap-
proach that leverages multiple context-aware recommendation models for learning to rank
events. They exploit further features based on group memberships, location signals based
on the users’ geographical preferences, and temporal signals derived from the users’ time
preferences. In (MO et al., 2018), the authors consider also the capacity of an event to limit
the number of users for the recommendation. Their objectives is to coordinate unbalanced
user arrangements among the recommended events. The works in (WANG et al., 2016) and
(QIN; RISHABH; CARNAHAN, 2016) focus on efficient and scalable learning technique for
event recommendation to handle large-scale, straming data. Our work is complementary
with respect to these approaches since we are interested in identifying the posts related
to event attendance rather than in making recommendations. In any case our approach
could allow to identify more precisely the target users for recommendations.

3.2.3 Estimation of the number of attendees in a given event

Within the third category of related works, Botta et al. in (BOTTA; MOAT; PREIS, 2015)
investigated whether mobile phone usage and the geolocated Twitter data can be used to
estimate the number of people in a specific area at a given time. They consider two case
studies of access-restricted areas in Italy: a stadium and an airport (where there were
ground truth visitor statistics), they concluded that geolocated tweets with mobile phone
data could be a good proxy of estimating the number of users. Sinnott and Wang provide
solutions to estimate the population of suburbs and skyscrapers through the use of geo-
tagged Twitter data (SINNOTT; WANG, 2017). They construct linear models for suburbs of
four cities and investigate spatial correlation properties between the geo-tagged tweets and
the official Census data. Their results show that Twitter can be used for micro-population
estimation with quantifiable degrees of accuracy.

In (SINNOTT; CHEN, 2016b), the authors propose a regression model to estimate the
number of attendees from the amount of geo-tagged tweets posted at an event. They
apply the prediction model to estimate the attendance at the Melbourne marathon.

3.2.4 Modeling participants’ behavior during an event

Finally, in the last category of works, the authors of (CESARIO et al., 2016; CESARIO et al.,
2015; CESARIO et al., 2017) described a methodology for identifying the user behavior and
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mobility patterns of Instagram social network users visiting the EXPO 2015 world fair in
Milan and the FIFA World Cup 2014. They analysed how the number of visitors changes
over time, identify the most frequent sets of visited pavilions, which countries the visitors
came from, and the main destinations of foreign visitors to Italian regions and cities after
their visit to the EXPO. They also analysed geotagged tweets of people attending the
2014 FIFA World Cup identifying the most frequent movements of fans, the number of
matches attended by groups of fans, clusters of most attended matches, and the most
frequented stadiums.

3.2.5 Comparative Analysis

These latter two groups of works have similar objectives to our aim in studying the
social media users’ actual participation in events. However, the main differences are: (1)
we do not use geotagged information to identify current attendance, but we rely on the
media posts content to infer users’ participation in events. Compared to the related works
based on geotagged data, we explore a higher number of posts about the event since a low
percentage of the social media posts are geotagged. For example, on Twitter, around 2% of
the tweets are geotagged2. Moreover, our approach allows the analysis of event attendance
also based on post made before, during and after the event; (2) we do not estimate a global
number of participants or crowd, but instead we identify specific social media users who
are likely to be – or have been – present at an event. Additionally, our final objective is
to infer user attendance to derive the mobility demand to large event rather than derive
event crowd size. Our approach can thus provide useful and complementary information
to support both applications crowd behavior modeling and crowd size estimation in large
events; and (3) we do not recommend participation but instead we infer current, future
or past attendance of users based on the media posts.

3.3 Conclusions
In this chapter, we have reviewed several works that are relevant and have common
purposes with the objectives of this thesis:

• We have evaluated some ride sharing matching algorithms.These approaches
have in common the aim of increasing the number of ride matches, focusing on max-
imizing either the number of participants or the driving distance savings. Recent
approaches consider also social aspects of the participants to improve enjoyability
of the ride trips. However, most of the approaches in literature consider only the
spatial-temporal aspects when matching ride offers and ride requests, ignoring the
semantic behind the mobility demand necessities. Thus, orthogonally to the current

2 http://firstmonday.org/ojs/index.php/fm/article/view/4366/3654
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approaches, this thesis present a novel approach for ride matching based on the in-
tended activity of the passenger. This represents a new way for relaxing the spatial
constraints, exploring alternative destinations to find feasible ride sharing match-
ings. The alternative destinations are proposed based on the indented activity of
the passenger. Moreover, given the orthogonality of this proposed approach, ride
sharing matching agencies could apply it jointly with other matching strategies as
route detour, slugging and multi-hop ride sharing.

• Finally, we have discussed several papers that investigate event attendance through
the use of social media. We have discussed the main groups of works in this
branch of research. The most similar works rely on geo-tagged information to infer
event attendance. These approaches have two limitations: (1) a small percentage
of posts in social media have geo-tageed information; (2) by considering only posts
made during the event, but not the ones made before, future attendance predic-
tion analysis is not enabled. Thus, our proposed approach to infer event attendance
overcomes these limitations providing a novel way to understand mobility demand
through the use of social media.
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4 The Activity-Based Ride Matching
(ABRM) Algorithm

Recent studies of human mobility highlight an individual characteristic of the people: the
tendency to be regular or not in choosing the places where to perform some activities
(LIRA et al., 2014; WU; LI, 2016). Be regular here refers to the fact that the person often
choose the same place to perform a given activity. While not be regular represents a
not uniform behavior of a person on choosing a place for doing a given activity. Indeed,
we notice that people can perform their activities at different alternative locations. For
example, think about the different shopping malls where to go shopping, or the different
Italian restaurants where to go for dinner.

In a ride sharing system essentially there is a matching phase between drivers and
riders. In general, it means that the paths performed by these people have moving stretches
of common interest, and therefore they can share a vehicle for a given trip. In most of the
cases the destination is fixed and cannot be changed (e.g. go to work or go home). Here
we propose a different scenario where the destination is not fixed and can be changed if
the activity to be done (e.g. shopping, eating . . . ) is preserved.

We propose the Activity-Based Ride Matching (ABRM) algorithm: we focus on the
user’s desired activity, rather than only considering the path or final destination of the
rides thus increasing the number of possible matches. In order to present the proposed
matching algorithm, this chapter is organized as follows: Section 4.1 introduces some basic
definitions used in this chapter and defines our Activity-Based Ride Matching Retrieval
Problem. Section 4.2 describes the algorithm for matching ride requests with alternative
destinations and discusses the ranking model adopted. We discuss the experiments in
Section 4.4. We also introduce in Section 4.5 a prototype called ComeWithMe that imple-
ments the Activity-Based Ride Matching Algorithm in almost its entire query pipeline.
Finally, we draw the final considerations on the current chapter in Section 4.6.

4.1 Basic Definitions and Problem Formalization
We introduce here the formulation of our Activity-Based Ride Matching Retrieval problem
and some basic concepts and notations used through the thesis.

A trajectory (or trip) represents the spatio-temporal movement of a traveling ob-
ject. It is generally recorded by a tracking device into samples thus bringing a discrete
representation of the movement. A more formal definition is given below.

Definition 1 (trajectory). A trajectory represents a finite sequence of spatio-temporal
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points assigned to a moving object and denoted by <objId, < 𝑥1, 𝑦1, 𝑡1 >, . . . < 𝑥𝑛, 𝑦𝑛, 𝑡𝑛 >>,
where 𝑜𝑏𝑗𝐼𝑑 is the identifier of the moving object, and 𝑥𝑖, 𝑦𝑖, 𝑡𝑖 represent the spatial and
temporal coordinates of the sample points.

Trajectories may have stops at venues or Points Of Interest (POIs), e.g., a shop, a bar,
a restaurant or a gym (PARENT et al., 2013):

Definition 2 (Point Of Interest (POI) or venue). A POI is a geographical object, usually
associated to a human activity, that is interesting for a specific application. We define a
POI as a tuple < 𝑠, 𝑛, 𝑐 > where s is the representative spatial point, n is the name of the
POI and c is its category drawn from a defined taxonomy 𝐶.

In the real world, some POIs may have more than one activity associated to them.
For example, in a shopping mall, it is usually possible to perform activities like shopping,
eating and ATM services. In this thesis, for the sake of simplicity, we consider that a POI
is related to only one activity. The chosen activity is the one associated to the primary
category of the POI. Thus, considering our previous example, for a shopping mall, the
associated activity is shopping.

A trajectory can pass by or stop close to a set of POIs where some activity (e.g.,
shopping, visiting, eating, working, exercising) can be performed.

Definition 3 (Activity). An Activity defines a task that can be performed at a POI. We
assume that activities are related to specific POI categories and viceversa. Thus there is a
mapping between a given activity a and a set of POI categories. For example, the activity
eating is related to POI categories Restaurants and Pizzerie. Viceversa the POI category
Restaurants is related to activities eating and drinking.

Let 𝑃 be the set of all POIs. Given a POI 𝑝 ∈ 𝑃 , we thus assume to be able to find a
number of alternative venues that is a small subset of P where the activity performed in
𝑝 can be performed as well. We call these POIs the alternative destinations for 𝑝.

Definition 4 (Alternative Destination). Given a POI 𝑝, the set of alternative destinations
for 𝑝 is a set of POIs < 𝑝1, . . . , 𝑝𝑛 >| ∀𝑝𝑖 ∈ 𝑃 where it is possible to perform the same
activity as in 𝑝. These alternative destinations can be all the POIs belonging to the same
category of 𝑝 or a subset of them selected on the basis of some criterium, e.g., those most
similar to 𝑝, or the most popular, or the ones preferred by the user.

It is important to note that the set of alternative destinations for a given POI 𝑝 can
be an empty set. This implies that a person visits the POI 𝑝 to perform a very specific
activity, thus not being flexible to consider other alternative destinations. For example,
the work place of a person is in general unique, not being possible to look for alternative
destination for this category of place. The same restriction can be considered for POI
categories like airports, gyms, universities, etc.
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The ABRM problem assumes that a ride request for going to a POI 𝑝 from a given
spatial location 𝑙𝑜𝑐 at a given time 𝑡 can be served with ride offers respecting the time
and starting location constraints of the request and possibly dropping the user to one of
the alternative destinations for 𝑝. Thus, we formally define the terms ride request and
ride offer.

Definition 5 (Ride Request). We represent a Ride Request 𝑞 as a tuple: < 𝑢, 𝑙𝑜𝑐, 𝑝,

𝑡𝑖𝑚𝑒, 𝑤_𝑑𝑖𝑠𝑡, 𝑑𝑒𝑙𝑎𝑦 >, where 𝑢 identifies the requesting user, 𝑝 ∈ 𝑃 is the POI to be
reached, 𝑙𝑜𝑐 and 𝑡𝑖𝑚𝑒 are the starting location and the preferred departure time, while
𝑤_𝑑𝑖𝑠𝑡 is the maximum walking distance the user is willing to walk to get the ride and
𝑑𝑒𝑙𝑎𝑦 the maximum time the user is willing to anticipate or delay the departure.

Definition 6 (Ride Offer). A ride offer 𝑟𝑡 is a tuple: < 𝑢, 𝑜𝑟𝑖𝑔, 𝑑𝑒𝑠𝑡, 𝑡𝑖𝑚𝑒, 𝑝𝑎𝑡ℎ > where
𝑢 is the driver, 𝑜𝑟𝑖𝑔 and 𝑑𝑒𝑠𝑡 are the fixed origin and destination of the ride offered by 𝑢,
𝑡𝑖𝑚𝑒 is the departure time, and 𝑝𝑎𝑡ℎ is the route followed by the vehicle offering available
seats. These seats can be offered to passengers traveling from origins to destinations that
are reachable along the vehicle route.

It is worth noticing that our definition of ride offer is intentionally generic to encompass
different ride sharing scenarios: the vehicle with available seats following a fixed route at a
fixed time could be a private car (e.g., routinely going home from work at 5pm of working
days), or a shared taxi serving a ride.

Thus, we can now proceed in formulating our Activity-Based Ride Matching problem:

Definition 7 (Activity-Based Ride Matching Problem). Given a set of ride offers 𝑅𝑇

and a ride request 𝑞 =< 𝑢, 𝑙𝑜𝑐, 𝑝, 𝑡𝑖𝑚𝑒, 𝑤_𝑑𝑖𝑠𝑡, 𝑑𝑒𝑙𝑎𝑦 >, the ABRM problem seeks to find
all the ride matchings ℳ : {𝑚1, . . . 𝑚𝑘} between 𝑞 and the ride offers in 𝑅𝑇 that allow
the passenger to reach 𝑝 or an alternative destination for 𝑝 within the maximum walking
distance 𝑤_𝑑𝑖𝑠𝑡 and the maximum departure delay or anticipation 𝑑𝑒𝑙𝑎𝑦. Thus a ride
matching 𝑚 ∈ ℳ satisfies the following constraints:

1. The walking distance for the passenger to reach the pick-up location cannot be
higher than the maximum walking distance specified by in the ride request 𝑞.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑞.𝑙𝑜𝑐, 𝑚.𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐) ≤ 𝑞.𝑤𝑑𝑖𝑠𝑡 (4.1)

2. Analogous, the walk distance for the passenger to reach the POI destination 𝑝 ∈ 𝐴𝑞

cannot be higher than the maximum walking distance specified in the ride request.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚.𝑑𝑟𝑜𝑝𝐿𝑜𝑐, 𝑝.𝑙𝑜𝑐) ≤ 𝑞.𝑤𝑑𝑖𝑠𝑡 (𝑝 ∈ 𝑃 𝑞) (4.2)
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3. The pick-up time may be delayed or anticipated respecting a maximum limit in
minutes 𝑞.𝑑𝑒𝑙𝑎𝑦.

|𝑞.𝑡𝑖𝑚𝑒 − 𝑚.𝑝𝑖𝑐𝑘𝑢𝑝𝑡𝑖𝑚𝑒| ≤ 𝑞.𝑑𝑒𝑙𝑎𝑦 (4.3)

4. The pickup time must be before the drop-off time.

𝑚.𝑝𝑖𝑐𝑘𝑢𝑝𝑡𝑖𝑚𝑒 ≤ 𝑚.𝑑𝑟𝑜𝑝𝑡𝑖𝑚𝑒 (4.4)

4.2 Activity-Based RideMatching Algorithm
The example in Figure 8 illustrates a simple instance of our matching problem. The
request 𝑞 of user 𝑢 is for POI 𝑣1 starting from location 𝑝 at time 𝑡 with a maximum walking
distance of 500𝑚𝑡 and a temporal flexibility of 30 min. The alternative destinations for
𝑣1, preserving the activity to be done, are POIs 𝑣2, 𝑣3, 𝑣4, 𝑣5. The circles around the POIs
represent the area within the walking distance the user set in her request (e.g., 500 meters).
The set 𝑅𝑇 does not offer any ride to 𝑣1, 𝑣2 and 𝑣3 satisfying the time and starting location
constraints of 𝑢. There is, however, a ride offer 𝑟𝑡 ∈ 𝑅𝑇 , that starts at time 𝑡𝑜 and ends
at time 𝑡𝑓 , intersects the circles around 𝑝, 𝑣4, or 𝑣5 in the order and respects the temporal
constraint 𝑡𝑜 < 𝑡 < 𝑡𝑓 . Notice that 𝑟𝑡 represents a trajectory with its orientation according
to the arrow.

Figure 8 – A ride matching example
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Algoritmo 1: Activity-Based Ride Matching
Input : 𝑞 = (𝑢, 𝑙𝑜𝑐, 𝑣𝑒𝑛𝑢𝑒𝐷𝑒𝑠𝑡, 𝑡𝑖𝑚𝑒, 𝑤_𝑑𝑖𝑠𝑡, 𝑑𝑒𝑙𝑎𝑦) % ride request

𝑅𝑇 % set of ride offers
𝑉 % set of POIs

Output: ℳ % set of matchings
1 begin
2 ℳ← ∅;
3 altVenues ← AlternativeDest(q.venueDest, V);
4 foreach rt ∈ RT do
5 if Distance(q.loc, rt.traj) ≤ q.w_dist then
6 m.pickupLoc = closestPoint(q.loc, rt.traj);
7 m.pickupTime = timeAt(rt.traj, m.pickupLoc);
8 if (|𝑞.𝑡𝑖𝑚𝑒−𝑚.𝑝𝑖𝑐𝑘𝑢𝑝𝑇 𝑖𝑚𝑒| ≤ q.delay) then
9 foreach vdest ∈ altVenues do

10 if Distance(vdest.s, rt.traj) ≤ q.w_dist then
11 m.dropLoc = closestPoint(vdest.s, rt.traj);
12 m.droptime = timeAt(rt.traj, m.dropLoc);
13 if m.droptime > m.pickupTime then
14 m.dest = vdest;
15 ℳ←ℳ + 𝑚;

16 return ℳ

We have thus two possible matches: one possibility is to pick up the ride 𝑟𝑡 from
𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐 to 𝑣4 and another possibility is take the same ride up to 𝑣5. We call these ride
possibilities the 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑠. We note that a request may have different matchings, not only
with different ride offers but also with the same ride to different alternative destinations.
Each matching has a destination venue 𝑎𝑙𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, a pickup location 𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐 and
time 𝑝𝑖𝑐𝑘𝑢𝑝𝑇 𝑖𝑚𝑒, a drop-off location 𝑑𝑟𝑜𝑝𝐿𝑜𝑐 and time 𝑑𝑟𝑜𝑝𝑇 𝑖𝑚𝑒. We specify that our
approach is not based on the detour of the ride, that remain fixed, and the driver does not
change her path to pickup the passenger. It is the passenger who moves from the location
of the request to the 𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐 point of the matching. The constraint is that 𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐

and 𝑑𝑟𝑜𝑝𝐿𝑜𝑐 have distances from 𝑙𝑜𝑐 and 𝑎𝑙𝑡𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 lower than the walk distance
𝑤_𝑑𝑖𝑠𝑡 specified in 𝑞.

The pseudocode in Algorithm 1 illustrates the steps that find all the matchings ℳ for
a user request 𝑞 = (𝑢, 𝑙𝑜𝑐, 𝑣𝑒𝑛𝑢𝑒𝐷𝑒𝑠𝑡, 𝑡𝑖𝑚𝑒, 𝑤_𝑑𝑖𝑠𝑡, 𝑑𝑒𝑙𝑎𝑦) in a set 𝑅𝑇 of ride offers.

The algorithm starts by finding the alternative destinations for 𝑣𝑒𝑛𝑢𝑒𝐷𝑒𝑠𝑡 with func-
tion AlternativeDest(). This function can be instantiated in several ways. A simple solution
is to select all the POIs whose category is the same as the requested POI. For example,
when the user requests a ride to a supermarket, the alternative POIs are all the venues
labeled with the “supermarket” category. Since the POIs in a given category can be many,
we can restrict the number of alternative venues by choosing the 𝑘 most popular ones or
the 𝑘 most similar to 𝑣𝑒𝑛𝑢𝑒𝐷𝑒𝑠𝑡 according to some similarity function.

