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In recent years, free-floating bike-sharing systems (FFBSSs) have been considerably developed in China. As there is no requirement
to construct bike stations, this system can substantially reduce the cost when compared to the traditional bike-sharing systems.
However, FFBSSs have also become a critical cause of parking disorder, especially during the morning and evening rush hours. To
address this issue, the local governments stipulated that FFBSSs are required to deploy virtual stations near public transit stations
and major establishments. Therefore, the location assignment of virtual stations is sufficiently considered in the FFBSSs, which is
required to solve the parking disorder and satisfy the user demand, simultaneously. The purpose of this study is to optimize the
location assignment of virtual stations that can meet the growing demand of users by analyzing the usage data of their shared
bikes. This optimization problem is generally formulated as a mixed-integer linear programming (MILP) model to maximize the
user demand. As an alternative solution, this article proposes a clustering algorithm, which can solve this problem in real time.
The experimental results demonstrate that the MILP model and the proposed method are superior to the K-means method. Our
method not only provides a solution for maximizing the user demand but also gives an optimized design scheme of the FFBSSs
that represents the characteristics of virtual stations.

1. Introduction

Bike-sharing systems (BSSs) offering a mobility service with
public bikes available for shared use are becoming popular in
urban environments.With growing awareness of green trans-
portation, the BSSs provide alternate and sustainable carbon-
free mode of transportation (especially for short-distance
trips) to support a green growth in urban environments and
to significantly reduce traffic congestion, pollution, and noise.
BSSs permit the travelers to rent a bike at stations and then
return it to any station with vacant lockers. Several studies
have been widely conducted to optimize the station’s location
[1], design the shared bikes network [2, 3], and maximize the
capacity levels [4].

In recent years, an innovative system for the manage-
ment of bike-sharing, called free-floating BSSs (FFBSSs), is

gradually developing as an emerging technology [5].This new
system can avoid the necessity of docking stations and kiosk
machines with relevant physical and information commu-
nication technology infrastructures [6]. Two recent studies
have demonstrated the advances of FFBSSs. Caggiani et al. [7]
proposed a novel method for the strategic design of FFBSSs
whose facilities could be allocated in the territory according
to spatial and social equity principles. Leonardo et al. [5]
proposed a dynamic and operator-based bike redistribution
method that could pursue a decision-making process for the
relocation of FFBSSs operating area by predicting the number
and position of shared bikes.

In the traditional BSSs (see Figure 1), if people want to
go to the bus station from their homes in the morning rush
hours, they can unlock a shared bike in the bike station near
their home and ride it to the bus station. They can use a
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Figure 1: Overview of the BSSs.
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Figure 2: Overview of the FFBSSs.

smart phone to find the location of a bike station besides
the bus station; however, the users may face the following
two problems: there is no shared bike in the bike station
near their homes or there is no parking space in the bike
station near the bus station. In either case, they have to find
another bike station, which would be very inconvenient and
waste a lot of time. Conversely, the BSSs’ companies need to
build bike stations near the home, bus station, and company,
which would dramatically increase the maintenance cost of
the company. In contrast, FFBSSs can solve such problems
as shown in Figure 2. In the morning rush hours, people
can find a shared bike in any virtual station near their
home and then park it anywhere near the bus station and
company.They are not required to be concerned about empty
spaces in the virtual station. As the virtual stations are not
physical infrastructures, the FFBSSs’ companies do not need
to build and maintain bike stations. This would sufficiently
decrease the cost to the company. Furthermore, FFBSSs also
have many advantages such as dynamic adjustment and easy
management.

