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Abstract

A spatiotemporal approach that simultaneously utilises both spatial and temporal relationships is gaining scientific
interest in the field of traffic flow forecasting. Accurate identification of the spatiotemporal structure (dependencies
amongst traffic flows in space and time) plays a critical role in modern traffic forecasting methodologies, and recent
developments of data-driven feature selection and extraction methods allow the identification of complex
relationships. This paper systematically reviews studies that apply feature selection and extraction methods for
spatiotemporal traffic forecasting. The reviewed bibliographic database includes 211 publications and covers the
period from early 1984 to March 2018. A synthesis of bibliographic sources clarifies the advantages and
disadvantages of different feature selection and extraction methods for learning the spatiotemporal structure and
discovers trends in their applications. We conclude that there is a clear need for development of comprehensive
guidelines for selecting appropriate spatiotemporal feature selection and extraction methods for urban traffic
forecasting.
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1 Introduction
Spatiotemporal traffic forecasting is based on advanced
models that utilise traffic flow information both in
spatial and temporal dimensions. Accurate identification
of the spatiotemporal structure is an emerging problem
of modern forecasting methodologies. Although depend-
encies between traffic flows at connected road network
segments are perfectly supported by the traffic flow the-
ory, their capture for forecasting purposes is a challen-
ging task. Spatiotemporal relationships are not limited
by road connectivity but include links between remote
(in space and time) points that appear owing to common
patterns and interdependence of traffic flows and indir-
ectly connected urban road segments. We consider iden-
tification of spatiotemporal dependencies as a special
case of the feature selection problem. The objective of

feature selection is to identify a subset of relevant model
inputs (features) that simplify the model structure and
estimation procedure, yet still provide good forecasting
results.
This paper reviews studies that empirically utilise spa-

tiotemporal traffic flow forecasting models, paying spe-
cial attention to applied feature selection and extraction
(FSE) methods. Thus, four main questions for this re-
view are:

� Which FSE methods are applied for spatiotemporal
structure identification in empirical traffic
forecasting studies? What are the recent trends in
this area?

� What is the role of spatiotemporal FSE methods in a
methodology of urban traffic forecasting? Is this role
acknowledged in existing literature?

� How are spatiotemporal traffic forecasting
methodologies empirically covered by different FSE
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methods? Are there methodological gaps that should
be covered?

� Do the researchers have principles or guidelines for
selecting a proper spatiotemporal structure to
measure spatial dependencies between traffic links?

Answering these questions, we reveal uncovered meth-
odological areas of spatiotemporal traffic forecasting and
suggest directions for future research.
The methodology of the review is based on an inten-

sive literature search and critical analysis. We executed a
critical review of a large number of publications to re-
duce the risk of review bias and missed methodological
branches.
This paper is closely linked with several existing re-

views but has its own focus and advantages. Firstly, Vla-
hogianni et al. [1] provided a comprehensive review of
67 papers focussed on traffic forecasting objectives and
methods. Although this review is not focussed on spatio-
temporal models, it can be used to observe the progress
that the scientific community made from 2004. Later,
the same authors [2] suggested the identification of spa-
tiotemporal relationships as an important research direc-
tion in traffic flow forecasting. Haworth, in another
related review [3], evaluated different types of spatiotem-
poral structures and covered 39 publications. Finally,
Ermagun and Levinson [4] presented an extensive review
of 130 publications on spatiotemporal traffic forecasting.
The methodology of urban traffic forecasting includes
analysis and decision making on many critical aspects –
forecasting horizon, utilised model and its specification,
look-back time interval, temporal resolution of traffic
data, measurement of forecasting accuracy, periodic
structure of traffic flows, and recurring/abnormal traffic
conditions, amongst several others. Each review focussed
on its own set of methodological issues, and the novelty
of this review also lies in the set of covered topics – we
concentrate on spatiotemporal structure identification
(via FSE) as a crucial step in spatiotemporal traffic fore-
casting. Selection of spatiotemporal FSE methods is
closely related to the utilised forecasting model, its top-
ology, and the size of an analysed road network, and
these characteristics are part of the main focus of this
review.
The remainder of this paper is organised as follows.