The algorithm then iterates over the ride offers (line 4) checking if the starting location
𝑞.𝑙𝑜𝑐 is within the walking distance from the path of a ride offer (line 5). In this case, the
algorithm sets as pick up location the closest point between the offered ride path and the
request location (line 6). Accordingly, the pick up time is computed as the time at which
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the offered trip passes in the pick up location (line 7). Then, if the candidate ride does
not respect the time delay constraint for pick up it is discarded (line 8).

A similar computation is done for the drop point. The algorithm checks if the candidate
ride passes within distance 𝑤_𝑑𝑖𝑠𝑡 from one of the alternative destinations (line 9-12) and
checks that the direction of the ride is correct (line 13). In this case, the candidate ride is
added to the matchings set (line 15). Finally, the algorithm returns the set of matchings
found (line 16).

Since the cardinality of the set of ride matching can be high, we introduce a subsequent
ranking step to order the matchings on the basis of an estimation of their relevance for the
passenger (or on the basis of other criteria such as the saving of 𝐶𝑂2). In the next section
we discuss the ranking features and how we can combine them in a ranking function.

4.2.1 Ranking Model

In order to rank the matchings returned by Algorithm 1 we consider four features. The
objective of these features is to measure how effectively a matching 𝑚 fits a ride request
𝑞. The four features are:
Time delay (𝑓𝑑𝑙𝑦). The anticipation or delay of the trip respect to the intended time
specified in the request.
Distance to walk (𝑓𝑤𝑙𝑑). The distance the passenger has to walk in order to get the
ride and arrive at the proposed destination. It is computed as the sum of the distance
between the passenger location and the pick-up point, plus the distance between the drop
off point and the destination venue.
Ride duration (𝑓𝑑𝑢𝑟). The estimated duration of the ride from the user location to the
proposed destination.
Ride length (𝑓𝑙𝑒𝑛). The estimated length of the candidate ride.

These features are first rescaled in the range [0-1] on a ride-request basis by considering
all the values occurring in the set of matchings ℳ. Thus, the highest value of the feature
has value equals to 1, while the lowest is equals to zero. ℳ is then sorted by decreasing
value of function 𝑅𝑎𝑛𝑘(𝑚):

𝑅𝑎𝑛𝑘(𝑚) = 1 −
∑︁

𝑖

𝑤𝑖𝑓𝑖

where 𝑤𝑖 ∈ [0, 1], ∑︀
𝑖 𝑤𝑖 = 1 is the weight associated with feature 𝑓𝑖 ∈ {𝑓𝑑𝑙𝑦, 𝑓𝑤𝑙𝑑, 𝑓𝑑𝑢𝑟, 𝑓𝑙𝑒𝑛}.

By properly setting the weights 𝑤𝑖 in the above linear combination of features, we can
tune the importance of the different features. For example, we can reward rides with the
shortest distance to reduce the emission of pollutants, or favor the passengers by ranking
higher rides with the lowest walks and/or duration. Of course we are aware that more
sophisticated ranking models considering different and complex aspects could be adopted
(see for example (CAMPANA; DELMASTRO; BRUNO, 2016)). However, the goal of this work
is investigating the impact on carpooling of user flexibility and not studying application-
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specific rankers. We will see in the following how this simple ranking model allows us to
sweep weights in order to understand their effect on the user and the environment.

4.3 Research Questions
The main objective of this work is to increase the efficiency of the ride-sharing systems
by exploring alternative destinations to supply ride requests. The reallocation to an alter-
native destination is based on the intended activity of the passenger. We investigate the
impact of our proposed approach by four research questions. The experiments discussed
at 4.4 aim to answer comprehensively the following research questions:

RQ1: To what extent can ABRM increase ride sharing opportunities?
RQ2: How well the matchings discovered by ABRM fit the constraints in the ride request?
RQ3: What is the impact of tuning the weights used by the ranking function on the number
of requests potentially supplied?
RQ4: Which are the most favorable activities for exploiting the alternative destinations
approach?

4.4 Experimental Evaluation
In this section we present the experiments conducted to assess ABRM in terms of kilome-
ters, liters of gasoline and 𝐶𝑂2 potentially saved with respect to a traditional, destination-
oriented, carpooling approach. Note that in the following we do not deal with the allo-
cation problem neither consider the number of seats available in the cars offering the
rides. Ride request-offer allocation is a well-known optimization problem, orthogonal to
this proposal. Any scheduling solution addressing this problem for destination-oriented
carpooling fits also our activity-based approach. Since the same assumptions hold for the
destination-oriented solution used as baseline, we believe that the choice of not consider-
ing allocation does not constitute a limitation of the work. Thus, below we investigate the
potential impact of ABRM and of the settings of the ranking function in the reduction of
the number of circulating vehicles, of pollutant emissions and consequent improvement of
quality of the urban environment. The results of this work have been published in (LIRA

et al., 2015; LIRA et al., 2018).

4.4.1 Experimental setup

Our experiments are conducted on two semi-synthetic1 datasets of ride requests and ride
offers, obtained by processing and enriching two publicly-available Foursquare datasets
1 Here, the term “semi-synthetic” refers to the fact that we are using real check-ins performed by real

users, but the trajectories between these checkins, the ride offers and the ride requests have been
created by using a heuristic.
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Table 2 – Datasets Statistics

Dataset Checkins Users Venues Categories
New York (NYC) 227,428 1,083 38,333 251
Tokyo (TKY) 573,703 2,293 61,858 247

(YANG et al., 2015). These datasets record the check-ins of Foursquare users in New York
City (NYC) and Tokyo (TKY) for about 10 months (from 12 April 2012 to 16 February
2013). Each check-in is associated with a time stamp, the GPS coordinates of the POI
and a fine-grained venue-category. Table 6 summarizes the total number of check-ins, the
number of distinct users and distinct venues, and the number of possible categories for
venues. For both datasets we consider only the users with at least 100 check-ins.

We enriched the above datasets by gathering the POI information using the Venue2

and Similar3 Foursquare APIs.Specifically, we gathered for each POI in our datasets the
number of check-ins performed at the POI (popularity), the number of “likes” received
(favorite), and the 𝑡𝑜𝑝 − 5 most similar venues according to an unknown Foursquare
similarity measure.

We emphasize that the datasets used for the experiments provide only a simulation of
a traffic scenario and are not representative of a general mobility graph. In these datasets
the urban traffic flow is surely under-represented as most actual trips are likely not to be
between two FourSquare destinations checked-in by the drivers. Nevertheless, this dataset
has the important advantage that the activity performed by the users is explicitly reported
as check-ins and this is crucial for our activity-based ride sharing approach. Rather than
representing a general urban traffic flow, we simulate using these datasets the activity-
based ride requests and offers. In the previous preliminary work (LIRA et al., 2015), we
experimented the use of actual GPS traces of cars and we faced the non trivial problem
of associating the raw GPS points to the performed activity at stops. Also we had strong
privacy problems and we could not make the dataset public. Therefore we privileged here
the use of datasets that, although semi-synthetic and with clear limitations, are public
and representative of a large-scale activity-based scenario.

We exploit the above datasets of Foursquare check-ins to build two semi-synthetic
datasets representing disjoint sets of Ride Requests and Ride Offers. By matching the
ride requests with the ride offers by means of the ABRM algorithm and the baseline, we
assess our proposal by considering the set of requests potentially satisfied by ABRM but
not by the baseline algorithm.

We identify the ride offers as the trips of each user between the two most frequently
visited venues v𝑎 and v𝑏. The intuition behind this choice is that the rides between the
most frequently visited locations constitute a reasonable surrogate of routine trips a user
2 https://developer.foursquare.com/docs/venues/venues
3 https://developer.foursquare.com/docs/venues/similar
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could offer as driver. This is also supported by a manual inspection of the data that shows
that very often people have their most frequent check-ins at venues such as home, work
place, university, school (LIRA et al., 2014).

The exact procedure followed for each user 𝑢 to populate the set 𝑅𝑇 of ride offers is
detailed below:

1. Let v𝑎 and v𝑏 be the two POIs most frequently visited by user 𝑢, and 𝑟𝑡𝑎𝑏 and 𝑟𝑡𝑏𝑎

the candidate routine trips from v𝑎 to v𝑏 and from v𝑏 to v𝑎, respectively.

2. 𝑟𝑡𝑎𝑏 and 𝑟𝑡𝑏𝑎 are added to set 𝑅𝑇 for all the days of the week in which there is at
least a check-in of 𝑢 in both the places. The arrival time in v𝑎 and v𝑏 for the above
two ride offers are computed as the median among the timestamps associated with
the check-ins in v𝑎 and v𝑏.

3. For each ride offer 𝑟𝑡 obtained with steps 1-2 we compute a representative trajectory
of the fastest car route from the departure to the arrival locations by using Google
Maps4. In addition, the arrival time 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 of 𝑟𝑡 is used to estimate the duration of
the ride, its length and the time of departure 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒.

By following the above procedure we obtained 11,426 and 25,306 ride offers for NYC
and TKY respectively.

Figures 9a and 9b show a geospatial visualization of a sample of ride offers from the
two datasets. Each color represents a single trajectory. As we can see, the ride offers cover
the main streets and avenues of the cities, particularly in the downtown area characterized
by a higher density.

For the extraction of the set 𝑄 of ride requests, we focus instead on the venues least
frequently visited by each user. The insight is that occasionally visited venues are the ones
for which a user is most likely to be open to accept a ride for an alternative destination.
For example, venues like bars, restaurants, pubs, markets, cinemas are in general places
not routinely visited for which we expect that users can be more flexible (LIRA et al., 2014).
Based on this idea, we extract the ride requests for user 𝑢 as follows. We first remove from
the check-ins of 𝑢 the check-ins in the two most frequently visited venues (see the previous
procedure) and all the check-ins in venues belonging to the following categories: ’Home
(private)’, ’Office’, ’Airport’, ’Subway’, ’Neighborhood’, ’Road’, ’Building’, ’Residential
Building (Apartment / Condo)’, ’Government Building’, ’Train Station’, ’Road’, ’Bus
Station’, ’Hotel’, ’City’ and ’Bridge’. We assume in fact that the activities associated to
these categories of POIs can hardly be performed in alternative places. For example, a
passenger could not be dropped to a different airport from the one she has the flight,
or to a different hotel. Then, for each remaining check-in 𝑐 we create a ride request
𝑞 considering as starting location the place most frequently visited by the user. The
4 developers.google.com/maps/documentation/directions/
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(a) NYC

(b) TKY

Figure 9 – Samples of ride offers extracted from the FourSquare datasets.
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destination is obviously the same of the check-in and it is associated to a POI category,
while the departure time is inferred from the check-in time and the travel time needed to
reach the destination from the starting location (as estimated by Google map). Resulting
ride request corresponding to rides shorter than 1 km are discarded.

In addition, unless differently specified, we set in all the ride requests 60 minutes and
500 meters as the maximum delay and the maximum walk distance, respectively. We also
consider 5.0 km/h as an average walking speed (MOHLER et al., 2007). These parameters
allow us to represent different scenarios for ride sharing considering the extreme cases
where the passenger waits from 1 minute up to 60 minutes and needs to walk from 0
meters up to 500 meters in total until reach his final destination. The resulting datasets
contain 98,008 and 160,271 ride requests5 in NYC and TKY, respectively.

4.4.2 Evaluation Metrics and Baseline

The acceptance of a ride offer is an absolutely subjective decision whose modeling is out
of the scope of the present work. Thus, given the set of ride requests 𝑄 and the set of ride
offers 𝑅𝑇 in the NYC and TKY datasets, we assess our proposal by simply considering
the potential matchings returned by ABRM and the destination-oriented baseline, if any.
In order to minimize the effect of differences in the implementations and ensure a proper
analyse of the gain obtained by the proposed algorithm, the destination-oriented solution
used as baseline is a modification of our implementation where the requested destination in
the ride request is considered fixed in the matchings. Thus, similar to ABRM, the baseline
also uses a pick-up time-window (as explained in Section 2.3.3.2), which define a maximum
delay to pick-up the passenger, and uses a slugging approach, which consider that the
passenger can walk to meet the driver at a pick-up point (as explained in Section 2.3.3.1).
All the other parameters (including the maximum walking distance and time delay) are
set exactly to the same values in order to directly measure the boost in the number of
requests potentially supplied by our activity-based approach versus the destination-based
counterpart.

Let us indicate with 𝑄𝑠 the subset of all ride requests 𝑄 satisfied by at least one
ride offer. |𝑄𝑠| is the number of ride requests potentially satisfied and |𝑄𝑠|/|𝑄| the ratio
(measured in percentage) between the number of requests supplied and the total number
of requests in 𝑄.

In order to estimate the potential impact of carpooling solutions on the reduction
of kilometers traveled by cars, we assume ride requests are satisfied by the most highly
ranked ride offer retrieved by ABRM and by the baseline, if any. We clearly assume a user
can avoid to take its own vehicle when a ride possibility is offered. Every satisfied request
5 The ride requests and POIs distributions by place categories of both datasets are reported in the

Appendix, on Tables 17 and 18.
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thus corresponds to one vehicle less in circulation.The number of kilometers potentially
saved is thus:

𝐾𝑚𝑠𝑎𝑣𝑒𝑑(𝑄𝑠) =
∑︁

𝑞∈𝑄𝑠

𝐷(𝑞.𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐, 𝑞.𝑑𝑟𝑜𝑝𝐿𝑜𝑐)

Where 𝐷(𝑞.𝑝𝑖𝑐𝑘𝑢𝑝𝐿𝑜𝑐, 𝑞.𝑑𝑟𝑜𝑝𝐿𝑜𝑐) is the length of the route connecting the pickup and
the (alternative) drop off locations estimated by the Google maps service.

4.4.3 RQ1: Can ride sharing opportunities be boosted?

In this section we address the first research question by comparing the number of ride
sharing requests potentially satisfied by ABRM and the baseline.

We varied the method used by ABRM to choose the set of alternative venues. Specif-
ically we experimented the following variations: (a) all alternative destinations, the pas-
senger can accept to go to any alternative destination where she could perform the desired
activity (all the venues in the same category of the requested POI); (b/c) liked/popular,
the passenger can accept to go to one of the 𝑘 most liked/visited POIs in the same cat-
egory; (d) preferred, the passenger can accept to go to one among her 𝑘 most preferred
destinations. Since we do not have user-level preference information in our datasets, we
simulate this case by randomly selecting 𝑘 POIs in the same category for each user; (e)
Foursquare similarity, the passenger can accept to go to one of the venues most simi-
lar to the requested destination according to the FourSquare similarity function (SEOL,
2015). Foursquare combines three important properties to compute the venue similarity:
the co-visitation between the venue’s visitors, the category and taste similarities between
two venues. We remark that for the liked, popular and preferred criteria we experimented
values of 𝑘 equal to 5, 10 or 20. For the Foursquare similarity case, given the implemen-
tation of the APIs, at most 5 alternative POIs are returned even if in many cases a lower
number of similar venues is suggested.

Table 3 reports the number (|𝑄𝑠|) and percentage (|𝑄𝑠|/|𝑄|) of ride requests poten-
tially supplied, the improvement of ABRM compared to the destination-oriented base-
line (gain), and the impact for the environment in terms of potentially saved kilometers
(𝐾𝑚𝑠𝑎𝑣𝑒𝑑).

As expected, we observe that the all alternative destinations method, due to the
higher number of possible destinations, reaches the best results with a gain of 44.46%
and 54.69%, compared to the baseline, for NYC and TKY, respectively. In general, we
measured a higher performance in the Tokyo dataset compared to New York, probably
due to the higher number of ride offers and alternative destinations. Another general
trend we can note is that the number of requests potentially satisfied increases when
more flexibility is assumed, i.e., when the number 𝑘 of possible alternative destinations
increases. On the other side we observed similarly that ABRM remarkably increases also
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the number of ride offers matched to some ride requests. For example, in the NYC case,
considering the most flexible criteria (i.e. all alternative destinations), 63% of the ride
offers are matched to at least one ride request against 30% measured with the baseline.

Table 3 – Ride requests matched with the baseline and ABRM on the NYC and TKY
datasets.

NYC |𝑄𝑠| |𝑄𝑠|/|𝑄| 𝑔𝑎𝑖𝑛 𝐾𝑚𝑠𝑎𝑣𝑒𝑑

baseline 9,288 9.48% - 35,901
all alt. destinations 52,864 53.94% 44.46% 388,293

likes (k=5) 18,378 18.75% 9.27% 117,027
likes (k=10) 24,534 25.03% 15.56% 157,840
likes (k=20) 32,483 33.14% 23.67% 213,254

popular (k=5) 20,268 20.68% 11.20% 129,702
popular (k=10) 25,011 25.52% 16.04% 160,634
popular (k=20) 32,614 33.28% 23.80% 213,908
preferred (k=5) 20,157 20.57% 11.09% 130,523

preferred (k=10) 28,627 29.21% 19.73% 190,249
preferred (k=20) 36,628 37.37% 27.90% 250,761

Foursquare similarity 12,642 12.90% 3.42% 55,783
TKY |𝑄𝑠| |𝑄𝑠|/|𝑄| 𝑔𝑎𝑖𝑛 𝐾𝑚𝑠𝑎𝑣𝑒𝑑

baseline 36,695 22.90% - 213,838
all alt. destinations 124,356 77.59% 54.69% 1,014,079

likes (k=5) 74,674 46.59% 23.70% 566,748
likes (k=10) 89,326 55.73% 32.84% 690,604
likes (k=20) 98,782 61.63% 38.74% 773,103

popular (k=5) 74,329 46.38% 23.48% 565,492
popular (k=10) 87,908 54.85% 31.95% 678,237
popular (k=20) 98,839 61.67% 38.77% 775,156
preferred (k=5) 67,044 41.83% 18.94% 513,269

preferred (k=10) 85,236 53.18% 30.29% 662,167
preferred (k=20) 97,223 60.66% 37.77% 764,810

Foursquare similarity 48,844 30.48% 7.58% 317,694

Table 3 also shows the estimated amount of kilometers traveled potentially saved by
the corresponding carpooling solution. Once more we recall that the figures reported here
are upper-bound estimates computed on the basis of the assumptions made on the flexi-
bility and willingness of users to accept shared rides possibly at alternative destinations.
From these values we can easily approximate the liter of fuel (e.g. gasoline) saved and
consequently the saved amount of 𝐶𝑂2. For the sake of simplicity, in this computation
we assume each car consumes in average 1 liter of gasoline for 7.449 Km as reported in
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the official statistics of the Bureau of Transportation6. By assuming the passengers are
flexible enough to change their requested location, the estimate for the number of kilo-
meters saved in our test cities amount to 388.293 in NYC and 1,014,079 in Tokyo. These
values in turn correspond to 52,120 and 136,117 less liters of gasoline and to 99.4 tons
and 259.60 tons less 𝐶𝑂2 emission for New York and Tokyo, respectively. The baseline
based on fixed destinations may save in NYC 35,786 Km only (corresponding to 4,803
gasoline liters and 1.22 𝐶𝑂2 tons). For TKY we estimate instead that the baseline can
save 213,838 Km (28,703 gasoline liters and 7.34 𝐶𝑂2 tons).