However, though the FFBSSs are superior to the tra-
ditional BSSs, it is still a challenging task to decide the
location of virtual stations to maximize the satisfaction of
user requirements. To address this issue, this study assumes
that the people traveling during the morning rush hours use
a similar traffic route when they return during the evening
rush hours. They expect to find a shared bike in the same
place where they had parked it during morning rush hours.
Themain parking spot in Figure 2 represents the bike parking
place of the majority of people. If the bike parking place
of most people changes, the main parking spot will also
change. As illustrated in Figure 2, during the morning rush
hours, people obtain a shared bike from the virtual station
and ride it from their homes to the bus station or from the
bus station to their companies. Most people would park the
shared bikes at the main parking spot, where there is a high
user demand during the evening rush hours because most
people expect to find a shared bike at the same location
during the evening rush hours. The main parking spot of
the morning rush hours will probably become the location
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of virtual stations of FFBSSs during the evening rush hours.
Similarly, the main parking spot of evening rush hours
has high user demand during the morning rush hours the
following day. Therefore, the main parking spot of evening
rush hours will probably become the location of virtual
stations of FFBSSs during morning rush hours the following
day. Therefore, optimizing the location of virtual stations
while maximizing user demand duringmorning and evening
rush hours is required by both the FFBSSs’ companies and
local governments.

The problem can be described as a mixed-integer linear
programming (MILP) model to maximize user demand, and
we can use CPLEX and the clustering algorithm [8–10] to
obtain the solution. As this problem is a classic nondeter-
ministic polynomial-time hard problem, the computational
timewill rise exponentially according to data size increments.
CPLEX cannot obtain the exact solution in real time, whereas
the clustering algorithm can find an approximate solution
value in finite iterations. Compared with other methods,
the proposed clustering algorithm can not only obtain the
characteristics of virtual stations of FFBSSs but can also
outperform K-means method [11–15].

The rest of this paper is organized as follows. Section 2
reviews numerous studies related to optimizing the location
of shared bike stations. Section 3 describes and formulates
the proposed problem. Section 4 presents our clustering
algorithm. Section 5 depicts the numerical examples. Finally,
Section 6 gives our conclusion.

2. Literature Review

The station location of BSSs was studied for decades. Several
researches have investigated the optimal location of deploy-
ing stations [1], the network design of bike lanes [2, 16],
and the maximization of capacity levels [4, 17]. Stations
location of BSSs is a strategic decision that depends on their
preliminary goals. Location can be efficiently decided by the
support of an optimization model, called facility location
model [18, 19].This model considered various objectives, e.g.,
theminimization of the overall costs and transportation costs
and the maximization of demand coverage. Lin and Yang
[2] proposed an integer nonlinear program to determine the
optimal location of stations. However, the purpose of this
work was to minimize cost. The authors did not consider
the relocation of bicycles. Martinez et al. [1] employed a
mixed-integer linear program to optimize the location of
shared bike stations through a heuristic process. The main
purpose of this study was to maximize revenue. Romero
et al. [17] depicted a bilevel mathematical programming
model to optimize the location of public bicycle stations.
This paper considered a simulation optimization method
that related public bicycles to private cars. Raviv et al. [20]
proposed an inventory model to define the management
of bike-sharing by depicting a user dissatisfaction function
to assess the quality of the relocation service. This model
identified the initial inventory of the station so as tominimize
the dissatisfaction function. Church and ReVelle [21] also
introduced the maximal covering models to maximize the
demand coverage. These models and their applications were

widely used for determining the location of BSSs stations
based on the maximization of covered demand [22].

In recent years, FFBSSs were gradually developed instead
of BSSs [5]. There are only two state-of-the-art papers related
to the location of virtual stations of FFBSSs. Caggiani et al.
[7] proposed a strategic designing methodology of FFBSSs
whose facilities could be allocated in the territory according
to spatial and social equity principles. Leonardo et al. [5]
proposed a dynamic and operator-based bike redistribution
methodology that starts from the prediction of the number
and position of bikes over an FFBSSs operating area and ends
with a decision support system for the relocation process.
Therefore, the key to solve the problem of the location
of FFBSSs’ virtual stations is to create an optimization
model that considers the maximization of user demand and
characteristics of FFBSSs’ virtual stations. In this study, the
location of virtual stations was formulated as a MILP model.
We also used a clustering algorithm to solve it. In the field
of optimizing location of FFBSSs virtual stations, the user
demandduringmorning and evening rush hours has received
limited attention. To our knowledge, there is no research that
has discussed the location of virtual stations while taking
the effect of user demand during morning and evening rush
hours into account.