Firstly, we provide a detailed description of the review
methodology. Secondly, we present the definition of
the spatiotemporal structure and substantiate the
problem of spatiotemporal FSE. Thirdly, we classify
existing FSE methods and present a review of their
use for spatiotemporal traffic forecasting. Fourthly, we
present a review of applied methodologies based on
utilised FSE methods to discover potential gaps in the
literature. Finally, we summarise the current state of

the reviewed area and propose several future research
directions.

2 Methodology of the review
2.1 Search strategy
The literature on FSE in traffic modelling and forecast-
ing is very extensive. The scope of this review is limited
to the following dimensions:

(1) Focus on simultaneous utilisation of spatial and
temporal dimensions of traffic flows. Use of the
temporal dimension is typical in traffic forecasting,
but the spatial dimension (relationships amongst
traffic flows at different spatial locations) is ignored
in many studies. We included only publications
where the spatial dimension is explicitly used in the
empirical part of the research (we excluded studies
that state a potential utility of spatiotemporal
information, but do not use it in practice).

(2) Focus on empirical applications of spatiotemporal
FSE. Thus, we excluded purely theoretical research
studies from this review that rarely deal with
empirical FSE problems. However, we did include
studies that use simulated traffic flow data for
analysis of FSE and apply the forecasting
methodology.

(3) Focus on short-term traffic forecasting. We
concentrated on studies devoted to short-term
traffic forecasting at specified spatial locations;
therefore, we excluded studies on a wide range of
traffic modelling problems (accident prediction,
missing data imputation, travel time prediction, origin-
destination matrix estimation, and construction of
fundamental diagrams) where spatiotemporal
information is also naturally utilised. This exclusion
was implemented manually so that we include studies
that oriented on another traffic modelling problem
(e.g. routing) but solve it via spatiotemporal
forecasting.

(4) Focus on the stochastic nature of spatiotemporal
dependencies. We assumed that the
spatiotemporal structure of traffic flows is
dynamic and stochastic; therefore, it should be
estimated on the basis of traffic data. Thus, we
excluded studies where spatiotemporal
relationships are predefined (e.g. studies based on
kinematic wave models).

(5) Focus on vehicle traffic flows. We excluded studies
devoted to bicycles, pedestrians and public
transport modelling.

To identify relevant studies, we utilised the following
academic search engines: TRID, Scopus, IEEE Xplore,
IET Digital Library (search by titles and abstracts),
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Google Scholar, and Science Direct (full-text search).
The general search pattern was as follows:

spa� tempor� traffic forecast� OR predict�ð Þ;

where * is a wildcard and OR is a logic operator. This
pattern covers different references to the spatial dimen-
sion (“spatial”, “spatiotemporal”, “space”) and different
references to forecasting (“forecast”, “forecasting”).
The search yielded 1186 articles, which were further fil-

tered on the basis of the five criteria specified above. Filtering
was performed manually, but we recommend the following
set of exclusion keywords that can be used for automatic fil-
tering with a low chance of missing a relevant paper:

NOT in
�
“animal�”; “bus”; “bicyc�”; “CO2”; “accident�”;

“incident�”; “generation”; “demand”; “accessi�”;
“household�”; “freight�”; “emergenc�”; “air�”;
“emiss�”; “wind�”; “parking�”; “sharing”

�

The filtered list of publications was complemented by
results of forwards and backwards reference snowballing.
The resulting bibliographic database includes 211 publi-
cations (135 journal articles, 64 conference papers, and
12 theses/scientific reports). Despite the fact that the
bibliography appears to be too extensive for a review, we
decided to include all publications but limit the discus-
sion regarding FSE methods to groups of studies. A
complete list of publications, presented in the Appendix,
can be useful for further review of other aspects of spa-
tiotemporal traffic forecasting. Analysed information in
every publication includes the following:

� applied spatiotemporal methodology(ies),
� utilised FSE methods, separate for spatial and

temporal dimensions,
� topology of the analysed road network segment,
� number of spatial points (sensors or links) in the

analysed road network segment,
� alternative non-spatial models,
� data source (country), and
� number of citations.