On both the datasets, the method based on all the alternative destinations significantly
outperforms the other methods. On the TKY dataset the average number of matches for
each ride request is 690 for ABRM and only 3.02 for the baseline. Slightly similar figures
are measured on the NYC datasets. The ride request in TKY with the highest number of
alternative destinations counts about 23k matches against the 45 achieved by the baseline.
Such high numbers motivate the need of a ranking model later discussed in the sections
4.4.4 and 4.4.5.

In conclusion, in relation to RQ1, we observe that the results reported prove the poten-
tial boost of ride sharing services involving the offers of rides to alternative destinations.
The next step is to investigate how many these possibilities fit the passenger requests and
the public good. These aspects are discussed in the next sections.

4.4.4 RQ2: How well do the ranked ride offers to alternative destinations
meet ride request requirements?

In this section, we address our second research question, related to the contribution of
the ride features to the ranking method defined in Section 4.2.1. With these features we
intend to model how much the rides to alternative destinations can meet the requirements
specified in the user request. Figure 10 supports this study. Each plot shows eight curves
reporting the cumulative distribution of |𝑄𝑠|/|𝑄| for the baseline, the all alternative des-
tination criterion and the popular (k=5,10,20) and preferred (k=5,10,20) ones. The four
plots for NYC (TKY) report each the effect on |𝑄𝑠|/|𝑄| of varying the value of one of the
features 𝑓𝑑𝑙𝑦, 𝑓𝑤𝑙𝑑, 𝑓𝑑𝑢𝑟, and 𝑓𝑙𝑒𝑛 by keeping all the other fixed.

We computed the cumulative distributions by considering the fraction of supplied ride
requests having a value for the feature considered lower than the one reported in the x
axis. In this way we can see how the fraction of supplied requests changes when the feature
value increases.

Looking at the plots, specifically for the TKY dataset and the temporal shift feature
𝑓𝑑𝑙𝑦, we see that even when we consider matches with only 10 minutes shift, more than
half of the requests could be potentially satisfied with a ride offer to an alternative POI
6 goo.gl/ClDSfL
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Figure 10 – Cumulative distribution of |𝑄𝑠|/|𝑄| by varying each feature in isolation.

with the all alternative destinations method. A similar consideration can be done for the
plot analyzing the variation on the walk distance feature 𝑓𝑤𝑙𝑑.

For the trip length feature 𝑓𝑙𝑒𝑛, we report on the x axis the ratio between the matched
ride offer having the shortest length and the shortest car distance to the requested des-
tination computed by the Google Maps service. By looking to the plot corresponding to
the NYC dataset we observe that more than 20% of the ride requests can be supplied to
an alternative destination with a trip which is half in duration or shorter than the trip
originally requested. We observe even better results on the TKY dataset. Similarly, for the
the duration feature 𝑓𝑑𝑢𝑟 we report on the x axis the ratio between the estimated duration
to reach the alternative POI and the travel time to arrive at the requested destination
computed by the Google Maps service. On both the NYC and TKY datasets we can see
that ABRM proposes rides to alternative destinations that are in most of the cases shorter
in duration than the ones to the requested destination offered by the destination-oriented
baseline. We can conclude this section by considering that independently from the feature
considered, and thus from the subjective importance given by the user to the carpooling
aspect modeled by the specific feature (time shift, walking distance, ride duration and ride
length) ABRM is likely to provide a better carpooling service to flexible users accepting
to reach alternative destinations for performing the intended activities.
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4.4.5 RQ3: Effectiveness of the Ranking Method

ABRM returns the set of candidate ride offers matching a given ride request. The rank-
ing model defined in Section 4.2.1 orders the candidate offers on the basis of a linear
combination of weights. The purpose of the ranking step is helping the users to choose
the most relevant rides among a possibly large set of offers. Since no golden standard
recording user preferences is available to optimize the weights, we consider here a uniform
weighting schema giving the same importance to all the features, and we compare such
setting with four extreme scenarios where we prefer one feature over all the others by
setting, in turn, the corresponding weight to 1 and the others to zero. Given the order
of features previously used, we identify the uniform weighting schema with the vector
𝑤 = [1/4, 1/4, 1/4, 1/4] while the scenario giving, for example, only importance to ride
duration (feature 𝑓𝑑𝑢𝑟) corresponds to vector 𝑤 = [0, 0, 1, 0].

We chose the all alternative destinations as alternative destination criteria since it is
the one providing the highest numbers of matchings, not biased by other parameters (like
number of likes, popularity, etc.). As in the previous section of this chapter, 𝑓𝑙𝑒𝑛 and 𝑓𝑑𝑢𝑟

are normalized based on the ratio between the estimated length and temporal duration to
reach the alternative POI and the requested destination. For both datasets, the top-1 offer
returned by the ranking model was compared with the best values of the extreme approach
giving importance to only that feature. Figure 11 shows the cumulative distribution of
value |𝑄𝑠|/|𝑄| considering the top-ranked result for each of these five configurations of
vector 𝑤.

As expected, the highest values for |𝑄𝑠|/|𝑄| are achieved in all the plots for the extreme
weighting schema considering the associated feature only. However, the curves correspond-
ing to the uniform weighting schema are in all the plots, but the two in the most right
hand side the closest to the highest curves, thus showing in general a very good perfor-
mance. Uniform weighting performs as third solution under the considered metric only
when the ride length aspect is analyzed, and the curves result to be very close to the sec-
ond one. We observe in fact that the third and fourth features, ride duration and length,
are highly correlated. On the other hand, the other two features, time delay and walking
distance, are more selective on the generation of candidates. This suggests us that delay
and walking distance are strong constraints to the matching of candidate offers, whereas
the other two features may be weighted differently to try to optimize user acceptance on
one hand and to improve public goodness by minimizing the total distance traveled by
cars.

4.4.6 RQ4: Activities mostly favored by ABRM

We conclude the experiments by addressing RQ4, namely discussing which activities most
favor the ride sharing in the alternative destination scenario. In other words, we analyze
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Figure 11 – Comparison by ride feature between the Top-1 ranked ride and the best result
by feature

our ride matching results in the two datasets for understanding which activities have the
larges boost in terms of number of ride matches.

We identified the most frequent ride requests by intended activity and, from them,
we analyze the possible matches. Table 4 reports, for both datasets the top-10 activi-
ties that result in the largest number of ABRM ride matchings. We report the number
of requests |𝑄|, the percentage (|𝑄𝑠|/|𝑄|) of ride requests potentially supplied with the
baseline and the improvement in percentage obtained with ABRM. We use the 𝑝𝑜𝑝𝑢𝑙𝑎𝑟

with 𝑘 = 5 (more restrictive) and all alternative destinations (less restrictive) as alterna-
tive destination criteria. We observe for NYC a boost on ride sharing possibilities mainly
for activities related to “Italian Restaurant” and “Bar” with an improvement of +58.02%
and +57.86% respectively. In turn, for TKY, activity “Food & Drink Shop” achieves the
highest boost with +64.28%. This insight confirms our intuition that entertainment or
eating are in general the activities that can most benefit from the proposed approach.
The specific results reported in the table are however also correlated to a combination of
factors such as the number of venues for each category in the cities and their location.

We thus conclude the experimental evaluation of the ABRM. The results have shown
that the proposed algorithm increases the efficacy of the ride sharing systems for finding
new ride matchings. Indeed, compared to the baseline, the ABRM improves up to 55%
and 45% the number of ride request matched on the TKY and NYC datasets respectively.
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Table 4 – Activities favoring ABRM boosting.

NYC |𝑄𝑠| Bas. |𝑄𝑠|/|𝑄| ABRM 𝑝𝑜𝑝., 𝑘 = 5 ABRM 𝑎𝑙𝑙 𝑎𝑙𝑡. 𝑑𝑒𝑠𝑡.

Italian Restaurant 1,315 13.08% +12.97% +58.02%
Bar 11,242 10.60% +13.64% +57.86%

Music Venue 1,027 9.45% +25.61% +55.50%
Coffee Place 918 8.06% +20.59% +54.68%

Chinese Restaurant 932 10.41% +10.73% +53.33%
Deli / Bodega 1,621 5.31% +15.48% +52.81%

Bakery 899 10.23% +20.91% +51.72%
Park 3,015 11.21% +16.80% +50.95%

American Restaurant 2,681 14.58% +21.04% +50.09%
Mexican Restaurant 1,468 13.42% +19.69% +49.11%

TKY |𝑄𝑠| Bas. |𝑄𝑠|/|𝑄| ABRM 𝑝𝑜𝑝., 𝑘 = 5 ABRM 𝑎𝑙𝑙 𝑎𝑙𝑡. 𝑑𝑒𝑠𝑡.

Food & Drink Shop 6,766 15.05% +29.83% +64.28%
Convenience Store 7,360 16.28% +23.63% +63.93%

Park 4,026 14.83% +27.81% +63.88%
Fast Food Restaurant 3,698 18.33% +27.96% +60.28%

Chinese Restaurant 2,804 20.97% +29.81% +60.06%
Japanese Restaurant 9,365 25.46% +15.07% +59.62%

Ramen / Noodle House 10,618 22.29% +32.59% +59.12%
Mall 6,185 20.03% +26.89% +57.83%

Coffee Shop 4,756 23.91% +27.02% +56.79%
Bar 8,051 26.89% +33.21% +55.21%

The following section introduces a demo developed upon the ABRM.



Chapter 4. The Activity-Based Ride Matching (ABRM) Algorithm 49

4.5 Comewithme - Demo Application
In this section, we present a demo application called ComeWithMe. ComeWithMe has
been designed upon the ABRM Algorithm. For this reason, this ride sharing system is
able to enlarge the candidate destinations of a ride request by considering alternative
places where the desired activity can be performed. Activity-oriented carpooling hugely
increases the number of rides matching a query, thus introducing requirements on system
responsiveness and ranking effectiveness that are not common to traditional carpooling
services.

4.5.1 Ride Search Engine

The main task of the ride search engine is to answer ComeWithMe passengers’ queries
by providing lists of ride candidate ranked according to the user context and preferences.
This task is accomplished by mean of two important submodules that implement the
Retrieval phase aspects of the ABRM Algorithm: Query Expansion and Ranking Model.

Query Expansion. This module boosts the possibilities of car rides by exploiting a
query expansion technique. The use of query expansion generally increases recall and it is
widely adopted in many application fields (CARPINETO; ROMANO, 2012). For this demo,
the queries are ride requests expressing the passenger’s intention to move to a venue
to perform an activity. Given the destination Point of Interest (PoI) specified by the
passenger, the query is automatically expanded with places related to the same activity
by using a hierarchical thesaurus (an example is shown in Figure 12). The specific PoIs are
the narrowest terms, while the intermediate layers represent different activities abstraction
levels and thus possible query generalizations. For example, looking at Figure 12, when
a passenger requests as destination "Da Gino", we see that it is an Italian Restaurant
and expanding the query over Italian restaurants we have "Ristorante Giannino" as an
alternative destination. Abstracting again up to "Eating" we have all the venues where
they serve food corresponding to “Pizzeria”, “Japanese restaurants”, etc. The more we
expand the query to broader terms, the more rides possibilities the passenger can select
from the driver offers.

Eating 

Italian  
Restaurant 

Da Gino Giannino 

Japanese 
Restaurant (...) 

Shopping 

Electronic  
Store 

Euronics MediaWorld (...) 

(...) Mall Pizzeria 

(...) Oasi Kome (...) 

Figure 12 – Structure of the thesaurus.

Each venue in the thesaurus is associated with a cell of the spatial grid indicating
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its location. Analogously, user queries are coded with the cells representing the pick-up
area, the destination place, and a set of other cells representing alternative destinations.
An example of the expansion process is illustrated in Figure 13: the destination PoI "Da
Gino" is expanded with other possible venues (and cells) where the passenger can perform
the activity "Eating".

Query:'!!
!
{!
depTime:!2016/06/04!15:00,!
pickPos:!{lat:41.10573,!lng:16.88131},!
intdDest:!{“Da!Gino”},!
}!
!
!

Expanded'Query:'!!
{!
depTime:!2016/06/04!18:00,!
pickPos:!{lat:41.10573,!lng:16.88131}!
pickCell:!{C34x23},!
intdDest:!{“Da!Gino”},!
altDest:{“Giannino,Oasi,!Kome”,...}!
destCells:!{C30x22,!C25x20,!C40x10,!...}!
}!

Thesaurus'

Spa<al''
Grid'

Figure 13 – A query expansion example having Italian restaurant "Da Gino " as desti-
nation place is expanded into a list of cells containing alternative places for
eating.

Ranking Model. The ranking score of candidate rides is thus computed as a lin-
ear combination of a set of features, mainly derived from the flexibility preferences the
passenger can set through the mobile app: 1) a temporal tolerance indicating the delay
of the departure time of the trip respect to the preferred time indicated in the query;
2) a temporal tolerance on the possible anticipation of the trip respect to the indicated
preferred time; 3) a spatial tolerance indicating how much the passenger is willing to walk
to reach the pick-up point and/or the destination location. Other information considered
in the computation of the ride score include the trip duration and the semantic similarity
between the actual destination of the ride and the one specified in the query. Intuitively,
the duration of the trip should not be too long respect to the duration of the fastest of all
the possible rides. On the other hand, the destination venue should be, in order of pref-
erence: close to the PoI chosen in the query; another PoI in the same thesaurus category
(e.g., a different Italian restaurant when the requested venue was an Italian restaurant);
a PoI in the more abstract category of the thesaurus.

4.5.2 The Mobile Application

ComeWithMe has two different profiles of users: the driver, which offers rides, and the
passenger which seeks for rides. The ride offers were extracted by a dataset of real car
trajectories collected in the Tuscany regions. The database corresponds to a set of data
with 44.278 trips, made by 5.048 users moving by car in the Tuscany. This dataset has
been provided by OctoTelematics7 company which installed a GPS device on cars for an
insurance company.
7 https://www.octotelematics.com/
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The passenger interface allows the user to do ride request for a given destination, as
shown in Figure 14. Once the required information is filled in, the user can submit the
query and see the ranked list of rides offer.

In Figure 14, we see on the left our query example representing a user asking for a ride
in the city of Pisa to go to the “Bella Napoli” pizzeria located in “via del Borghetto”. The
query specifies also the temporal tolerance (delay 30 minutes or anticipate 30 minutes)
from the desired departure time at 19.00 and the spatial tolerance indicating the maximum
distance the passenger is willing to walk (up to 600 meters).

ComeWithMe returns, for each query, a ranked list of rides where the best options
are shown on the top. In our test dataset, during the specified temporal window (from
18:30 to 19:30), we have a total of 276 routine trips, 23 of which spatially matches the
query from the pickup point to at least one “Pizzeria” among the 121 in the dataset. Since
each trip can pass through many cells where “pizzeria” places are located, the ride search
engine retrieves and ranks a total of 156 rides to “pizzeria” alternative destinations (see
Figure 14 on the right). Observing the results of the query, we notice that the first two
rides are to the intended pizzeria “Bella Napoli”, while other destination are “Panuozzo”
and “La Greppia”.

The passenger can select a ride from the ranked list and visualize some information
about the driver and other details about the ride (e.g. the pickup address and time, the
destination place, the estimated arrival, etc). Once the user selected and confirmed a ride,
ComeWithMe notifies the driver about the upcoming request. Symmetrically, as shown in
Figure 15, a driver can see the list of passenger requests and she can select one to visualize
the details. From the details interface the driver can accept or decline the request, she
can call the passenger, start a chat and visualize the trajectory on the map.
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Figure 14 – Passenger Interface.

Figure 15 – Driver Interface.
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4.6 Final Considerations
This chapter introduced and discussed the Retrieval phase of the Activity-Based Ride
Matching algorithm (ABRM). The ABRM algorithm is aimed at matching ride requests
with ride offers reaching alternative destinations where the intended user activity can be
performed. Experiments conducted on two large semi-synthetic datasets recording mobil-
ity demands and the the categories of POIs visited (extracted from Foursquare checkins
and made publicly available to favor the reproducibility of our results) showed that ABRM
can boost to up 54.69% the percentage of ride request satisfied with compatible ride of-
fers with respect to traditional destination-oriented ride sharing. Since the number of ride
sharing opportunities provided by ABRM can be very large we proposed and analyzed
in detail how the candidate ride offers can by ranked in order to better meet user expec-
tations or to enforce their pro-environment behaviors in order to maximize the beneficial
impact of carpooling on the environment in terms of 𝐶𝑂2 emissions saved.

Furthermore, we introduce ComeWithMe, which is a carpooling system offering al-
ternative destinations designed upon the ABRM algorithm, thus boosting the number
of available rides. The proposed prototype has been implemented to meet these features
showing promising results.
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5 Inferring transportation demands for large
events using social media

Large event such as important music festival, or sports matches, motivate thousands
of people to go to a specific location at a given time interval. A large event in fact
requires a careful transportation planning to facilitate the attendees’ arrival to the event’s
location. For such reason, often the event organizers provide to the participants dedicated
transportation services as van or bus shuttles to supply the demand of rides.

By using social media, a common way of inferring the presence of users at events
is considering the location associated with their media posts: the geotag, or “check-in”,
indicates the user presence at the time of the event at the event location. We observe,
however, that this approach suffers from two drawbacks. The first drawback is that a
small number of social media users enable the geotagging of their posts (in Twitter the
percentage of geotagged posts is reported at about 2% (LEETARU et al., 2013; SLOAN et

al., 2013)). Geotagged media posts represent a very sparse data source. For this reason,
learning attendance prediction classifiers based on sparse data becomes extremely difficult.
Another limitation is that the geotagged posts give as a clue about the positive attendance
cases only, other means to derives the negative cases would be necessary. The second
drawback of using only geolocated posts is that they represent the actual presence of the
user at the event but not the intention of the user to participate in the event. Thus, the
classifiers built using such sparse data would have a limited capacity to generalize and to
infer the attendance of the users before or after the event. Indeed, we aim at predicting
not only current attendance, but also the user participation in the event before and after
the event.

Thus, given the attention to popular events reflected in social media, we want to
classify user posts discussing an event on the basis of the actual attendance of the user to
the event to enable or enhance several practical applications, not only in ride sharing, but
also, for example, of targeted advertising and mobility management. From this analysis,
we want to derive the key point of our investigation: “Is it possible to infer past, current
and future user attendance to large events through posts on social media to forecast the
demand of rides?”. Therefore, by inferring the future attendance, we can predict the users
who will attend the event and potentially will need transportation services to reach the
event’s location. While, by inferring current and past attendance, we want to be able to
understand who were the users who moved to the location of the event. These two latter
subsets can support future transportation planning for the next editions of the event. The
analysis of past transportation demands is a valuable input for transportation planners.