3. Problem Description and Formulation

3.1. Problem Description. In this section, we explain the use
of a MILP model to describe the optimizing location of
FFBSSs’ virtual stations.The shared bikes of FFBSSs could be
parked without the physical stations. However, we could still
obtain the parameters of the model such as 𝐹𝑖𝑗, 𝑌𝑖, and 𝑋𝑖𝑗
by analyzing the usage data of the shared bikes provided by
the FFBSSs’ companies.Themodel solved the optimal design
scheme of virtual stations of FFBSSs under the condition
of maximization of user demand. We represented the user
demand through the number of shared bikes of all virtual
stations. The model considered that virtual stations could
not exist in isolation. Within a certain distance, each virtual
station had a minimum of one virtual station as a support
to form a mesh structure. We used the concept of adjacent
virtual stations to represent the mutual support between
certain virtual stations. We used 𝐸𝑖𝑗 and 𝐿 𝑖𝑗 to present the
lower bound and upper bound of distance between adjacent
virtual stations i and j. 𝐸𝑖𝑗 was also the lower bound of
distance of all virtual stations. When the distance of certain
virtual stations was in [𝐸𝑖𝑗, 𝐿 𝑖𝑗], it could be considered that
these virtual stations were mutually supportive. When the
virtual candidate station was i and j was the adjacent virtual
candidate station, then 𝐹𝑖𝑗 was equal to one. Otherwise, 𝐹𝑖𝑗
was equal to zero. Owing to the limited area, the quantity of
shared bikes in each virtual station was limited.

Figure 4 shows the location of ten shared bikes. Each
location could be considered as the location of virtual
candidate stations of FFBSSs. We used the concept of service
radius to represent service area of virtual candidate station.
We assumed that shared bike No. 1 was the virtual candidate
station. The virtual candidate station No. 1 covered shared
bike No. 3 in the service radius. Therefore, 𝑌1 = 1.
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3.2. Formulation. The problem is formulated using the fol-
lowing notation:

Sets/Indices

N: Set of all virtual candidate stations

Parameters

𝐸𝑖𝑗: Lower bound of distance between adjacent virtual
station i and j
𝐹𝑖𝑗:The adjacencymatrix of adjacent virtual candidate
station i and j
𝑌𝑖: The number of bikes of virtual candidate station i
𝑋𝑖𝑗: The distance between virtual candidate stations i
and j
𝐻𝑖: Maximum capacity of virtual station i
𝑆𝑖: Minimum capacity of virtual station i
K: The number of virtual stations
M: A large positive number

Decision Variables

𝑍𝑖 = 1, if virtual candidate station i is virtual station;
𝑍𝑖 = 0 otherwise.

Formulation

max ∑
𝑖∈𝑁

𝑌𝑖 ⋅ 𝑍𝑖 (1)

s.t. ∑
𝑖∈𝑁

𝑍𝑖 = 𝐾 (2)

𝑀 ⋅ (1 − 𝑍𝑖) + ∑
𝑗∈𝑁 𝑗 ̸=𝑖

𝐹𝑖𝑗 ⋅ 𝑍𝑗 ≥ 1 ∀𝑖 ∈ 𝑁 (3)

𝑀 ⋅ (1 − 𝑍𝑖) + 𝑀 ⋅ (1 − 𝑍𝑗) + 𝑋𝑖𝑗 ⋅ 𝑍𝑗 ≥ 𝐸𝑖𝑗
∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗

(4)

𝑌𝑖 ⋅ 𝑍𝑖 ≤ 𝐻𝑖 ∀𝑖 ∈ 𝑁 (5)

𝑀 ⋅ (1 − 𝑍𝑖) + 𝑌𝑖 ⋅ 𝑍𝑖 ≥ 𝑆𝑖 ∀𝑖 ∈ 𝑁 (6)

𝑍𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑁 (7)

The objective function (1) of this linear program maxi-
mizes the user demand by maximizing the number of bikes
of virtual stations. Constraint (2) indicates that K virtual
stations are selected from the virtual candidate stations.
Constraint (3) guarantees that each virtual station has one
adjacent virtual station at least. Constraint (4) ensures that
the distance between virtual stations i and j is greater than
or equal to the lower bound 𝐸𝑖𝑗 of the distance between
adjacent virtual stations. Adjacent virtual stations are virtual
stations in the network. 𝐸𝑖𝑗 also represent the lower bound

of the distance of all virtual stations. The number of bikes
of the virtual station is lower than maximum capacity of the
virtual station according to constraint (5) and higher than a
minimum according to constraint (6). Constraint (7) is the
binary constraint for the decisional variables.