In order to present the proposed investigation this chapter is organized as follows:
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Section 5.1 introduces our approach for classifying attendance and the features used to
train suitable classifiers. Section 5.1.3 discusses the research questions addressed in this
topic. In Section 5.2 the accuracy of each classifier is reported and analysed. In Section
5.3, we provide an example application of the deployed classifier for transport planning,
while Section 5.4 provides concluding remarks.

5.1 Classifying Event Attendance
In the real-world, an event is something that occurs in a certain place during a particular
interval of time. The location where the event occurs can be associated with its geographi-
cal coordinates (<lat, long>), while the temporal duration, which may vary from minutes
to days or weeks, can be represented by a time window between a start time 𝑡𝑠𝑡𝑎𝑟𝑡 and
an end time 𝑡𝑒𝑛𝑑. In this work, we are interested in large events with thousands of par-
ticipants. It is customary that such events have an associated entity in the most popular
social media platforms (e.g. a Twitter account, a Facebook page), as well as a way of
identifying discussions about them through the mentions of one or more event identifiers
𝑖1, . . . 𝑖𝑛, e.g., the event name, its acronym, some official or popular hashtags, etc.

A social media post by a user 𝑢, may contain text, links, emoticons, photos and/or
videos (depending on the specific social network), as well as the timestamp at which the
post was created and a social component representing the relations of 𝑢 with other users
(likes, followers, retweets, etc). In addition, some social networks permit the optional
enrichment of the post with geotags, giving the <lat, long> position of the user when the
post is made.

We define an event-related post 𝑝 as any post that mentions one or more event iden-
tifiers and is thus possibly related to the specific event being considered. We distinguish
these event-related posts as occurring before the event – when posted in a date before 𝑡𝑠𝑡𝑎𝑟𝑡,
during the event – when posted between 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑, and after the event – when posted
after 𝑡𝑒𝑛𝑑. Hereinafter, we will simply use the generic term posts to refer to event-related
posts.

Our intuition is that the nature of event-related posts from attendees differ depending
on when the posts are created. For instance, posts created before the event may express
the users’ intention to participate, or their regret for not being able to attend the event or
regarding ticket sales. In contrast, posts published during the event may contain brief live
reports from the event itself by the participating users, while non-attendees may express
regrets for not being there, or comments about the coverage of the event on traditional
or social media channels. After the event, attendees may share their opinions about the
event, for example wishing to return to the event soon, while non-attendees may hope to
participate in the next edition of the event. In Section 5.1.1, we illustrate these behaviors
by providing some real-world examples of event-related posts. Later, in Section 5.2.4, we



Chapter 5. Inferring transportation demands for large events using social media 56

validate these behaviors by analyzing the expressions most commonly used by users to
positively or negatively convey event attendance.

Our work aims at understanding if these weak and noisy expressions of interest occur-
ring in event-related posts can be exploited to identify the users who are likely to attend
an event and distinguish them from those users that participate actively in the discussion
about the event in social media but are not planning to attend it. In this last category
we include user accounts directly linked to the event organization, as well as sponsors,
advertisers and spammers. We propose to use supervised machine learning approaches to
train binary classifiers that can automatically distinguish between posts of attendees and
non-attendees. In order to consider the temporal dimension, we instantiate our attendance
classification problem in three different tasks for the prediction of user attendance on the
basis of posts published before, during, or after the date of the event.

5.1.1 Illustrating classification tasks Before/During/After the event

We argue that the types of posts made by users before, during or after an event tend to
differ, and different classification models are necessary to attain an accurate classification
of these posts.

Before Task: classifying attendance before the event. This task aims at pre-
dicting the attendance of a user at the event based on his or her shared posts at a time
before the event. The classifier in this case exploits the content of posts where the users
implicitly or explicitly express their intention to attend or not the event. Sometimes they
explicitly share their intention to go with the words “Go” or “Packing” showing their
intention to attend the event. Other common posts that might be considered as members
of the negative class are those created by organizers, sponsors, or ticket sellers to provide
general information about the event or advertisement and marketing material.

During Task: classifying attendance during the event. The aim of this task
is to identify the users who, in the time window of the event, express their presence at
the event. Very often, social media users express their actual participation in the event
by posting photos or making comments about their experience during the event. On the
other hand, non-attendees post general comments about their regrets for not attending
or missing the event, or general comments without an explicit attendance meaning.

After Task: classifying attendance after the event. After the event is concluded,
people often comment, express their opinions or publish memories and photos on social
media. By inspecting such posts, it is often possible to obtain a clear determination of
the user’s attendance of the past event (positive) or not (negative).

Figure 16 shows some illustrative examples taken from our dataset related to a
large UK music event (the Creamfields festival, see Section 5.2.1). From the content of
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Figure 16 – Examples of tweets posted before, during and after the event.

the tweets reported in the figure, we can easily distinguish the positive (in green) and
negative (in red) attendance cases for the before, during and after tasks.
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5.1.2 Feature space for event attendance classification

We exploit four different categories of features. Each category reflects a different dimension
of social media, namely the: textual, temporal, social, and multimedia dimensions.

• Textual features model the textual content of the post. We used two different meth-
ods for representing text. The first method uses a Bag of Words (BoW) model. In
this case, the textual content is represented as the bag of unigrams, bigrams and
trigrams occurring in the post. In order to reduce sparsity, we apply lemmatization
to group together the different inflected forms of a word. Thus each lemma and
each sequence of two and three adjacent lemmas are considered as features. Even if
lemmatization reduces sparsity, still the BoW model cannot capture semantic rela-
tions among different lemmas. Let us consider for example a post with the words
‘prepared to go’ and another using the words ‘ready to leave’ instead. The same
intention to attend the event is expressed in both the posts, but the BoW model
does not capture such similarity. Later, we thus propose to encode the text in the
posts by exploiting word embedding techniques based on word2vec (MIKOLOV et al.,
2013). These techniques permit to reduce the dimensionality of the textual feature
space and, at the same time, to capture text semantics. In addition to the previous
features, we consider some additional features modeling textual metadata. Specifi-
cally, these features indicate the number of words, hashtags, mentions, URLs and
emoticons occurring in the post. We discuss the text encoding techniques used and
study the improvements achieved upon the BoW representation in Section 5.2.4.

• Temporal features represent the time of the post with respect to the event. The
temporal dimension is needed to distinguish the classification task (before, during
and after), but also to quantify how temporally distant from the event the post
has been published. We simply represent time as the number of days separating the
posting date from the event date(s). Such temporal feature is obviously meaningful
only for the before and after classification tasks.

• Social features characterize the social profile of the posting user. Our social features
include the number of followers, the number of followees and the ratio between them.
An insight here is that users with a high number of followers and a relatively low
number of followees are typically sponsors, organizers or VIPs that may advertise
the event but do not necessarily attend it. Normal users targeted by our attendance
classification task are indeed generally characterized by a lower number of followers
and a more balanced followers/followee ratio.

• Multimedia content features identify whether a post has any multimedia content,
such as a photo, video or a link to any visual content posted in other social networks
such as Facebook or Instagram. Indeed, this feature group is motivated by the fact
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that attendees may express their actual or past participation by posting photos or
videos during and after the event. In addition, we observe that sponsors commonly
use multimedia content before the event as a marketing tool.

It is worth noting that, in order to generalize the classification models learned, we
removed the event identifiers {𝑖} from the textual content of all of the posts. The gener-
alization aspect of our classifiers is studied in Section 5.2.2.2.

Table 5 – Features used split by category.

Textual Temporal Social Multimedia
unigram

bi/tri-grams num:photos
num:words num:days before num:followers num:videos
num:hash num:days after num:followees bool:Youtube

num:mentions ratio:(num:followers, bool:Facebook
num:URLs num:followees) bool:Instagram

num:emoticons bool:Foursquare
word embeddings

Table 5 summarizes the features used by our classifiers grouped using the above
four categories. The word embedding features are detailed in Section 5.2.2.2.

5.1.3 Research Questions

The overall aim of this work is to classify social media posts, shared by users before,
during and after an event, as indicative of attendance or not attendance. We detail this
classification objective into three tasks depending on the temporal aspect of the post:
before, during and after. We study the behavior of the approach and, specifically, of the
three classifiers, driven by three research questions. These questions will be answered in
a number of experiments presented in Section 5.2. The research questions that we tackle
are the following:

RQ1: How accurate are our event attendance prediction classifiers? This research ques-
tion is discussed in details in Section 5.2.2 where we describe the accuracy results obtained
by training supervised machine learning algorithms on an annotated dataset of media
event-related posts. We will compare the obtained results with one baseline and discuss
the performance achieved on the three different classification tasks. We introduce and
discuss three more methods to improve the obtained accuracy. First, in Section 5.2.2.1,
we conduct a feature ablation study to identify the feature groups that most contribute to
attain high prediction accuracy. We will discover that the textual features are the most
important, especially for the before and after tasks. This drives us to the study of word
embedding as a way to reduce and enrich the feature space for this group of features. Sec-
tion 5.2.2.2 discusses the improvement attained thanks to the word2vec encoding of post
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texts. Finally, we conclude the study of RQ1 by assessing in Section 5.2.2.3 the accuracy
of the classifiers on a further, objective, ground truth built by considering geo-located
tweets.

RQ2: How do these obtained classifier models generalize across events? The possibility
of deploying an event attendance classifier even when training data for the specific event
is not available is highly desirable. In fact, some events do not have a large representation
in social media or the cost of building a new training dataset could be unaffordable.
The ability of our classifiers to generalize across events is thus of great importance. This
research question is discussed in Section 5.2.3 where we assess how our models generalize
across events by applying the model learned on one event to the other and vice-versa.

RQ3: What are the most meaningful expressions posted by users to express their at-
tendance to a given event? This question is examined in Section 5.2.4 where we discuss
the results of our analysis of co-occurrence and frequency of the most common terms in
the posts classified as “attendance” or “not attendance”.

5.2 Experimental Results
We instantiate our attendance classifiers in a scenario that considers two very popular
music festivals held in the UK. Before addressing RQs 1-3, we first describe the setup of
our experiments.

5.2.1 Experimental Setup

Our experiments are conducted using Twitter posts about two premier UK music festivals:
Creamfields 2016 (held in Daresbury, UK, on August 25th-28th), and VFestival 2016 (held
in Chelmsford/South Staffordshire, UK, on August 20th-21st). These events are notable
in their size, with Creamfields in particular attracting over 70,000 attendees in 2016,
and hence likely to be well-reflected in social media. Usually people publish event-related
posts using specific hashtags and/or terms that refer to the event. We thus collected
tweets related to these events by using the Twitter APIs for selecting tweets including the
terms ‘vfest’ or ‘v21st’ and ‘Creamfields’1. Tweets generated by the official accounts of
the events (@vfestival and @Creamfields) were removed from the collections, since they
are not relevant for our tasks.

For each respective event, the collected tweets are split on the basis of their times-
tamp into three different disjoint sets: posts made before, during or after the event. To
1 Specifically, in order to cover the time periods before, during and after the considered events, we used

the Twitter Streaming APIs from August 10𝑡ℎ to September 15𝑡ℎ 2016. Moreover, we used the Twitter
REST APIs to collect the available tweets related to the events posted from March 1𝑠𝑡 to September
15𝑡ℎ 2016.
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Table 6 – Creamsfield and VFestival datasets statistics.

Dataset Task Labeled tweets pos% neg% Tweets Users Geo-located tweets
Before 460 48.3 51.7 24,963 11,700 164

Creamfields During 460 39.1 60.9 25,625 15,884 309
After 460 69.3 30.7 29,801 17,850 425

Before 460 47.6 52.4 10,754 6,513 2
VFestival During 460 37.4 62.6 4,873 3,285 75

After 460 67.2 32.8 26,027 14,744 58

generate our training set, we randomly sample (without replacement) 460 distinct tweets
for each task from each dataset, thus 1,380 tweets in total for each festival. Then, for each
of the three tasks, a binary label is assigned to each tweet (positive class: a user who in-
tends/is/has attended, and vice-versa for the negative class). The labelling task has been
performed by a single assessor to keep the process consistent. On the other hand, we are
aware of the limitations and risks of such human labelling process. In our specific case, we
fortunately had the possibility of objectively validating the accuracy of our classifiers and
the correctness of the adopted labelling procedure on a second, objective ground truth
built from posts of georeferenced users. This analysis is reported in Section 5.2.2.3.

The human assessment is based on the textual or visual content of the tweet, which
allows to establish any explicit evidence of attendance at the event. Any other kind of
interpretation (advertisement, announcements, newsletter, sponsor’s posts, sale of tickets,
general information, regrets or impossibility, etc.) is labeled as negative. Table 6 reports for
each dataset and task the number of labeled tweets, the respective percentage of positive
and negative labeled tweets, the total number of tweets collected, and the number of
distinct active users.

Specifically, we collected the tweets by geo-located users posted during the time win-
dow of the event and within an area of 3 km radius from the center of the event, gathering a
total of 309 tweets from the Creamfields dataset and 75 tweets from the VFestival dataset.
These tweets correspond to positive cases of attendance for the during task. Starting from
these geolocated tweets, we identified a total of 189 distinct users for Creamsfield and 57
unique users for Vfestival who posted those tweets. We also gathered the event-related
tweets posted by these users before and after the events. For the Creamfields event, we
have 164 tweets before the event and 425 tweets after the event. For the VFestival dataset,
we have 2 tweets before the event and 58 tweets after the event. All these tweets are in-
cluded in a second test set as positive cases of pre- and post-events attendance. Table 6
summarizes in the ‘geo-located tweets’ column the number of tweets collected for each
task by following the above procedure.

Our experiments are conducted using a 5-fold cross validation, while preserving the
proportion of positive and negative instances in each fold. For each task and dataset,
we train five different classification models, namely: Logistic Regression (LR), Gradient
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Boosting Decision Trees (GBDT), Random Forest (RF), Support Vector Machine (SVM)
and Naive Bayes (NB). All these algorithms, chosen among those that consistently deliv-
ering state-of-the-art performances in text classification tasks (AGGARWAL; ZHAI, 2012),
are available in the scikit-learn library2 used to train the classifiers. We use a grid search
to tune the hyperparameters of the algorithms (BERGSTRA et al., 2011). Specifically: For
LR, we consider L1 and L2 regularization and sweep the penalty parameter C in the
range of {0.01,0.1,1,10,100,1000}; For GBDT and RF, we vary the number of trees in
the range of {50, 80, 100, 120, 150}, while the learning rate and maximum tree depth
vary in the ranges of {0.01, 0.05, 0.1} and {2,3,4,5}, respectively; For SVM, we use the
RBF(Radial Basis Function) kernel with 𝛾 varying in {0.0001, 0.001, 0.01} and C in
{0.01,0.1,1,10,100,1000}. For the vectorization and lemmatization of the textual content
of the posts, we have used the scikit-learn library and the Natural Language Toolkit3.

In the following, we report the performances achieved by our classifiers. Given that
the classes are well-balanced in our labeled tweets, and for the peculiarities of the problem
addressed both false positives and false negatives have a similar importance, we focus our
analysis on classification accuracy values, which directly measure the number of correct
predictions made divided by the total number of predictions made. For every classifier, we
thus use the setting of hyperparameters that maximizes accuracy by using cross validation.
Initially, we report accuracy, precision, recall, F1 and AuC for all classification models
trained with the BoW text features. Afterwards, since, as we will show, the LR and
GBDT classification models consistently outperform RF, SVM and NB, for the other
experiments conducted, we report only the classification accuracy attained using these
two classification approaches. The results of this work have been published in (LIRA et

al., 2017; LIRA et al., 2019). The complete results of all classification models used in the
experiments are reported in the Appendix of this thesis.

5.2.2 Results: RQ1

In this section we address RQ1 - studying the accuracy of our event attendance prediction
classifiers.

Table 7 reports the accuracy, precision, recall and F1 measure of our 5 classifiers on
each dataset and classification task (before, during, after). For the classifiers reported in
this table, all feature groups are used, with the textual content of posts represented ac-
cording to the BoW model. On analysing the results in Table 7, we find that our GBDT
classifiers attain the highest performance for all the tasks on the VFestival dataset with
an accuracy and precision always greater than 80%. For posts made during the event,
GBDT obtained an accuracy of ∼82% when classifying the attendance of the users at the
Creamfields event and also when inferring past attendance at VFestival. The performance
2 <http://scikit-learn.org/>
3 <https://www.nltk.org/>

http://scikit-learn.org/
https://www.nltk.org/
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Table 7 – Classification effectiveness using BoW features.

Dataset: Creamfields Dataset: VFestival
Task Model Acc. Prec. Recall F1 AuC Model Acc. Prec. Recall F1 AuC

LRbow 0.868 0.870 0.870 0.868 0.887 LRbow 0.761 0.744 0.762 0.748 0.764
GBDTbow 0.874 0.846 0.912 0.878 0.873 GBDTbow 0.809 0.802 0.768 0.784 0.808

Before NBbow 0.587 0.540 0.977 0.696 0.600 NBbow 0.535 0.506 0.977 0.667 0.555
RFbow 0.826 0.760 0.941 0.840 0.830 RFbow 0.778 0.860 0.648 0.735 0.772
SVMbow 0.607 0.591 0.599 0.593 0.606 SVMbow 0.578 0.568 0.471 0.514 0.573
LRbow 0.741 0.766 0.538 0.602 0.690 LRbow 0.626 0.600 0.614 0.494 0.606
GBDTbow 0.817 0.830 0.616 0.708 0.790 GBDTbow 0.802 0.850 0.582 0.688 0.763

During NBbow 0.628 0.619 0.117 0.193 0.537 NBbow 0.530 0.429 0.737 0.525 0.571
RFbow 0.620 0.600 0.028 0.053 0.514 RFbow 0.680 1.000 0.145 0.248 0.573
SVMbow 0.641 0.584 0.300 0.394 0.580 SVMbow 0.670 0.800 0.157 0.257 0.566
LRbow 0.813 0.810 0.958 0.880 0.762 LRbow 0.809 0.812 0.932 0.868 0.808
GBDTbow 0.780 0.792 0.948 0.864 0.640 GBDTbow 0.815 0.824 0.902 0.862 0.767

After NBbow 0.702 0.711 0.962 0.818 0.538 NBbow 0.696 0.709 0.929 0.804 0.574
RFbow 0.713 0.708 1.000 0.829 0.532 RFbow 0.689 0.684 1.000 0.812 0.527
SVMbow 0.707 0.706 0.991 0.824 0.527 SVMbow 0.707 0.699 0.994 0.820 0.556

achieved with GBDT on the VFestival dataset for the after task is also good with an
accuracy of nearly ∼82%. LR outperforms GBDT for all metrics on the after task at the
Creamfields, while it attains a better recall in other two cases (during and after tasks for
VFestival).