4. Solution Method

4.1. Clustering Algorithm. According to user demand during
the morning and evening rush hours, this study proposed
a clustering algorithm to optimize the location of virtual
stations of FFBSSs by analyzing the usage data of shared
bikes and considering the characteristics of location of virtual
stations of FFBSSs. The algorithm randomly generated K
centroids and clustered these centroids. We guaranteed that
each centroid had a minimum of one adjacent centroid.
We calculated the fitness function and selected the optimal
solution of the best objective function value. The flowchart is
presented in Section 4.2.

The procedure of the clustering algorithm is provided
below.

Step 1. Load and process data D = {𝜑1, 𝜑2, ⋅ ⋅ ⋅ 𝜑𝑚}.
Step 2. Set the lower bound 𝐸𝑖𝑗 and upper bound 𝐿 𝑖𝑗 of
distance of adjacent centroid; the number of centroids K;
the number of iterations Υ; the location of centroid U =
{𝑈1, 𝑈2, ⋅ ⋅ ⋅ 𝑈𝐾}; cluster C = {𝐶1, 𝐶2, ⋅ ⋅ ⋅ 𝐶𝐾}; service radius L;𝑌𝑖 is the number of points in the cluster 𝐶𝑖; 𝜂 is the repair
coefficient; repair neighborhoods 𝜓 = {𝜓1, 𝜓2}.
Step 3. While the number of iterations Υ ≤ Υ𝑚𝑎𝑥 do.
Step 4. Randomly generate K centroids U = {𝑈1, 𝑈2, ⋅ ⋅ ⋅ 𝑈𝑘}
from data D.

Step 5. Calculate the distance𝑋𝑖𝑗 between centroids.

Step 6. If ∀i ∈ K, ∃j ∈ K, i ̸= j and 𝑋𝑖𝑗 ∈ [𝐸𝑖𝑗, 𝐿 𝑖𝑗], then go to
Step 7 else return to Step 4.

Step 7. Calculate the distance 𝑑𝑖𝑗 between points 𝜑𝑖 and
centroids 𝑈𝑗.
Step 8. If 𝑑𝑖𝑗 = ‖𝜑𝑖 − 𝑈𝑗‖ ≤ 𝐿 then 𝐶𝑗 = 𝐶𝑗 ∪ {𝜑𝑖}.
Step 9. Repair strategy: set 𝜂𝑚𝑎𝑥; find the 𝐶𝑚𝑖𝑛 =
min𝑗=1,2,...,𝐾{𝐶𝑗} and repair it with 𝜓, until 𝜂 > 𝜂𝑚𝑎𝑥. If
the value of 𝐶𝑚𝑖𝑛 is better than before, put it back to cluster
C. Step 9 is repeated until the value of 𝐶𝑚𝑖𝑛 does not change.
Step 10. Calculate the fitness function Z = ∑𝐾𝑖=1 𝑌𝑖.
Step 11. Compare with the optimal value of history.

Step 12. Repeat Steps 4 –11, until Υ > Υ𝑚𝑎𝑥.
Step 13. Output the best solution.

4.2. Flowchart of Clustering Algorithm. See Figure 3.
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Figure 3: Flowchart of clustering algorithm.

5. Numerical Studies

In this section, we describe two numerical examples: a small-
scale example and a large-scale example, which are used
to illustrate the problem properties and the performance
of the clustering algorithm. The small-scale example in
Section 5.1 was solved using the branch and cut method
in IBM-ILOG CPLEX 12.8 and the clustering algorithm.
This example demonstrated the location of 10 shared bikes,
and each location could be considered as the location of
a virtual candidate station in the FFBSS. We selected the
location of virtual stations from those virtual candidate
stations tomaximize user demand.The large-scale example in

Service radius

0

1

2 3 4

5

6

7 8 9

10

X67 = 283m

50m

Figure 4: Illustration of the network with ten virtual candidate
stations.

Section 5.2 was solved with the clustering algorithm to obtain
the location of virtual stations of FFBSSs in a main area of
Beijing in China. The data for the large-scale example comes
from a competition of the Mobike algorithm.

5.1. Small-Scale Example. This sectionmakes use of the small
network shown in Figure 4 to demonstrate the solution
of the model and the clustering algorithm. 𝐸𝑖𝑗 and 𝐿 𝑖𝑗 are
variable parameters. It depends on certain factors, such as
terrain and city size. The empirical values of 𝐸𝑖𝑗 and 𝐿 𝑖𝑗 were
obtained from the shared bike company Mobike. A scenario
was investigated, and the parameter settings were as follows:

(1) The lower bound of distance of adjacent virtual
stations 𝐸𝑖𝑗 was set as 400 m;

(2) The upper bound of distance of adjacent virtual
stations 𝐿 𝑖𝑗 was set as 1000 m;

(3) The number of virtual stations K was set as 2;
(4) The maximum capacity of virtual station i was set as

10;
(5)Theminimum capacity of virtual station i was set as 1;
(6) The adjacency matrix of adjacent virtual candidate

station 𝐹𝑖𝑗 was as follows:

𝐹𝑖𝑗 =

[[[[[[[[[[[[[[[[[[[[[[[[[
[

0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 1 0 1 1 1
1 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 1
1 1 1 0 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 1 0 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]
]

(8)
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Table 1: Number of bikes in each virtual candidate station.

Candidate virtual station i 1 2 3 4 5 6 7 8 9 10
𝑌𝑖 1 1 4 2 1 1 2 4 1 1

Table 2: Computation results of virtual station decision.

Candidate virtual station i 1 2 3 4 5 6 7 8 9 10
𝑍𝑖 0 0 1 0 0 0 0 1 0 0

Table 3: Performance analysis of CPLEX and the clustering algorithm. K = 5.

N CPLEX Our method
Obj. CPU(s) Avg. Obj. Avg. gap Best Obj. Best gap Avg. CPU(s)

30 15 64.231 14.6 2.67 15 0.00 38.841
50 32 650.289 30.8 3.75 31 3.13 43.142
70 49 2275.631 47.1 3.88 48 2.04 54.260
90 68 7200 65.3 3.97 66 2.94 60.394
110 85 7200 81.5 4.12 82 3.53 69.787
150 114 7200 108.1 5.18 109 4.39 81.140
190 − 7200 149.5 − 153 − 89.769
230 − 7200 176.8 − 190 − 96.145
Avg. Obj: average objective value; Best Obj: best objective value; Avg. CPU: average CPU time after 100 runs.

(7) The matrix of𝑋𝑖𝑗 was as follows:
𝑋𝑖𝑗

=

[[[[[[[[[[[[[[[[[[[[[[
[

0 283 200 283 400 600 447 632 825 721
283 0 200 400 283 825 600 800 1000 825
200 200 0 200 200 632 400 600 800 632
283 400 200 0 283 447 200 400 600 447
400 283 200 283 0 721 447 632 825 600
600 825 632 447 721 0 283 200 283 400
447 600 400 200 447 283 0 200 400 283
632 800 600 400 632 200 200 0 200 200
825 1000 800 600 825 283 400 200 0 283
721 825 632 447 600 400 283 200 283 0

]]]]]]]]]]]]]]]]]]]]]]
]

(9)

(8)The number of bikes in virtual candidate station 𝑌𝑖 was as
Table 1.

Each location of shared bike could be considered as a
virtual candidate station.We used the number of shared bikes
in the service radius of the virtual candidate station as the
number of shared bikes for the virtual candidate stations. For
example, we assumed that the service radius of the virtual
candidate station was 200 m. There is only shared bike No.
3 in the service radius of the virtual candidate station No.
1. Therefore, the number of shared bikes of virtual candidate
station No. 1 was one.