In summary, for RQ1, the accuracy results reported in Table 7 show that our approach
is reasonably effective at classifying user attendance. We observe that GBDT on average
outperforms the other algorithms and LR achieves the best accuracy in one of the six
cases.

5.2.2.1 Feature groups that are most effective in attaining high prediction accuracy

In this section, we explore in more details the previous results by analysing the contri-
bution of the feature groups defined in Section 5.1.2: multimedia, social, temporal and
textual feature groups. Our objective is to understand which feature group deserves fur-
ther study because it provides the largest benefit to attain a high prediction accuracy.

To evaluate the contribution of each group of features, we conduct an ablation study.
Specifically, we remove each group of features one at a time from the datasets used to train
and test the classifiers. For such analysis, we use the GBDT classifier, which, according to
the results reported in Section 5.2.2, on average achieves the highest performance. Table 8
reports the results of the ablation study sorted by accuracy for each of the before, during
and after classification tasks. In the table, each row denoted with ‘All - feature_group’
indicates that the features of group ‘feature_group’ were ablated (removed).

On examination of Table 8, we find that the multimedia features are very important
for the during task, particularly for VFestival, where a ∼5% drop in accuracy is observed
when the multimedia feature group is ablated (0.802 → 0.757). Indeed, in this dataset, we
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note that 0.85%, 22% and 27% of the tweets posted, respectively before, during and after
the event have some multimedia content. For Creamfields, the corresponding percentages
tweets containing multimedia content are 0.4%, 8% and 20%, respectively.

Next, we note that the social features are useful for the before task in Creamfields and
for the after task on VFestival, where their exclusion implies a loss of accuracy. We note
that these features allow to identify (negative) advertisement posts coming from event
sponsors or news providers, all of whom have a high number of followers.

The temporal features are important when classifying attendance after the completion
of the event. We note that low values for this feature (i.e. a shorter difference between
the dates before or after the event) are indicative for identifying the actual attendees
of the event, while higher values (i.e. more distant from the event) are indicative for
identifying non-attendees. This is reasonable when observing the real-world, where people
who participated in events discuss them on social media only for a short period of time,
usually for a few days before or after the event. Sponsors and news providers, instead,
tend to post about the event regularly over a longer time period for marketing purposes.

Indeed, by manually inspecting the posts in our training datasets for the tasks before
and after, we found that more than 82% of the distribution of posts published by attendees
is concentrated in a time interval of 5 days before and 3 days after the event, while the
posts of sponsor accounts are more uniformly distributed over time.

Users express their attendance at an event through the post text in different ways
depending on the period (before, during, after). Hence, as highlighted in Section 5.1.1,
the textual features extracted from the posts vary depending on the task. As we can see
from the table, textual features are the most important for the before and after tasks. For
these tasks, in both datasets, once we exclude those features, the accuracy drops tightly.
Furthermore, in all experiments, keeping the textual features allows the models to achieve
good accuracies, close to the optimal cases. Before the event, the users mention often their
participation by posting about the purchase and delivery of their tickets (feature ‘ticket’
is among the most important for both Creamfields and VFestival), or when they express
their anxiety to attend the festival (e.g. features such as ‘wait’ and ‘excited’). After the
event, the users share their experience, how they feel after the event and state willingness
to come back to the next edition.

Lastly, the meta textual content (number of words, hashtags, mentions, URLs and
emoticons) only exhibit an importance for attaining accurate classifications for the before
task of the VFestival. For the same festival and for the after task, these features introduce
noise into the GBDT model, since the exclusion of this set of features marginally improves
the accuracy of the model.

Finally, as a summary of our findings, we observe that while each of the feature
groups has some impact for at least one of the tasks, we highlight again the usefulness
of the textual features for the prediction of attendance for all the tasks. Indeed, when
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Table 8 – Accuracies of the GBDT models by ablating groups of features.

Creamfields VFestival
Task Group Accuracy Group Accuracy

All 0.874 All 0.809
All - Temporal 0.874 All - Social 0.809

Before All - Multimedia 0.874 All - Textual_meta_feats 0.809
All- Textual_meta_feats 0.865 All - Multimedia 0.794
All - Social 0.863 All - Temporal 0.792
All - Text 0.606 All - Text 0.656
All 0.817 All - Textual_meta_feats 0.806
All - Textual_meta_feats 0.815 All 0.802

During All - Social 0.811 All - Text 0.802
All - Multimedia 0.804 All - Social 0.791
All - Text 0.667 All - Multimedia 0.757
All - Social 0.793 All 0.815
All - Textual_meta_feats 0.787 All - Textual_meta_feats 0.811

After All 0.780 All - Temporal 0.809
All - Temporal 0.780 All - Social 0.807
All - Multimedia 0.769 All - Multimedia 0.781
All - Text 0.689 All - Text 0.724

this group is ablated from the model, the classification accuracy decreases remarkably on
both datasets. This observation suggests to attempt improving the results by enriching
the group of textual features. This research direction is investigated in the next section.

5.2.2.2 Classification accuracy improvement from word-embedding features

In the context of RQ1, the analysis in this section aims to investigate new features that
could enhance the performance of our classifiers. Thus far, in our models, the textual
content of posts has been represented as BoW features. One drawback of BoW is that
different words have different representations, regardless of their semantic meaning (BA-

LIKAS; AMINI, 2016; MCDONALD; MACDONALD; OUNIS, 2017). For example, while the
words ‘buy’ and ‘purchase’ have similar meanings (synonyms), in a BoW representation
they are as similar as two antonyms. This is not desirable for our attendance classifiers that
aim to capture the semantic of the users’ posts. To tackle this problem, we use word2vec,
a neural net learning technique that embeds words from a vocabulary into a vector space,
which represents the linguistic contexts of words - namely, that words that have similar
meanings are represented by close vectors in the embedding space. Specifically, we use
the gensim 4 implementation of word2vec and a word2vec model trained on part of the
4 <https://radimrehurek.com/gensim/models/word2vec.html>

https://radimrehurek.com/gensim/models/word2vec.html
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Google News dataset (about 100 billion words)5. This model contains 300-dimensional
vectors for 3 million words and phrases. We also conducted initial experiments using a
word2vec model trained on a large Twitter corpus6 (about 400 million twitter microposts).
However, since the results of the experiments conducted using the Google News model
slightly outperformed those with the model trained on the Twitter corpus, we report only
the former in the following experiments.

We represent each post with a single 300-dimensional vector obtained by combining
the vectors that represent all the terms occurring in the post. This combination can be
done with different aggregation functions. We explore the use of the ‘sum’, ‘mean’ and
‘max’ aggregation functions and also the concatenation of these three representations that
we denote by mix. The aggregation functions ‘sum’, ‘mean’ and ‘max’ have the intuitive
meaning of building a single vector for a post by computing the sum (respectively, mean,
max) among the 300 dimensions in the embedding of all the posted words. Differently,
the mix representation of the post consists in simply using the concatenation of the above
three aggregated vectors.

Table 9 reports the performances achieved by the GBDT and LR models trained: (a)
using BoW features (denoted by bow); (b) using word2vec features (denoted by w2v) in-
stead of BoW; (c) using both the BoW and w2v features (denoted by both). For these
experiments the other groups of features (social, temporal and multimedia) are also in-
cluded in the training sets. For the sake of simplicity, the table reports only the best
results achieved by a given algorithm with the corresponding sets of features. For exam-
ple, the notation GBDTboth

mean means that the GBDT classifier is trained using both BoW
and w2v features and that the w2v representation of the post is obtained using the mean
aggregation function. Similarly, LRw2v

sum means that the LR model was trained using w2v
features aggregated with sum.

We observe that, in general, the use of w2v features improves the classification accu-
racy compared to the sole use of BoW features (bow). Indeed, for the Creamfields dataset,
the use of embedding features improves the accuracy and precision figures up to ∼91%.
It is worth noting that the improvement in Accuracy is higher with LR. Indeed, when
the w2v textual features are used, either jointly with BoW (both) or not (w2v), the LR
classifiers improve by +4.5%, +7.9% and +2.6% the Accuracy on the before, during, and
after tasks on the Creamfields, respectively. Further large improvements are achieved on
the VFestival dataset where we observe +5.2%, +16.1%, +4.9% in accuracy for the three
tasks. Moroever, the GBDT models attain increased accuracy when using the embed-
ding features, although they are more remarkable for the after task. Here, we observe
improvements up to ∼5% (0.78 → 0.833 on Creamfields and 0.815 → 0.861 on VFestival)
when using only the w2v features. On closer inspection, we see that the w2v features
5 <https://github.com/mmihaltz/word2vec-GoogleNews-vectors>
6 https://github.com/loretoparisi/word2vec-twitter

https://github.com/mmihaltz/word2vec-GoogleNews-vectors


Chapter 5. Inferring transportation demands for large events using social media 67

enhance the classification accuracy almost independently of the tasks and algorithm used
to train the model. Compared to the results using only the BoW features, the Accuracy
is most increased for the before (0.874 → 0.913 for Creamfields) and after (0.815 → 0.861
for VFestival) tasks. In these tasks, as discussed above, the textual features have high
importance for accurate classification, thus the embedding features provide meaning in
a lower-dimensional space that allows for more accurate models compared to the other
features.

Table 9 – Accuracy of the GBDT and LR classifiers trained with BoW, w2v and
both(BoW+w2v) features. The * indicates statistical significant differences
compared to the best classifiers using only BoW features (McNemar’s test with
95% confidence interval).

Creamfields VFestival
Task Model Accuracy Model Accuracy

LRbow 0.868 LRbow 0.761
LRw2v

mix 0.885 (+1.7%) LRw2v
mix 0.778 (+1.7%)

Before LRboth
max 0.913* (+4.5%) LRboth

sum 0.813* (+5.2%)
GBDTbow 0.874 GBDTbow 0.809
GBDTw2v

sum 0.874 (0.0%) GBDTw2v
max 0.818 (+0.9%)

GBDTboth
mean 0.872 (0.0%) GBDTboth

max 0.824 (+1.5%)
LRbow 0.741 LRbow 0.626
LRw2v

sum 0.800* (+5.9%) LRw2v
mix 0.772* (+14.6%)

During LRboth
mix 0.820* (+7.5%) LRboth

mix 0.787* (+16.1%)
GBDTbow 0.817 GBDTbow 0.802
GBDTw2v

max 0.789 (0.0%) GBDTw2v
max 0.823* (+2.1%)

GBDTboth
mix 0.796 (0.0%) GBDTboth

max 0.826* (+2.4%)
LRbow 0.813 LRbow 0.809
LRw2v

sum 0.824* (+1.1%) LRw2v
mix 0.850* (+4.1%)

After LRboth
sum 0.839* (+2.6%) LRboth

sum 0.858* (+4.9%)
GBDTbow 0.780 GBDTbow 0.815
GBDTw2v

max 0.830* (+5.0%) GBDTw2v
mix 0.861* (+4.6%)

GBDTboth
max 0.833* (+5.3%) GBDTboth

mix 0.854* (+3.9%)

5.2.2.3 Assessment of accuracy on the geo-located tweets

As a further evaluation of the classifier accuracy, we test the models with the second
ground truth dataset composed by geo-located tweets. Recall that the fraction of geo-
located tweets is very low, thus making any approach based on geo-location only not
feasible for addressing our event attendance classification problem. However, since the
geo-location confirms the presence of the user at a given place, we can exploit the geo-
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Table 10 – Accuracy of the classifiers on the geo-located tweets.

Creamfields VFestival
Task Model Accuracy Model Accuracy
Before LRw2v

mean 0.854 LRboth
max 0.500

GBDTbow 0.726 GBDTw2v
sum 1.000

During LRboth
mean 0.958 LRboth

sum 1.000
GBDTbow 0.964 GBDTw2v

sum 1.000
After LRw2v

sum 0.934 LRboth
mean 0.844

GBDTbow 0.960 GBDTboth
sum 0.879

located tweets in our dataset to further assess the validity of our approach on a second
independent test set having no intersection with the training set. In addition, this second
experiment permits to indirectly validate the labeling procedure adopted to generate our
ground truth.

Table 10 shows the performances of our best performing LR and GBDT models on
this second test set. We measured very high accuracies, always higher than 85%, on each
classification task. Accuracy reaches 96% and 100% on the during task for the Creamfields
and VFestival events, respectively. Since the above classification accuracies are higher than
those measured on the other test sets, we manually inspected the geo-located tweets in
these second test sets. We observed that for both festivals, for the during task, about 90%
of the geo-located tweets contain some multimedia content. The percentage of during posts
including multimedia content in the original ground truth were instead much lower: 8%
and 22% for the Creamfields and VFestival events, respectively. As discussed in Section
5.2.2.1, multimedia features are among the most important for the during task.

The high classification accuracy achieved on the georeferenced posts validates the
correctness of the adopted labeling procedure. Finally, it strongly confirms the quality of
our attendance prediction classifiers and the validity of our approach based on the content
of tweets only.

5.2.3 Results: RQ2

Our second research question (RQ2) aims to determine how the classifiers can generalize
to other similar events (in our case, music festivals). Indeed, while our experiments are
conducted over two datasets representing two music festivals, these events have some spe-
cific differences. For instance, the VFestival event is a music festival for pop music, while
Creamfields is an electronic music festival, with distinctly different genres of performing
artists. Therefore, these events may attract different kinds of attendees and may lead to
different discussions on social media, reflecting different ways of expressing attendance at
the event.
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In order to address RQ2, we conduct experiments by applying the model trained on
one dataset to classify the labeled samples of the other dataset and vice-versa. The results
of these experiments are shown in Table 11. We observe that our classifiers attain rea-
sonable performances even across different events. The classifiers trained on the VFestival
dataset achieve an accuracy ∼87% (LRw2v) and ∼81% (GBDTboth) for the prediction of
attendance before and after the Creamfields event respectively. Accuracy however drops
to ∼75% (GBDTboth) for the during task. One possible reason for this drop is that for
the VFestival training set the most relevant features for the classification during the event
are the posts with photos and Instagram, while for the Creamfields dataset, the textual
features were observed to be the most useful (as discussed in Section 5.2.2.1).

Table 11 also shows that the LR and GBDT models achieve the highest accuracies
when using only w2v features or both BoW and w2v features. The table also shows the
improvement of GBDT and LR compared to the use of only BoW features. As expected,
we note that the word embedding features substantially boost the performance of cross-
event classification with respect to models using BoW features only. Indeed, when training
the models with the Creamfields dataset and testing it on VFestival for the after task,
the GBDT accuracy goes from 71.7% with GBDTbow to 78.9% with GBDTw2v ( +5.6%
improvement compared to the GBDTbow). Moreover, LR reaches 78.7% with LRboth w.r.t.
72.0% with LRbow (+6.7 %). Answering RQ2, we can conclude that our classifiers, trained
on one event and tested on the other, generalize well, particularly benefiting by the ab-
straction from the specific event provided by the use of w2v features.

Table 11 – Generalization ability of the classifiers: models trained on Creamsfields are
tested on VFestival and vice-versa. The * indicates statistical significant dif-
ferences compared to the best classifiers using only BoW features (McNemar’s
test with 95% confidence interval).

Training/Test Creamfields/VFestival VFestival/Creamfields
Task Model Accuracy Model Accuracy
Before LRboth

mix 0.796 (+1.3%) LRw2v
mix 0.865* (+1.3%)

GBDTbow 0.780 (0.0%) GBDTbow 0.824 (0.0%)
During LRboth

max 0.702* (+3.2%) LRboth
sum 0.741* (+9.2%)

GBDTw2v
max 0.724* (+1.3%) GBDTboth

max 0.743* (+3.2%)
After LRboth

mix 0.787* (+6.7%) LRbow 0.787 (0.0%)
GBDTw2v

sum 0.789* (+5.6%) GBDTboth
mean 0.807* (+3.7%)

5.2.3.1 Improving the robustness of the classifiers.

We now conduct experiments to understand if the generalizability of our classifiers can
be enhanced. In doing so, we use the annotated dataset to understand if a given term
occurring in a post is more indicative of attendance or not attendance. To this end,
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we count the occurrences of all the terms in the positive or negative posts of our gold
standard, and consider the normalized frequency of the term in the respective classes as
an indicator of whether a word is more likely to be associated with event attendance
or not. For example, a term occurring 10 times in the gold standard, 4 times in posts
expressing attendance and 6 times in negative ones, is scored 0.6 for attendance and
0.4 for not attendance. By aggregating (with ‘sum’, ‘mean’ and ‘max’) such values for
each term occurring in a post, we can generate two additional features to be used for
the classification tasks. Furthermore, the concatenation of the ‘sum’, ‘mean’ and ‘max’
representations is considered (denoted as ‘mix’), generating then six additional features
(i.e. two features for each aggregation). However, these values are available only for terms
occurring in the training set and posts to be classified can include “out-of-vocabulary”
(OOV) terms not in this set (KAEWPITAKKUN; SHIRAI; MOHD, 2014).

The word2vec features provide us with a solution to address the OOV issue. Specifi-
cally, given a term 𝑡 occurring in a post but not present in the training set, we compute its
embedding vector 𝑣 and retrieve the top-𝑘 most similar vectors (using Cosine similarity
(LEVY; GOLDBERG; DAGAN, 2015)) for which the feature is available from the training
set. The feature for 𝑡 is finally computed as the average of the features associated with
the 𝑘 closest vectors weighted by the cosine similarity. The intuition behind this idea is
that terms with similar embedding vectors have also similar semantics. We indicate this
approach as Normalized Frequency Vectors (NFV), and report the results of experiments
where we varied the value of 𝑘 in the range of 1, 3 and 5.

Table 12 reports the accuracy performances for the LR and GBDT classifiers exploiting
the NFV features measured across the datasets. In the table, we report the improvement
in accuracy achieved over the best results reported in Table 11 and the operators used for
aggregating the embedding vectors and the NFV features.

From Table 12, we observe that the NFV features enhance the accuracy of our atten-
dance classifiers up +2.4% and +3.5%, on the VFestival and Creamfields events, respec-
tively. However, the during task still attains the lowest classification accuracies compared
to the other two tasks. Furthermore, we see from the table that, for all of the tasks, the
accuracy is higher when training uses the VFestival datasets, thus suggesting some over-
fitting of the models trained on the Creamfields data. In general however, for most of the
tasks and models, we observe statistically significant performance improvements (McNe-
mar’s test, 𝑝 < 0.05), corroborating our expectations of the usefulness of the NFV features
for the robustness of the classifiers. To better understand how the context and seman-
tic behind the embedding features can help the classification, we investigate in the next
section how the semantic similarity among terms actually contribute to the robustness of
the models.
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Table 12 – Robustness of the classifiers exploiting the NFV features. Models trained on
Creamsfields are tested on VFestival and vice-versa. The * indicates statis-
tically significant improvements with respect to the best accuracy figures re-
ported in Table 11 (McNemar’s test with 95% of confidence interval).