5.1.1. Result. Based on the problem properties and parameter
setting in Section 5.1, the problemwas solved with the branch
and cut method in CPLEX 12.8 and the clustering algorithm.

These two methods obtained the same answer in a short
time. CPLEX obtained an optimal solution in less than

1 s, whereas the clustering algorithm took more than 30
s to obtain the same solution. The latter required more
time because it could not stop immediately after obtaining
an optimal solution but instead could stop only after a
predetermined number of iterations (6000 in this case)
without further improvement.The results are listed in Table 2.
According to Table 2, the virtual candidate station Nos. 3 and
8 are selected as virtual stations of FFBSSs. The value of user
demand was 8.

5.1.2. Comparison of the Performance of the Exact Method
and the Clustering Algorithm. The clustering algorithm was
coded in C++ and all computational experiments were
performed using a Lenovo notebook with an Intel Core i7-
7700HQ CPU with processor base frequency of 2.80 GHz.
The small-scale example is a subset of the large-scale example.
This set contains instances of 30-230 virtual candidate sta-
tions. The number of virtual stations K is set as 5 in Table 3
and 10 in Table 4. The results obtained from the clustering
algorithmwere compared to those obtained fromCPLEX 12.8
with default setting and a maximum running time of 2 h.

As listed in Table 3, Obj denotes the true optimal objective
value from CPLEX. CPU is the running time of CPLEX.
Table 3 also lists the Avg. Obj and Avg. CPU obtained by the
clustering algorithm in 100 runs. Avg. gap (%) represents the
deviation of the average objective value from theObj. Best gap
(%) represents the deviation of the best objective value from
the Obj.

When N = 30, as listed in Table 3, CPLEX obtained an
optimal solution in a timemarginally over 1 min, whereas the
clustering algorithm required less than 40 s to obtain the same
solution. Further, Avg. Obj was nearly equal to Obj value.The
Avg. gap was 2.67% and Best gap was 0%. When N = 50,
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Table 4: Performance analysis of CPLEX and the clustering algorithm. K = 10.

N CPLEX Our method
Obj. CPU(s) Avg. Obj. Avg. gap Best Obj. Best gap Avg. CPU(s)

30 20 78.645 19.5 2.50 20 0.00 39.916
50 37 681.843 35.7 3.51 36 2.70 45.016
70 55 2664.101 52.2 5.09 53 3.64 56.791
90 74 7200 69.9 5.54 71 4.05 63.855
110 92 7200 86.1 6.41 88 4.35 75.420
150 128 7200 119.4 6.72 122 4.69 86.632
190 − 7200 163.1 − 165 − 95.341
230 − 7200 188.7 − 206 − 100.029

116.1 116.15 116.2 116.25 116.3 116.35 116.4 116.45 116.5 116.55 116.6

Longitude

(a) (b)

39.7

39.75

39.8

39.85

39.9

39.95

40

40.05

40.1

40.15

La
tit

ud
e

shared bike
1°=111km

116.36 116.37 116.38 116.39 116.4 116.41 116.42 116.43

Longitude

39.87

39.88

39.89

39.9

39.91

39.92

39.93

39.94

39.95

La
tit

ud
e

Figure 5: Location of shared bikes in the area of: (a) sixth loop of Beijing and (b) second loop of Beijing.The black dots represent the location
of shared bikes.

CPLEX achieved an optimal solution in more than 10 min,
whereas the clustering algorithm could obtain a good, feasible
solution with a Avg. gap of 3.75% and a Best gap of 3.13 in less
than 1 min.

For the larger problems (N = 70, 90, 110, 150), CPLEX
obtained an optimal solution in 2 h.Meanwhile, the clustering
algorithm obtained a more feasible solution in only approxi-
mately 50-90 s.TheAvg. gap and the Best gap obtained by the
clustering algorithm increased with the problem sizes, with a
Best gap of less than 5% for N = 150 in Table 3.

When N ≥ 190, as listed in Table 3, the clustering
algorithm obtained a feasible solution in about 90-100 s,
whereas CPLEXwas unable to do so in 2 h.This demonstrates
the limitations of CPLEX and the strength of our proposed
method in large applications.

Table 4 exhibits that when K is set as 10, the value of Obj,
Avg. Obj, and Best Obj is better than Table 3. However, it
required more time than Table 3. For example, when N = 30,

the value of CPU is greater than 70 s in Table 4. However,
the CPU is 64.231 s in Table 3. The Avg. gap and the Best
gap obtained by the clustering algorithm increased with the
problem sizes in Table 4. Tables 3 and 4 demonstrate that
when N ≥ 190, CPLEX could not obtain an optimal solution
in 2 h.

To sum up, the clustering algorithm yields a good,
feasible solution in shorter running time when N ≥ 30.
Overall, this method produces high-quality solutions with
short computing times.

5.2. Large-Scale Example. The large-scale example uses data
(https://biendata.com/competition/mobike/data/) obtained
from a competition of the Mobike algorithm. Figure 5 shows
the location of the shared bike that is distributed in the areas
of the sixth loop and second loop in Beijing, China. As listed
in Table 3, owing to the large-scale problem, CPLEX could
not obtain the precise solution in limited time. Therefore, we

https://biendata.com/competition/mobike/data/
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Figure 6: Best solution for location of virtual stations of FFBSSs during morning and evening rush hours.

used the clustering algorithm to analyze the data of shared
bikes used by people at 9 am and 9 pm in the area of second
loop of Beijing to obtain the location of virtual stations of
FFBSSs.

5.2.1. Parameter Setting. This section is composed of the
related parameter settings. We will explain the reasoning for
setting the quantity of virtual stations to 40 in Section 5.2.4.
The service radius of virtual stations and the distance of
adjacent virtual stations was derived from relevant data of
Mobike.The area of second loop of Beijing was obtained from
Google Maps.

(1) The number of virtual stations K was set as 40;
(2) The service radius of virtual stations L was set as 200

m;
(3) The lower bound of distance of adjacent virtual

stations 𝐸𝑖𝑗 was set as 400 m;
(4) The upper bound of distance of adjacent virtual

stations 𝐿 𝑖𝑗 was set as 1000 m;
(5) The fitness function was the objective function of the

model;
(6) The area of second loop of Beijing: latitude: [39.8698,

39.9497], longitude: [116.3595, 116.4324];
(7) Υ𝑚𝑎𝑥 was 6000;
(8) The initial objective function value was zero.

5.2.2. Result. Figure 6 shows the best solution for location
of virtual stations of FFBSSs during morning and evening

rush hours. In this figure, the horizontal axis and vertical axis
present the longitude and latitude.The black crosses illustrate
the location of virtual stations. The red circles illustrate the
service radius of virtual stations. The green dots show the
quantity of shared bikes in virtual stations. The black dots
indicate shared bikes that are not included in the virtual
stations. There are 1585 shared bikes in Figure 6(a) and 1520
shared bikes in Figure 6(b).

We used the clustering algorithm to analyze the usage
data of shared bikes at 9 am in the main area of Beijing, to
obtain the location where the demand of shared bike is high.
To maximize the demand of users, 40 virtual stations were
deployed as black crosses in Figure 6(a).

Simultaneously, we also used the same clustering algo-
rithm to analyze the usage data of shared bikes at 9 pm to
obtain the location where the demand of shared bike was
high. To maximize the demand of users, 40 virtual stations
were deployed as black crosses in Figure 6(b), which is
different from Figure 6(a). Therefore, the results reveal that
FFBSSs’ virtual stations have dynamic merit that can satisfy
the users demand for different rush hours.

5.2.3. Diagram of Algorithm Convergence. In the experi-
ments, we used the clustering algorithm to analyze the usage
data of shared bikes at 9 am and 9 pm in the main area of
Beijing to obtain the diagram of algorithm convergence. Fig-
ure 7 is the diagram of algorithm convergence of Figure 6(a).
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Figure 7: Diagram of algorithm convergence of Figure 6(a) of virtual station.
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Figure 8: Diagram of algorithm convergence of Figure 6(b) of virtual station.