Train/Test Creamfields/VFestival VFestival/Creamfields
Task Modelaggv,nfv(top) Accuracy Modelaggv,nfv(top) Accuracy
Before LRboth

max,sum(3) 0.800 (+0.4%) LRboth
max,sum(3) 0.872* (+0.7%)

GBDTw2v
mix,mean(3) 0.793 (+0.4%) GBDTw2v

sum,sum(1) 0.861 (+2.6%)
During LRboth

max,max(1) 0.707 (+0.5%) LRboth
sum,max(1) 0.757* (+1.6%)

GBDTw2v
max,max(1) 0.746* (+2.2%) GBDTboth

mean,mix(1) 0.778* (+3.5%)
After LRboth

mix,max(1) 0.811 (+2.4%) LRw2v
mean,sum(3) 0.811* (+2.4%)

GBDTboth
sum,sum(5) 0.811* (+2.2%) GBDTboth

sum,mean(5) 0.817* (+1.0%)

5.2.3.2 Contribution of word embedding features

The experiments above show that the robustness of our classifiers across events is en-
hanced when word embedding features capturing text semantics for positive and negative
attendance are introduced.

To analyze this effect, we consider the twenty five most important terms (BoW fea-
tures) occurring in the Creamsfields and VFestival datasets and used by the GBDT classi-
fiers trained on the corresponding dataset for each one of the three tasks. Term importance
is determined by the gain in the loss function when the node of a decision tree is split
on that feature (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). Then, for each task, the terms
occurring in both the datasets are filtered out since they are non-relevant for our analysis.
Finally, the Cosine similarity between the embedding vectors of each pair in the Cartesian
product of the remaining terms is computed.

The results of this investigation are summarized in Table 13, which reports the top-
10 pairs of terms with the highest similarity. From the table, it can be seen that the
two datasets include different terms that are likely to be relevant for the classification
of the post and whose semantic is captured by the word embedding. For example, the
word ‘purchase’, which appears in some posts of Creamfields but not in the VFestival
dataset, has a similar embedding vector to the word ‘sell’ which, in turn, appears in the
VFestival dataset but not in Creamfields: both words are mainly used in posts related
to the purchase of the tickets for the events. For the during task, we can observe a high
similarity between the embedding of the words ‘excite’ and ‘amaze’ and also ‘excitement’
and ‘atmosphere’: in both cases, the words mainly represent the attendees’ experiences
during the event. Similarly for the after task, where we can see the similarity between the
words representing periods of time as ‘week’ and ‘weekend’ used mainly to refer to the
past event.

In summary, in addressing RQ2, we find that the w2v and NFV features introduced al-
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low us to exploit the semantic similarity of text, thus improving the classification accuracy
and the robustness across events of our classifiers.

Table 13 – Per task top-10 most similar pairs of terms (according to the w2v vectors) in
the sets of disjoint terms occurring in the Creamsfields and VFestival datasets.

Before During After
Creamsfields VFestival Sim. Creamsfields VFestival Sim. Creamsfields VFestival Sim.
purchase sell 0.656 excite amaze 0.545 week weekend 0.713
want go 0.452 wait watch 0.432 week day 0.655
ready wait 0.432 back rest 0.410 hear listen 0.649
camp tent 0.431 excitement atmosphere 0.382 ago years 0.505
want wait 0.419 go rest 0.347 leeds justin 0.453
ready unprepared 0.402 jealous sick 0.345 week years 0.433
dj buzzin 0.391 excitement experience 0.341 week time 0.408
work go 0.354 go jump 0.318 ago old 0.393
want bring 0.315 buzz atmosphere 0.317 go miss 0.389
ready finally 0.300 go watch 0.317 good little 0.389

5.2.4 Results: RQ3

Our last research question (RQ3) asks if it is possible to identify expressions commonly
used by users on social media to express attendance (or not) to an event. By using our
whole corpus of gathered tweets, we conduct a co-occurrence analysis of the words written
in the user’s posts. First, by using our most accurate classifiers for each event and task,
we classify all of the unlabeled tweets into (a) attendance and (b) not attendance. Then,
for each class, task and event, we compute term co-occurrences to find the set of words
most frequently co-occurring in posts of the same class, task and event. The results of this
analysis are shown in Table 14 for the positive attendance class, and in Table 15 for the
negative one. For the sake of simplicity, in both tables we report only the top-5 sets of 3
words ordered by their co-occurrence frequency. Note that to compute the co-occurrence
frequencies, we do not consider the order in which the words occur. It is also worth noting
that in this analysis all of the numeric values have been replaced with the symbol ‘#’.

Looking at Table 14, for the before task, we clearly notice the user’s expectation to
attend the event when they count down the days, reflected by a high occurrence of the
set “{#, days, until}”, or when they mention future participation, supported by the high
frequency of the set “{be, next, week}”. This is illustrated for example in the following
posts found in the Creamfields dataset: (a) “I’ll be at Creamfields this time next week
and I cannot wait” ; (b) “This time next week I’ll be in Creamfields, what an absolute
blinding feeling” ; (c) “Can’t believe Creamfields is next week”. For the during task, the
co-occurrence of the words has a much lower frequency. This is justified by the slightly
lower amount of tweets in this temporal slot and also by the higher diversity of manners in
which people express their current attendance: for example, they sometimes post photos
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with very few words to describe their personal experience. For the after task, we can see
a similar style of posts for both events, expressing pleasure and happiness for attending
the event: “weekend, best, had”, and desires to relive such experience, commonly written
by using the expression “take me back”.

On the other hand, the sets of words reported in Table 15 help us to devise common
expressions for the negative attendance case. In particular, for the before task and in both
datasets, we notice a high correlation among the words ‘pounds’ and ‘ticket’ associated
with the ticket cost and time periods like month, weekend or day. Indeed, these words
are mostly used in advertisements tweets of sponsors and ticket sellers, which are not
considered to be actual attendees. For the during task, we notice in the Creamfields
dataset common expressions of people regretting not being able to attend the event: (a)
“Couldn’t be anymore gutted that I’m not going to Creamfields, cry cry cry” ; (b) “gutted
not to be back at Creamfields this year” ; (c) “A part of me is very gutted not to be heading
to Creamfields tomorrow”. For the during and after tasks, we observe that many non-
attendance posts contain terms related to the performance of famous artists. Those posts
are, in general, written by sponsors, newspapers and fans not necessarily attending the
festival.

Table 14 – Top-5 most frequent 3-grams in the positive attendance class.

Creamfields VFestival
Task Words Freq. Words Freq.

{be, next, week} 253 {#, days, until} 414
{next, week, time} 214 {#, days, till} 59

Before {be, next, time} 178 { be, so, excited} 59
{be, week, time} 173 {#, only, hours} 50
{#, days, work} 170 {weekend, so, excited} 44
{#, more, sleep} 68 {park, chelmsford, highlands} 45
{up, line, great} 40 {you, so, proud} 21

During {#, uk, kingdom} 31 {you, much, thank} 14
{#, uk, united} 31 {so, park, hylands} 14
{we, here, come} 29 {down, via, chilling} 13
{my, best, life} 377 {weekend, best, had} 302
{me, back, take} 317 {me, back, take} 207

After {my, weekend, best} 312 {my, weekend, best} 174
{last, time, week} 283 {my, best, life} 147
{was, last, time} 233 {weekend, good, such} 134
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Table 15 – Top-5 most frequent 3-grams in the negative attendance class.

Creamfields VFestival
Task Words Freq. Words Freq.

{#, day, pounds} 7894 {#, tickets, pounds} 141
{#, pounds, monthdate} 3328 {#, weekend, pounds} 140

Before {#, pounds, warrington} 3316 {#, ticket, pounds} 127
{#, monthdate, warrington} 3316 {#, pounds, sale} 118
{#, day, camping} 3122 {#, camping, pounds} 118
{festival, man, dies} 345 {justin, is, performing} 174
{be, not, going} 283 {great, john, newman} 120

During {be, not, gutted} 234 {justin, bieber, staffordshire} 116
{festival, music, dance} 223 {justin, not, bieber} 112
{going, was, wish} 196 {you, so, love} 101
{#, mix, essential} 288 {justin, monthdate, performing} 400
{#, cirez, essential} 233 {justin, performing, staffordshire} 271

After {#, cirez, mix} 232 {justin, united, kingdom} 262
{cirez, mix, essential} 209 {justin, monthdate, staffordshire} 260
{festival, man, dies} 177 {justin, performing, united} 259

5.3 Example Application: Transport Planning
As an example use case for our proposed classifiers, we aim to evaluate the geographic
areas with a higher potential demand for transportation services to an event. We analyse
the hometown of users who have been predicted to attend a given festival by our classifiers.
This analysis can be useful to support strategies for the allocation of shuttle buses or ride-
sharing services to the event, or to forecast possible traffic congestions towards the event.
We conduct this analysis upon our Creamfields dataset, the largest in terms of users,
thereby allowing for a more realistic analysis compared to the VFestival dataset.

Starting from the event-related posts, we aim to infer the users who participated in
the festival. For this purpose, it is important to note that often users on social media share
more than one post related to a given event. Each post can be classified as attendance
or not attendance depending on the content. There is no guarantee that all event-related
posts of the same user will be consistently classified as attending or not attending. We
therefore need to infer, given a number of posts of the same user, possibly not uniformly
classified as attendance or not attendance, if the user is actually attending or not the
event.

For the purpose of this example application, we trained our attendance classifiers
on the Creamfields labeled data. We applied the best model for each task according to
Table 9 to classify the whole dataset of about 90k tweets. We were able to predict as
positive a total of 35,239 tweets. Distinguishing users attending or not attending from a
number of - possible discordant - posts can be done in several ways, for example, through
majority voting. We propose here a slightly more sophisticated method taking into account
the confidence of the used classifier in labelling each post. Intuitively, a more confident
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attendance prediction should count more than a less confident one. Therefore, during
the classification process, for each post, we keep the difference of the confidence scores
between the attendance and non-attendance classes. Notice that this value ranges from
-1 to 1, where 1 means a higher confidence score for the attendance class, and -1 means
the lowest attendance score. Then, taking all the classified posts or users, we compute
the mean of the difference of the confidence scores. Our intuition is to capture the most
discordant users regarding attendance. As a final decision, we have two cases: (a) users
with a positive mean have attended the event (b) users with zero or negative mean have
not attended the event.

We perform two kinds of analysis. The first analysis is aimed at inferring future partic-
ipation in the event based on the posts shared before the event. In the second analysis we
also consider the posts shared during and after the event. The idea here is to use historical
data to identify cities with high amount of attendees to support future strategies in trans-
portation and advertisement for the next editions of the event. The first analysis is based
only on the posts published before the event. The idea here is to predict which are the
geographical areas with the highest quantity of attendees who may potentially be needing
transportation services to reach the event location. We recall that Creamfields is held
in Daresbury, England, located between Liverpool and Manchester. We apply the above
approach considering only the posts published at least one day before the event. From
the quantity of inferred attendees, we collected, using the Twitter REST API, a total of
3856 users’ profiles containing details of the users’ hometown within their Twitter pro-
files. Figure 17 shows the spatial distribution of the inferred attendees of the Creamfields
festival.

As expected, the results indicate a highest amount of participants in the surroundings
of the event location as in the cities of Manchester and Liverpool. However, we can also
identify other considerable amount of predicted attendees located in further cities such
as London, Newcastle, Peterborough, Glasgow and Edinburgh. Intuitively, the higher the
quantity of attendees, the higher the potential demand for transportation services in that
area. Therefore, such information could be useful for generating an optimized planning of
bus routes across cities and this can provide efficient transportation services to the event.
Ride-sharing applications could also take advantage from the identification of groups of
predicted attendees. However, we leave such applications as possible future work.

For our second analysis, we run the best classifiers obtained in the generalization ex-
periment for each of the three tasks on the relative sets of posts, namely before, during
and after Our intention here is to identify cities with high amount of attendees to support
future transportation and marketing strategies for the next editions of the event. Here,
we use the approach described above to label a user as attendee or not, based on his/her
posts. Table 16 summarizes the amount of inferred attendees by city. We have identified
a total of 10788 inferred participants to the event that have also their hometown infor-
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Figure 17 – Spatial distribution of inferred participants to the Creamfields festival (red
point) from posts published before the event.

Table 16 – Distribution of the before, during and after inferred attendees at the Cream-
fields festival by hometown.

City # attendees City # attendees City # attendees
Aberdeen 57 Edinburgh 263 Northampton 53

Birmingham 96 Glasgow 221 Nottingham 112
Bristol 114 Hull 62 Plymouth 86

Cambridge 53 Leeds 160 Sheffield 125
Cardiff 85 Leicester 88 South Wales 109

Coventry 67 Liverpool 732 Sunderland 55
Derby 53 London 456 Swansea 106

Doncaster 83 Newcastle 312 Warrington 150

mation displayed on their public Twitter profiles. Through the results, we can observe
that the previous analysis, predicting the most transportation demanding areas, approxi-
mates well the final distribution of attendees by city. We note that Liverpool, Manchester
and the surrounding area of the “North of England” present a high number of attendees.
The Scottish cites of Edinburgh and Glasgow might require long-distance transportation
services due to the distance of these cities to the event’s location.
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Figure 18 – Heatmap with distribution by hometown of the inferred attendees at the
Creamfields festival (red point).

We provide a visualization of the results on a heat map in Figure 18. We also visualized
the airports that connect cities from Ireland and The Netherlands to the UK, in blue.
Looking at this visualization, we observe red areas (i.e. the hot regions) with a higher
density of hometowns of the inferred festival attendees. We observe that, as expected,
most of the dense areas are close to the event location. However, we also note some small
dense areas located in cities outside the UK, such as the Irish cities of Dublin, Cork and
Belfast and the Amsterdam and The Hague Dutch cities. The attendees from these areas
might first fly to airports in the UK.

5.4 Final Considerations
In this chapter, we proposed a classification approach to infer event attendance from users
media posts with the final objective of estimating transportation demand. A key detail
of our proposed approach is that our inference is done by classifying the non-geotagged
content of the users’ posts. By not relying on geotagged posts we can analyze a much
larger number of posts to predict user attendance to a given event. The large basis of
users covered by our approach makes it a great candidate to enable innovative services
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and applications in the field, for example, of transportation planning and crowd safety
management. We structured the attendance inference into three distinct classification
tasks to identify the attendance from the posts published before, during and after the
event.

We trained machine-learning classifiers using tweets related to two large music festivals
in the UK, and we evaluated their accuracy, precision and recall. The results discussed in
Section 5.2.2 show that our approach provides remarkably good performance, exhibiting
∼91% accuracy at classifying users that have indicated their intention to attend the
event. Our analysis showed that word embedding features contribute importantly to the
performance. Additionally, we highlighted the most informative group of features and
assessed the accuracy of our classifier even on an objective test set constituted by geo-
tagged tweets. In Section 5.2.3, we analyzed the generalization of the learned models across
the datasets and propose additional word embedding features to improve cross-dataset
performance. Furthermore, in Section 5.2.4 we investigated the common expressions used
by social media users to express (or not) attendance to an event. Finally, in Section
5.3, we proposed an example of application of our methodology in event-related mobility
demand. The application derives the rides demand for the Creamfields festival based on
the inferred attendees and exhibits the number of potential demand by cities.
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6 Conclusions

Ride sharing consists in the sharing of a vehicle by two (or more) persons who move
along similar itineraries and time schedules. The prearrangement process to match the
supply and demand is a key characteristic of ride sharing. Many works in literature have
proposed ride sharing solutions to avoid single occupancy vehicle trips. In this context,
there are two main types of services for ride sharing: matching agencies and transportation
service operators. The matching agencies exploit different kinds of matching algorithms
to find ride matchings between individual car drivers and passengers,while transportation
service operators provide ride sharing services identifying and supplying the demand of
rides with their own vehicles and drivers, such as airport shuttles. This thesis has re-
search contributions in both these scenarios: we propose a ride matching algorithm for
alternative destinations and propose a classification method to identify potential users for
a transportation service towards large events.

Along the first direction, Chapter 4 introduced the Activity-Based Ride Matching
algorithm (ABRM). The ABRM has shown optimistic results to improve the efficacy of
traditional ride sharing systems. Most of the ride matching algorithms in literature are
typically based on the spatial and temporal aspects of the rides. However, the key idea
of the ABRM is to consider also rides to alternative destinations based on the intended
activity of the passenger. The ABRM is motivated by recent studies about human mobility
that highlight the individual tendency of the people to be regular or not in choosing the
places where to perform some activities. Thus, the investigations presented in this chapter
focus in the following research question: “Can the usage of ride sharing systems be boosted
by exploiting alternative destinations based on the intended activity of the passenger?”.

The contributions in the second direction are presented in Chapter 5, where we in-
troduced an approach to exploit the content of non-geotagged posts on social media to
infer the user attendance to large events. This approach is motivated by the fact that
large events cause the movement of thousands of people to a specific location, requiring
a proper transportation plan to supply the demand of rides. However for large events
such as music concerts and football matches, the identification of ride demands might not
be a straightforward process. The key research question of this chapter is: “Is it possible
to infer past, current and future user attendance to large events through posts on social
media to forecast the demand of rides?”.

The remaining sections of this chapter are organized as follows. Section 6.1 summarizes
the main contributions of this thesis, Section 6.2 discusses some research limitation of the
studies made in this work and Section 6.3 gives possible directions for future research.
Finally, Section 6.4 presents the list of publications produced during this PhD programme.
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6.1 Thesis Contributions
In the following we discuss the contributions of this thesis:

Improving the efficacy of ride matching algorithms. In Chapter 4 we proposed
the ABRM algorithm which is aimed at matching users’ ride requests with ride offers
reaching alternative destinations where the intended user activity can be performed. Most
of the existing methods, although very sophisticated, suffer from limitations in the use of
semantic information, such as the passenger’s intended activity. Therefore, our approach
can be seen as complementary to the existing methods, providing a different perspective.
Here, the intended activity is considered as the target of the ride sharing instead of a
fixed destination. Our assumption is that having alternative destination increases the ride
sharing possibilities. We investigated this assumption in our experiments. We exploited
two large datasets of Foursquare containing check-ins performed in the cities of New York
and Tokyo and built two semi-synthetic datasets representing disjoint sets of Ride Requests
and Ride Offers called: NYC and TKY. In Section 4.4.3, the experiments conducted on
these datasets showed that ABRM can boost in average up to 54.69% the efficacy on
finding compatible ride matching with respect to traditional fixed destination-oriented
ride sharing. Section 4.2.1 proposed four features to rank the matchings returned by
ABRM, namely: time delay, distance to walk, ride duration and ride length. With these
features we intend to model how much the rides to alternative destinations can meet the
requirements specified in the user request. Section 4.4.4 discusses the contribution of these
ride features for the evaluation of the qualities of the rides retrieved by the proposed
matching algorithm. Specifically, for the TKY dataset and the time delay feature, the
results showed that even when we consider matches with only 10 minutes delay, more
than half of the requests could potentially be satisfied toward an alternative destination.
Another interesting analysis discussed in Section 4.4.6 shows the activities that most favor
the ride sharing in the alternative destination scenario. We observed, for NYC, a boost on
ride sharing possibilities for activities related to “Italian Restaurant” and “Bar” with an
improvement of +58.02% and +57.86% respectively. In turn, for TKY, activity “Food &
Drink Shop” achieves the highest boost with +64.28%. This insight confirm the intuition
that entertainment or eating are in general the activities that can most benefit from the
proposed approach. In the last part of the chapter, we introduce ComeWithMe which is a
carpooling system offering alternative destinations designed upon the ABRM algorithm.