Figure 7 shows the result that the algorithm converges on the
5501st generation and the maximum value is 1281. Figure 8 is
the diagramof algorithm convergence of Figure 6(b). Figure 8
illustrates the result that the algorithm converges on 5062nd
generation and the maximum value is 1242.

5.2.4. Sensitivity Analysis of Quantity of Virtual Stations.
Further, we used the clustering algorithm to estimate the
optimal number of virtual stations to obtain the value of user
demand in different quantities of virtual stations.

Table 5 depicts user demand increasing owing to the
increase in the number of virtual stations. Avg 𝑌𝑖 is the ratio
of user demand to virtual station, which also denotes the
average user demand for each virtual station. The value of
Avg 𝑌𝑖 is maximum when the number of virtual stations is
40. Therefore, we set the number of virtual stations to 40 in
the main area of Beijing.

5.2.5. Comparison of the Performance of Different Algorithms.
We also compared our method with K-means algorithm. K-
means clustering is one of the most popular methods for data
clustering and classification. For a large number of highly
dimensional data, K-means can provide an efficient approach

to divide similar objects into the same cluster by minimizing
the global Euclidean distance. In our numerical experiments,
K-means randomly selected the points as initial means, and
the means of each cluster was recalculated until it could
satisfy the distance requirement of virtual stations of FFBSSs.

In contrast, our method selected a series of feasible
points as initial solution, which can dramatically enhance the
coverage rate of FFBSSs’ virtual stations. Furthermore, to be
compared with the clustering process of K-means method,
our method could recluster the objects by maximizing the
user demand of each FFBSS’s virtual station. Table 6 depicts
the results of maximizing user demand using our method
outperforming that of K-means when the number of virtual
stations was 40.

6. Conclusions

This article proposed a method for optimizing the location of
virtual stations of FFBSSs to achieve the demand of people
during morning and evening rush hours. Compared to the
fixed stations, the location of virtual stations could change as
the user demand changes. Virtual stationsweremore effective
than fixed stations. The problem was solved by a MILP
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Table 5: Computation results of different quantities of virtual stations.

Computation results of data at 9 a.m.
Virtual stations 30 35 40 45 50
User demand (∑𝑌𝑖) 940 1105 1281 1350 1394
Avg 𝑌𝑖 31.33 31.57 32.03 30.00 27.88
Computation results of data at 9 p.m.
Virtual stations 30 35 40 45 50
User demand (∑𝑌𝑖) 920 1076 1242 1321 1356
Avg 𝑌𝑖 30.67 30.74 31.05 29.36 27.12

Table 6: Computation results of different algorithm.

Computation results of data at 9 a.m.
Algorithm Our method K-means
User demand ( ∑𝑌𝑖) 1281 995
Computation results of data at 9 p.m.
Algorithm Our method K-means
User demand ( ∑𝑌𝑖) 1242 1001

model and a clustering algorithm based on the maximization
of user demand. We further tested our proposed method
using data from Mobike. The results demonstrated that our
method could effectively obtain the location of FFBSSs’
virtual stations that could satisfy the user demand during the
morning and evening rush hours. We derived the rationality
of parameter setting through sensitivity analysis. By compar-
ing the performance of different algorithms, our method was
determined to be more effective than the K-means method.
According to the diagram of algorithm convergence, our
method could converge to a satisfactory value in limited
iterations.

This article presents three contributions as follows. First,
our method is superior to the CPLEX in CPU time, especially
for large data. Second, our method can better consider the
characteristics of virtual stations of FFBSSs than the existing
algorithms. Third, our method exhibits computational effi-
ciency.We could find a satisfactory value in limited iterations.
This practical method can be useful for strategic planning in
the companies of shared bikes.

In the future, we plan to extend our analysis to consider
user demand changes at different times and improve our
method to fit this dynamic adjustment of FFBSSs’ virtual
stations. For this purpose, we will also develop our method
to cluster objects without fixed cluster numbers.
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