Identifying transportation demands for large events. In Chapter 5 we pro-
posed a classification approach to infer attendance to events from the users’ media posts.
A key detail of our proposal is that our inference is done by classifying the non-geotagged
content of the users’ posts. Thus, we can analyze a much larger number of posts to pre-
dict user attendance to a given event compared to the sparse geotagged posts. The large
base of users covered by our approach enables innovative services and applications like
transportation planning and crowd safety management. We structured the attendance
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inference into three distinct classification tasks to identify the attendance from the posts
published before, during and after the event. We trained machine-learned classifiers using
tweets related to two large music festivals in the UK, and we evaluated their accuracy, pre-
cision and recall. The results discussed in Section 5.2.2 show that our approach provides
a remarkably good performance, exhibiting ∼91% accuracy at classifying users who have
indicated their intention to attend the event. Our analysis showed that word embedding
features contribute saliently to the performance of our classifiers. Additionally, we high-
lighted the most informative group of features and assessed the accuracy of our classifier
even on an objective test set composed of geo-tagged tweets. In Section 5.2.3, we analyzed
the generalization of the learned models across the datasets and proposed additional word
embedding features to improve cross-dataset performances. For example, when classifying
the posts published after the event, by including both the word embedding and Normalized
Frequency Vectors (NFV) features, the Gradient Boosting Decision Trees (GDBT) algo-
rithm has increased up to +7.8% (from 73.3% to 81.1%) its generalization ability when
trained on Creamfields dataset and tested on VFestival dataset. Furthermore, in Section
5.2.4, we investigated the common expressions used by social media users to express (or
not) attendance to an event. Finally, in Section 5.3, we presented an example of applica-
tion of our methodology in event-related transportation. This proposed application aimed
to evaluate the geographic areas with a higher potential demand for transportation ser-
vices to an event. We analyse the hometown of users who have been predicted to attend
a given festival by our classifiers. This analysis can be useful to support strategies for the
allocation of shuttle buses or ride sharing services to the event, or to forecast possible
traffic congestion towards the event.

The next section discusses some limitation of these studies.

6.2 Research Limitations
In the following, we discuss some limitations of this thesis:

As shown in Chapter 4, the Activity-Based Ride Matching algorithm (ABRM) has
boosted the amount of ride matchings by considering also rides to alternative destinations
to supply the ride requests. However, some limitations may exist in this study. Indeed, the
analysis exhibited in Chapter 4 were limited to study the improvement in efficacy of the
proposed algorithm, we did not evaluate the efficiency of the algorithm. Another point
that requires further investigation is that our analysis is based on the assumption that
users might be flexible in their mobility habits and provided interesting insights on the
extent to which a ride sharing service could take advantage of this spontaneous attitude.
We notice, however, that an ad-hoc study with real users would be necessary to have a
reliable measure of the actual acceptance of ride offers towards alternative destinations.
Another research limitation of our work it that we do not deal with the routing allocation
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problem neither consider the number of seats available in the cars offering the rides.
In turn, the Chapter 5 introduced a machine learning approach for identifying trans-

portation demands for large events. The proposed approach exploits the content of non-
geotagged posts on social media to infer the attendance of large events. Although the
approach is suitable to different kind of events (e.g. sportive event, music festival, scien-
tific conferences, etc) we have assessed its prediction performance conducting experiments
in only one context of event: music festivals. Therefore, a further investigation would be
necessary mainly to understand how effective are the embedding features to improve ac-
curacy when classifying event attendance in different context of events and how good
the models can generalize. Therefore, further study would be necessary to validate the
performance of our approach applied to different kind of events.

The next section discusses some possible future work of the contributions of this thesis.

6.3 Future Work
The studies performed in this thesis open up a wide spectrum of improvement oppor-
tunities. We thus discuss possible directions for future research according to the main
contributions of this thesis:

Improving the efficacy of ride matching algorithms. The ABRM algorithm
largely increases the number of candidate rides by considering a set of alternative desti-
nations. The ABRM algorithm opens space for research on efficient approaches for ride
matchings retrieval considering now the new proposed semantic dimension: the intended
user’s activity. The ABRM algorithm could be extended to consider also the returning of
the passenger to the pick-up point. For example, frequently occurs that a person can move
from her home to a destination, for instance, a supermarket, and she may want to return
back home after perform her intended activity. An interesting point to be studied as future
work is to refine the evaluation method taking into account the individual willingness to
change the destination to take a ride. In fact, the suggestion for the alternative destina-
tion could be refined considering user’s preferences. We would like to use a ranking-based
solution which orders the potential ride-offers on the basis of a weighted combination of
a set of features modeling the different aspects of user satisfaction. An advantage of this
solution is that we can investigate more in depth the effect of user flexibility in accepting
changes involving the following dimensions: the desired departure time, the distance from
the pick up point and, as novelty, the recommendations of the alternative destinations.
Thus, the idea here is that the ride matching with higher ranking scores should attain
higher user satisfaction. For this purpose, we also aim at building machine-learned ranking
(MLR) models which is the application of machine learning, typically supervised, in the
construction of ranking models for information retrieval systems. In this case, the train-
ing data consists of ride requests and ride offers matching them together with relevance
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degree of each match. Furthermore, some opened question concerning data privacy must
be addressed to apply the ABRM in current ride-sharing systems, such as Lyft and Uber.
For the ABRM algorithm to achieve a more refined ranking model, it would be valuable
to collect users’ preferences with respect to the places that the users visited to perform
specific activities. However, this is sensitive information requiring a careful review of data
privacy.

Identifying transportation demands for large events. As future work, we aim to
improve the results of our classifiers using information extracted from the visual content
of the published photos and videos. In fact, our proposed approach has explored mainly
the textual features through the use of embedding to derive new useful features to the
classifiers. However, further investigation of how media content could be further explored
to extract relevant features for inferring attendance are still necessary. The analysis of
visual content is a growing trend in social media and could be better explored in our
classification process through the use of deep learning techniques. We also plan to use
deep learninig techniques for our proposed classification task. The idea is to use a bigger
amount of data, collected from different kinds of events, to enable a comparison between
shallow models and deep models. Another open research question to be investigated is:
“how to use learned models to predict attendance to other events, especially not similar
events”? One path could be to explorer transfer learning techniques for using knowledge
obtained while solving one problem and applying it to a different but related problem.
For example, the knowledge gained while learning how to predict attendees for music
festival could be useful when classifying attendees for sportive events. A similar situation
occurs when classifying posts containing textual content from different languages. For
example, when using the knowledge learned from event-related posts written in English
to predict attendance of posts written in Spanish. Furthermore, we aim to further explore
our methodology in the context of ride sharing. In this context, a plausible research
question could be: “how can we take advantage of predicting the attendees of a event to
propose groups of carpooling with optimal affinity between the individuals”? Here, the
affinity represents the interesting in common topics. Thus, one idea is to use our classifiers
to recommend individuals to join their trips to the event matching users with similar social
media preferences. The objective of grouping the user could represent the optimization
of two simultaneous function: minimize the total number of vehicle used to transport the
attendees to the event and maximize the enjoyability experienced by the users traveling
together.

The next section lists the scientific publications achieved.
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6.4 List of publications
In this section, we list all the references to published papers produced in the course of the
Ph.D. programme. The list of the papers is organized according to the two main research
objectives of this thesis.

1) Improving the efficacy of ride matching algorithms.

• Boosting Ride Sharing With Alternative Destinations. Vinicius Monteiro
de Lira, Raffaele Perego, Chiara Renso, Salvatore Rinzivillo, Valéria Cesário Times.
IEEE Trans. Intelligent Transportation Systems, Volume 19. pp. 2290-2300 (2018).

• The ComeWithMe System for Searching and Ranking Activity-Based
Carpooling Rides. Vinicius Monteiro de Lira, Chiara Renso, Raffaele Perego,
Salvatore Rinzivillo, Valéria Cesário Times. In Proceedings of the 39th International
ACM conference on Research and Development in Information Retrieval, pp. 1145-
1148. (ACM SIGIR) Pisa, Italy July 17 - July 21, 2016.

• Searching and Ranking Activity-based Carpooling Ride Chiara Renso, Sal-
vatore Rinzivillo, Valéria Cesário Times, Vinicius Monteiro de Lira, Raffaele Perego.
Extended abstract in 7th Italian Information Retrieval Workshop (IIR), Venice, Italy
May 20 - May 31, 2016.

• Activity-based Carpooling with ComeWithMe. Vinicius Monteiro de Lira,
Salvatore Rinzivillo, Valéria Cesário Times, Chiara Renso, Raffaele Perego. 24th
Italian Symposium on Advanced Database Systems, pp. 142-149, (SEBD) Ugento,
Lecce, Italy, June 19-22, 2016.

• ComeWithMe: An activity-oriented carpooling approach. Vinícius Monteiro
de Lira, Valeria Cesario Times, Chiara Renso, Salvatore Rinzivillo. IEEE 18th In-
ternational Conference on Intelligent Transportation Systems, pp. 2574-2579, ITSC
2015.

2) Identifying transportation demands for large events.

• Event attendance classification in social media. Vinicius Monteiro de Lira,
Craig Macdonald, Iadh Ounis, Raffaele Perego, Chiara Renso, Valéria Cesário Times.
Information Processing & Management Journal, IPM, Elsevier, v. 56, n. 3, p.
687–703, 2019.

• Exploring Social Media for Event Attendance. Vinicius Monteiro de Lira,
Craig Macdonald, Iadh Ounis, Raffaele Perego, Chiara Renso, Valéria Cesário Times.
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Proceedings of the 2017 IEEE/ACM International Conference on Advances in So-
cial Networks Analysis and Mining 2017, pp. 447-450, ASONAM 2017, Sydney,
Australia, July 31 - August 03, 2017.
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Table 17 – Ride requests 𝑄 and Points of Interest (POIs) distributions by place category
for the NYC dataset.

Category 𝑄 POIs Category 𝑄 POIs

Afghan Restaurant 3 3 Internet Cafe 4 3

African Restaurant 18 14 Italian Restaurant 1,315 595

American Restaurant 2,681 716 Japanese Restaurant 239 174

Animal Shelter 21 12 Jewelry Store 91 60

Antique Shop 25 11 Korean Restaurant 233 113

Aquarium 11 2 Latin American Rest. 206 106

Arcade 85 47 Laundry Service 450 256

Arepa Restaurant 13 6 Library 286 101

Argentinian Rest. 11 10 Light Rail 350 64

Art Gallery 352 257 Mac & Cheese Joint 14 7

Art Museum 274 34 Malaysian Restaurant 18 14

Arts & Crafts Store 114 73 Mall 898 86

Arts & Entertainment 20 19 Market 92 3

Asian Restaurant 305 182 Medical Center 2,310 867

Athletic & Sport 487 226 Mediterranean Rest. 92 67

Australian Rest. 49 17 Mexican Restaurant 1,468 374

Automotive Shop 464 247 Middle Eastern Rest. 109 71

BBQ Joint 346 105 Military Base 9 8

Bagel Shop 595 209 Miscellaneous Shop 667 309

Bakery 899 372 Mobile Phone Shop 13 14

Bank 1,832 671 Molecular Gastro Rest. 7 3

Bar 11,242 2488 Moroccan Restaurant 8 5

Beach 341 76 Mosque 20 14

Beer Garden 318 56 Motorcycle Shop 1 1

Bike Rental/Share 12 5 Movie Theater 1401 139

Bike Shop 134 70 Moving Target 435 149

Board Shop 16 11 Museum 131 45

Bookstore 534 82 Music Store 54 24

Bowling Alley 133 41 Music Venue 1,027 192
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Category 𝑄 POIs Category 𝑄 POIs

Brazilian Restaurant 63 28 Nail Salon 65 48

Breakfast Spot 368 115 Newsstand 7 9

Brewery 88 18 Nightlife Spot 14 10

Bridal Shop 27 14 Other Great Outdoors 2,734 687

Burger Joint 1,047 295 Other Nightlife 78 58

Burrito Place 163 27 Outdoors & Recr. 173 50

Café 918 347 Office Supplies Store 261 88

Cajun/Creole Rest. 40 10 Park 3,015 536

Camera Store 31 8 Parking 281 97

Campground 159 13 Performing Arts Venue 464 126

Candy Store 118 49 Peruvian Restaurant 12 11

Car Dealership 29 13 Pet Service 2 3

Car Wash 42 15 Pet Store 260 105

Caribbean Restaurant 202 112 Photography Lab 2 2

Casino 71 8 Pizza Place 1394 843

Castle 5 1 Planetarium 11 4

Cemetery 178 40 Playground 313 184

Chinese Restaurant 932 451 Plaza 1,074 135

Church 730 317 Pool 77 41

Clothing Store 2,123 996 Pool Hall 55 26

Coffee Shop 4,106 853 Portuguese Restaurant 6 6

Comedy Club 89 40 Post Office 508 189

Concert Hall 109 44 Prof. & Other Places 153 53

Convenience Store 484 147 Public Art 24 11

Convention Center 227 64 Racetrack 69 20

Cosmetics Shop 412 262 Ramen/Noodle House 208 58

Cuban Restaurant 191 66 Record Shop 94 71

Cupcake Shop 185 50 Recycling Facility 5 3

Deli / Bodega 1,621 704 Rental Car Location 41 28

Department Store 1,386 185 Rest Area 163 26
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Category 𝑄 POIs Category 𝑄 POIs

Design Studio 76 44 Restaurant 324 180

Dessert Shop 312 142 River 64 13

Dim Sum Restaurant 49 10 Salad Place 112 32

Diner 1000 321 Salon / Barbershop 896 515

Distillery 7 5 Sandwich Place 1,030 411

Donut Shop 824 203 Scandinavian Rest. 10 7

Drugstore / Pharmacy 1,753 605 Scenic Lookout 543 139

Dumpling Restaurant 23 14 Science Museum 81 18

Eastern Euro Rest. 57 29 Sculpture Garden 105 44

Electronics Store 976 244 Seafood Restaurant 379 155

Embassy / Consulate 24 20 Shop & Service 28 24

Ethiopian Restaurant 9 11 Shrine 3 3

Event Space 314 201 Ski Area 29 28

Factory 56 21 Smoke Shop 68 29

Fair 17 7 Snack Place 48 29

Falafel Restaurant 64 31 Soup Place 103 32

Fast Food Restaurant 1215 433 South American Rest. 53 34

Ferry 532 91 Sout./Soul Food Rest. 108 49

Filipino Restaurant 22 9 Spa / Massage 411 221

Financ. or Legal Ser. 28 27 Spanish Restaurant 139 103

Fish & Chips Shop 5 5 Spiritual Center 31 25

Flea Market 214 37 Sporting Goods Shop 282 105

Flower Shop 44 35 Stadium 873 76

Food 105 42 Steakhouse 220 108

Food & Drink Shop 4693 1209 Storage Facility 25 6

Food Truck 524 234 Student Center 237 42

Fraternity House 29 29 Sushi Restaurant 448 289

French Restaurant 379 181 Swiss Restaurant 8 1

Fried Chicken Joint 241 129 Synagogue 116 38

Funeral Home 57 12 Taco Place 167 67

Furniture Store 365 124 Tanning Salon 40 22
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Category 𝑄 POIs Category 𝑄 POIs

Gaming Cafe 9 6 Tapas Restaurant 93 53

Garden 94 51 Tattoo Parlor 52 42

Garden Center 23 5 Taxi 124 74

Gas Station/Garage 941 390 Tea Room 176 64

Gastropub 141 48 Temple 19 11

General Entert. 882 316 Thai Restaurant 294 177

General Travel 1195 208 Theater 591 267

German Restaurant 72 39 Thrift / Vintage Store 127 66

Gift Shop 113 79 Toy / Game Store 197 49

Gluten-free Rest. 3 4 Travel & Transport 51 8

Greek Restaurant 82 57 Travel Lounge 14 8

Harbor / Marina 164 72 Turkish Restaurant 8 8

Hardware Store 377 127 Vegetar./Vegan Rest. 251 104

Historic Site 107 46 Video Game Store 88 57

History Museum 82 37 Video Store 27 21

Hobby Shop 37 15 Vietnamese Rest. 99 54

Hot Dog Joint 178 45 Winery 15 16

Housing Development 85 50 Wings Joint 98 38

Ice Cream Shop 467 221 Zoo 97 32

Indian Restaurant 226 156
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Table 18 – Ride requests 𝑄 and Points of Interest (POIs) distributions by place category
for the TKY dataset.

Category 𝑄 POIs Category 𝑄 POIs

Afghan Restaurant 1 1 Internet Cafe 164 64

African Restaurant 4 5 Italian Restaurant 2,345 1,164

American Restaurant 354 156 Japanese Restaurant 9,365 5,555

Animal Shelter 4 5 Jewelry Store 85 53

Antique Shop 37 20 Korean Restaurant 548 406

Aquarium 92 6 Latin American Rest. 5 3

Arcade 3,662 271 Laundry Service 110 84

Arepa Restaurant 1 1 Library 709 178

Art Gallery 731 275 Light Rail 2318 83

Art Museum 378 44 Mac & Cheese Joint 2 1

Arts & Crafts Store 333 116 Malaysian Restaurant 10 5

Arts & Entertainment 15 8 Mall 6,185 473

Asian Restaurant 682 383 Market 2 3

Athletic & Sport 457 214 Medical Center 2136 1,115

Australian Rest. 23 9 Mediterranean Rest. 24 16

Automotive Shop 402 180 Mexican Restaurant 92 43

BBQ Joint 1,234 738 Middle Eastern Rest. 45 11

Bagel Shop 31 26 Military Base 130 38

Bakery 857 458 Miscellaneous Shop 3,152 853

Bank 902 537 Mobile Phone Shop 980 329

Bar 8,051 4048 Moroccan Restaurant 3 3

Beach 40 11 Mosque 6 5

Beer Garden 252 81 Motorcycle Shop 16 8

Bike Rental/Share 13 8 Movie Theater 1802 134

Bike Shop 518 171 Moving Target 122 36

Board Shop 26 8 Museum 239 57

Bookstore 4,797 632 Music Store 210 84

Bowling Alley 535 47 Music Venue 1,598 340

Brazilian Restaurant 48 8 Nail Salon 35 17
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Category 𝑄 POIs Category 𝑄 POIs

Breakfast Spot 32 19 Newsstand 5 7

Brewery 101 33 Nightlife Spot 18 19

Bridal Shop 13 13 Other Great Outdoors 2139 609

Burger Joint 888 221 Other Nightlife 299 164

Burrito Place 6 3 Outdoors & Recr. 27 20

Café 5,967 2190 Office Supplies Store 213 69

Cajun/Creole Rest. 12 6 Park 4,026 942

Camera Store 261 44 Performing Arts Venue 73 35

Campground 22 11 Peruvian Restaurant 5 4

Candy Store 264 135 Pet Service 2 2

Car Dealership 94 54 Pet Store 129 60

Car Wash 17 10 Photography Lab 18 15

Caribbean Restaurant 15 6 Pizza Place 313 168

Casino 138 62 Planetarium 24 5

Castle 11 2 Playground 638 286

Cemetery 159 47 Plaza 1,030 98

Chinese Restaurant 2,804 1,607 Pool 74 38

Church 131 50 Pool Hall 73 36

Clothing Store 2,210 1,006 Portuguese Restaurant 7 4

Coffee Shop 4,756 1,167 Post Office 884 360

Comedy Club 95 22 Prof. & Other Places 54 28

Concert Hall 1,307 110 Public Art 43 11

Convenience Store 7,360 3,177 Racetrack 214 18

Convention Center 1,958 144 Ramen / Noodle House 10,618 3,609

Cosmetics Shop 132 95 Record Shop 1,159 114

Cuban Restaurant 4 1 Recycling Facility 76 16

Cupcake Shop 30 31 Rental Car Location 47 34

Deli / Bodega 623 327 Rest Area 164 36

Department Store 3,023 185 Restaurant 2,169 1,020

Design Studio 60 38 River 295 36
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Category 𝑄 POIs Category 𝑄 POIs

Dessert Shop 690 424 Salad Place 16 11

Dim Sum Restaurant 50 29 Salon / Barbershop 626 414

Diner 1,350 561 Sandwich Place 340 94

Distillery 6 6 Scandinavian Rest. 12 3

Donut Shop 373 134 Scenic Lookout 285 62

Drugstore / Pharmacy 1,236 693 Science Museum 142 24

Dumpling Restaurant 617 113 Sculpture Garden 265 54

Eastern Euro Rest. 22 15 Seafood Restaurant 345 179

Electronics Store 8,397 353 Shop & Service 194 89

Embassy / Consulate 110 56 Shrine 1,535 341

Ethiopian Restaurant 3 2 Ski Area 1 1

Event Space 1,658 349 Smoke Shop 533 135

Factory 147 59 Snack Place 112 74

Fair 70 26 Sorority House 3 4

Fast Food Rest. 3,698 1078 Soup Place 121 40

Ferry 198 47 South American Rest. 6 1

Financ. or Legal Serv. 12 7 Spa / Massage 672 321

Fish & Chips Shop 6 3 Spanish Restaurant 157 105

Flea Market 6 4 Spiritual Center 271 59

Flower Shop 59 53 Sporting Goods Shop 641 227

Food 194 147 Stadium 1,322 59

Food & Drink Shop 6,766 2136 Steakhouse 626 334

Food Truck 87 33 Storage Facility 5 7

Fraternity House 13 3 Student Center 143 25

French Restaurant 392 255 Sushi Restaurant 1,274 592

Fried Chicken Joint 301 148 Swiss Restaurant 1 2

Funeral Home 33 17 Synagogue 5 2

Furniture Store 894 247 Taco Place 7 6

Gaming Cafe 77 24 Tanning Salon 18 4

Garden 302 75 Tapas Restaurant 35 23

Garden Center 3 3 Taxi 52 17
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Category 𝑄 POIs Category 𝑄 POIs

Gas Station / Garage 542 224 Tea Room 151 93

Gastropub 83 33 Temple 1,171 316

General Entert. 831 193 Thai Restaurant 398 162

General Travel 378 104 Theater 519 108

German Restaurant 101 42 Thrift / Vintage Store 79 36

Gift Shop 466 150 Toy / Game Store 1,064 125

Gluten-free Rest. 1 1 Travel & Transport 104 27

Harbor / Marina 42 17 Travel Lounge 47 11

Hardware Store 394 67 Turkish Restaurant 13 10

Historic Site 919 229 Vegetar./Vegan Rest. 49 36

History Museum 163 53 Video Game Store 274 36

Hobby Shop 3,679 295 Video Store 1,071 197

Hot Dog Joint 25 8 Vietnamese Rest. 77 39

Housing Development 5 3 Winery 29 27

Ice Cream Shop 161 107 Wings Joint 149 56

Indian Restaurant 2,130 705 Zoo 93 25
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Table 19 – Complement to Table 9 for Creamfields : accuracy achieved by all classifiers
trained with BoW, w2v and both BoW+w2v features. The * indicates statis-
tical significant differences compared to the best classifiers using only BoW
features (McNemar’s test with 95% confidence interval).

Dataset Creamfields
Task Model Accuracy Precision Recall F1-score AuC

GBDTbow 0.874 0.846 0.912 0.878 0.873
GBDTw2v

sum 0.874 (0.0%) 0.869 0.874 0.871 0.874
GBDTbow

mean 0.872 (0.0%) 0.865 0.869 0.867 0.872
LRbow 0.868 0.870 0.870 0.868 0.887
LRw2v

mix 0.885 (+1.7%) 0.895 0.905 0.900 0.902
LRboth

max 0.913* (+4.5%) 0.927 0.905 0.916 0.919
NBbow 0.587 0.540 0.977 0.696 0.600

Before NBw2v
max 0.585 (0.0%) 0.538 0.982 0.695 0.598

NBboth
mean 0.583 (0.0%) 0.537 0.977 0.693 0.596

RFbow 0.826 0.760 0.941 0.840 0.830
RFw2v

mix 0.865* (+3.9%) 0.842 0.897 0.867 0.866
RFboth

mix 0.859* (+3.3%) 0.834 0.892 0.861 0.860
SVMbow 0.607 0.591 0.599 0.593 0.606
SVMw2v

sum 0.637* (+3.0%) 0.613 0.676 0.642 0.638
SVMboth

mix 0.654* (+4.8%) 0.628 0.698 0.661 0.656
GBDTbow 0.817 0.830 0.616 0.708 0.790
GBDTw2v

max 0.789 (0.0%) 0.791 0.661 0.714 0.768
GBDTboth

max 0.796 (0.0%) 0.796 0.667 0.720 0.773
LRbow 0.741 0.766 0.538 0.602 0.690
LRw2v

sum 0.804* (+5.9%) 0.803 0.678 0.730 0.782
LRboth

mix 0.815* (+7.0%) 0.811 0.706 0.751 0.796
NBbow 0.628 0.619 0.117 0.193 0.537

During NBw2v
mix 0.637 (+0.9%) 0.816 0.117 0.195 0.544

NBbow
mix 0.637 (+0.9%) 0.816 0.117 0.195 0.544

RFbow 0.620 0.600 0.028 0.053 0.514
RFw2v

mean 0.780* (+16.1%) 0.855 0.539 0.656 0.737
RFboth

mean 0.752* (+13.3%) 0.885 0.428 0.571 0.694
SVMbow 0.641 0.584 0.300 0.394 0.580
SVMw2v

mix 0.641 (0.0%) 0.584 0.289 0.383 0.578
SVMboth

mean 0.643 (+0.2%) 0.591 0.300 0.396 0.582
GBDTbow 0.780 0.792 0.948 0.864 0.640
GBDTw2v

max 0.830* (+5.0%) 0.831 0.953 0.887 0.753
GBDTboth

max 0.833* (+5.3%) 0.836 0.947 0.888 0.760
LRbow 0.813 0.810 0.958 0.880 0.762
LRw2v

sum 0.824* (+1.1%) 0.831 0.937 0.880 0.748
LRboth

sum 0.839* (+2.6%) 0.847 0.937 0.890 0.777
NBbow 0.702 0.711 0.962 0.818 0.538

After NBw2v
mean 0.704 (+0.2%) 0.710 0.969 0.820 0.537

NBboth
mean 0.707 (+0.5%) 0.712 0.969 0.821 0.541

RFbow 0.713 0.708 1.000 0.829 0.532
RFw2v

max 0.780* (+6.7%) 0.763 0.994 0.863 0.646
RFboth

mix 0.770* (+5.7%) 0.753 0.997 0.858 0.626
SVMbow 0.707 0.706 0.991 0.824 0.527
SVMw2v

mix 0.713 (+0.6%) 0.709 0.997 0.828 0.533
SVMbow

mix 0.713 (+0.6%) 0.708 1.000 0.829 0.532
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Table 20 – Complement to Table 9 for VFestival: accuracy of all classifiers trained with
BoW, w2v and both BoW+w2v features. The * indicates statistical significant
differences compared to the best classifiers using only BoW features (McNe-
mar’s test with 95% confidence interval).

Dataset VFestival
Task Model Accuracy Precision Recall F1 AuC

GBDTbow 0.809 0.802 0.768 0.784 0.808
GBDTw2v

max 0.818 (+0.9%) 0.832 0.776 0.802 0.816
GBDTboth

max 0.824 (+1.5%) 0.804 0.835 0.819 0.824
LRbow 0.761 0.744 0.762 0.748 0.764
LRw2v

mix 0.778 (+1.3%) 0.793 0.826 0.807 0.814
LRboth

sum 0.813* (+4.8%) 0.792 0.826 0.807 0.813
NBbow 0.535 0.506 0.977 0.667 0.555

Before NBw2v
mean 0.535 (0.0%) 0.506 0.982 0.668 0.555

NBboth
sum 0.535 (0.0%) 0.506 0.982 0.668 0.555

RFbow 0.778 0.860 0.648 0.735 0.772
RFw2v

max 0.804* (+2.6%) 0.796 0.794 0.794 0.804
RFboth

mix 0.798 (+2.0%) 0.787 0.799 0.790 0.798
SVMbow 0.578 0.568 0.471 0.514 0.573
SVMw2v

mix 0.609* (+3.0%) 0.610 0.493 0.545 0.603
SVMboth

sum 0.602* (+2.4%) 0.603 0.484 0.537 0.597
GBDTbow 0.802 0.850 0.582 0.688 0.763
GBDTw2v

max 0.823* (+2.1%) 0.867 0.633 0.727 0.785
GBDTboth

max 0.826* (+2.4%) 0.893 0.622 0.727 0.787
LRbow 0.626 0.600 0.614 0.494 0.606
LRw2v

mix 0.772* (+14.6%) 0.855 0.500 0.626 0.722
LRboth

mix 0.787* (+16.1%) 0.887 0.505 0.639 0.732
NBbow 0.530 0.429 0.737 0.525 0.571

During NBw2v
mix 0.433 (0.0%) 0.388 0.895 0.540 0.526

NBboth
mix 0.446 (0.0%) 0.390 0.866 0.537 0.530

RFbow 0.680 1.000 0.145 0.248 0.573
RFw2v

sum 0.796* (+11.5%) 0.907 0.512 0.651 0.740
RFboth

max 0.754* (+7.4%) 0.845 0.442 0.576 0.695
SVMbow 0.670 0.800 0.157 0.257 0.566
SVMw2v

sum 0.676 (0.7%) 0.790 0.175 0.281 0.575
SVMboth

mean 0.670 (0.00%) 0.800 0.157 0.257 0.566
GBDTbow 0.815 0.824 0.902 0.862 0.767
GBDTw2v

mix 0.861* (+4.6%) 0.862 0.945 0.901 0.817
GBDTboth

mix 0.854* (+3.9%) 0.848 0.948 0.894 0.799
LRbow 0.809 0.812 0.932 0.868 0.808
LRw2v

mix 0.850* (+4.1%) 0.858 0.932 0.893 0.807
LRboth

sum 0.858* (+4.9%) 0.877 0.919 0.897 0.827
NBbow 0.696 0.709 0.929 0.804 0.574

After NBw2v
mix 0.717* (+2.1%) 0.717 0.958 0.820 0.592

NBboth
mix 0.717* (+2.1%) 0.717 0.958 0.820 0.592

RFbow 0.689 0.684 1.000 0.812 0.527
RFw2v

sum 0.789* (+10.0%) 0.782 0.951 0.858 0.704
RFboth

mix 0.774* (+8.5%) 0.763 0.964 0.851 0.674
SVMbow 0.707 0.699 0.994 0.820 0.556
SVMw2v

mean 0.709 (+0.2%) 0.705 0.977 0.819 0.568
SVMboth

mean 0.709 (+0.2%) 0.699 0.997 0.822 0.558
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Table 21 – Complement to Table 11 on generalization ability of the various classifiers:
models trained on Creamsfields are tested on VFestival. The * indicates sta-
tistical significant differences compared to the best classifiers using only BoW
features (McNemar’s test with 95% confidence interval).

Training/Test Creamfields/VFestival
Task Model Accuracy Precision Recall F1 AuC

GBDTbow 0.780 (0.0%) 0.757 0.795 0.775 0.862
LRboth

mix 0.796 (+1.3%) 0.783 0.790 0.786 0.861
Before NB bow

mean 0.546 (+0.3%) 0.512 0.945 0.665 0.565
RFbow 0.778 (0.0%) 0.748 0.758 0.753 0.843
SVMboth

mix 0.526 (+0.7%) 0.502 0.470 0.486 0.497
GBDTw2v

max 0.724* (+1.3%) 0.619 0.680 0.648 0.797
LRboth

max 0.702* (+3.2%) 0.607 0.576 0.591 0.732
During NB both

mix 0.524* (+4.1%) 0.247 0.134 0.174 0.419
RFboth

max 0.693* (+7.8%) 0.604 0.523 0.561 0.679
SVMw2v

mix 0.643* (+1.7%) 0.583 0.163 0.255 0.520
GBDTw2v

sum 0.789* (+5.6%) 0.769 0.981 0.862 0.845
LRboth

mix 0.787* (+6.7%) 0.773 0.968 0.859 0.817
After NB both

mean 0.698 (0.0%) 0.699 0.968 0.811 0.559
RFw2v

sum 0.735* (+4.4%) 0.747 0.916 0.823 0.754
SVMw2v

mix 0.667* (+1.5%) 0.671 0.990 0.800 0.549



References 107

Table 22 – Complement to Table 11 on generalization ability of the various classifiers:
models trained on VFestival are tested on Creamsfields and vice versa. The
* indicates statistical significant differences compared to the best classifiers
using only BoW features (McNemar’s test with 95% confidence interval).

Training/Test VFestival/Creamfields
Task Model Accuracy Precision Recall F1 AuC

GBDTbow 0.824 (0.0%) 0.844 0.779 0.810 0.912
LRw2v

mix 0.865* (+1.3%) 0.867 0.851 0.859 0.920
Before NBbow 0.570 (0.0%) 0.529 0.991 0.690 0.586

RF bow 0.808 (0.0%) 0.876 0.667 0.757 0.886
SVMboth

mix 0.546 (+0.4%) 0.541 0.387 0.451 0.486
GBDTboth

max 0.743* (+3.2%) 0.810 0.450 0.579 0.796
LRboth

sum 0.741* (+9.2%) 0.802 0.450 0.577 0.803
During NBboth

sum 0.370 (+0.3%) 0.377 0.933 0.537 0.468
RFbow 0.678 (0.0%) 0.686 0.328 0.444 0.677
SVMw2v

sum 0.593* (+5.7%) 0.370 0.056 0.097 0.507
GBDTboth

mean 0.807* (+3.7%) 0.844 0.884 0.864 0.863
LRbow 0.787 (0.0%) 0.862 0.824 0.843 0.857

After NBbow 0.709 (+0.2%) 0.717 0.959 0.820 0.550
RF w2v

sum 0.726* (+3.7%) 0.818 0.777 0.797 0.757
SVMbow 0.689 (0.0%) 0.699 0.969 0.812 0.582

Table 23 – Complement to Table 12: robustness of the GBDT, LR and RF classifiers ex-
ploiting NFV features. Models trained on Creamsfields are tested on VFestival.
The * indicates statistically significant improvements with respect to the best
accuracy figures reported in Table 21 (McNemar’s test with 95% of confidence
interval). Results of NB and SVM classifiers are not reported since they do
not improve by using the NFV features.

Train/Test Creamfields/VFestival
Task Modelaggv,nfv(top) Accuracy Precision Recall F1 AuC

GBDTw2v
mix,mean(3) 0.793 (+0.4%) 0.772 0.804 0.787 0.867

Before LRboth
max,sum(3) 0.800 (+0.4%) 0.787 0.795 0.791 0.861

RFbow 0.763 (0.00%) 0.752 0.749 0.751 0.831
GBDTw2v

max,max(1) 0.746* (+2.2%) 0.646 0.709 0.676 0.817
During LRboth

max,max(1) 0.707 (+0.5%) 0.612 0.587 0.599 0.732
RFboth

max,sum(1) 0.713 (+2.0%) 0.647 0.512 0.571 0.733
GBDTboth

sum,sum(5) 0.811* (+2.2%) 0.792 0.974 0.874 0.872
After LRboth

mix,max(1) 0.811 (+2.4%) 0.789 0.981 0.874 0.866
RFboth

sum,sum(1) 0.759 (+2.4%) 0.783 0.887 0.832 0.794
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Table 24 – Complement to Table 12: robustness of the GBDT, LR and RF classifiers ex-
ploiting NFV features. Models trained on VFestival are tested on Creamsfields.
The * indicates statistically significant improvements with respect to the best
accuracy figures reported in Table 22 (McNemar’s test with 95% of confidence
interval). Results of NB and SVM classifiers are not reported since they do
not improve by using the NFV features.

Train/Test Creamfields/VFestival
Task Modelaggv,nfv(top) Accuracy Precision Recall F1-Score AuC

GBDTw2v
sum,sum(1) 0.861 (+2.6%) 0.891 0.811 0.849 0.917

Before LRboth
max,sum(3) 0.872* (+0.7%) 0.860 0.860 0.860 0.915

RFw2v
none,mix(1) 0.833 (+2.4%) 0.919 0.716 0.805 0.921

GBDTboth
mean,mix(1) 0.778* (+3.5%) 0.792 0.550 0.649 0.828

During LRboth
sum,max(1) 0.757* (+1.6%) 0.758 0.556 0.641 0.797

RFw2v
mix,max(1) 0.702 (+2.8%) 0.717 0.394 0.509 0.725

GBDTboth
sum,mean(5) 0.817* (+1.0%) 0.840 0.903 0.870 0.839

After LRw2v
mean,sum(3) 0.811* (+2.4%) 0.847 0.868 0.858 0.855

RFboth
sum,mean(5) 0.765* (+7.6%) 0.771 0.940 0.847 0.788
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