The last point was included for information purposes
only and was not used for publication filtering.
The dynamics of the publication numbers from 1984

to 2017 are presented in Fig. 1 and illustrate the growing
interest in spatiotemporal traffic forecasting.
Taking into account the observed trend and number

of publications in 2018 (13 publications from January to
March 2018), we expect further growth of scientific
interest in this field.
Reviewing the publications, we focused on two key

elements:

� Applied forecasting methodology (spatiotemporal
models and their alternatives)

� Utilised FSE methods

The range of utilised methodologies is fairly large;
amongst the most popular we note: feed-forward neural
networks (FFNN), k-nearest neighbour (KNN) regression,
support vector regression (SVR), Bayesian networks (BN),
univariate autoregressive distributed lag (ARDL) model,
vector autoregressive (VAR) model, and space-time autore-
gressive integrated moving average (STARIMA) model.

Fig. 1 Dynamics of related publications
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The list of applied spatiotemporal FSE methods is also
wide, and its analysis requires preliminary classification.
Analysing the topology of the analysed road segment,

we classified the studies into three possible network
configurations:

� Sequential allocation of spatial points along a freeway,
� Sequential allocation of spatial points along an

arterial road,
� Complex network of spatial points

We did not use the conventional traffic engineering
road hierarchy for separating freeways and arterial roads;
instead, we analysed the frequency of intersections and
driveways on the analysed road segment and classified
the topology as a freeway if this frequency was relatively
low. Any non-sequential placement of spatial points was
classified as a network topology.
The dynamics of the analysed topologies are presented

in Fig. 2.
We preliminarily conclude that the growing number

of studies devoted to spatiotemporal urban traffic fore-
casting in complex non-sequential spatial settings re-
quire specific attention to spatiotemporal structure
identification.

2.2 Definition of the spatiotemporal structure
Firstly, we provide a formal definition of the spatiotem-
poral structure to be identified by FSE methods. Assume
we have n spatial locations (sensors, road links, clusters
of links) (i = 1,.., n) that are observed during T time pe-
riods (t = 1,.., T) (in this paper we consider a discrete
representation of the spatiotemporal structure of traffic

flows). Observed data for the target indicator y (e.g. traf-
fic volume, speed) is presented as an n × T matrix, ={yi,
t}, that may contain missing values. Thus, the goal of
one-step ahead forecasting is estimation of the function f
that maps Y to values of the target indicator for a time
period (t + 1) for all spatial locations i: ŷi;tþ1 ¼ f ðY Þ.
Following George and Kim [5], we define the spatio-

temporal network (STN) as a dynamic structure of de-
pendencies that includes links between spatial locations
at different time periods and may change over time. An
STN structure may be represented in the form of a
weighted time-expanded graph (Fig. 3).
We assume that weights of the time-expanded graph

represent the power of the relationship between two
graph nodes. Such weights are normally considered as
not exogenously provided and their estimation is in-
cluded in modelling methodologies.
Note that the structure of dependencies in the STN

does not necessarily correspond to the physical road net-
work structure, because dependencies generally vary for
different levels of time aggregation and may appear even
between remote road links.
For modelling purposes, the STN is usually presented in

matrix form. Let θ represent a set of dependencies for the
spatial location i at the time period t as an STN matrix:

θi;t ¼
θ1;1 θ1;2 ⋯ θ1;t−1
θ2;2 θ2;2 … θ2;t−1
⋮ ⋮ ⋱ ⋮

θn;1 θn;2 … θn;t−1

0
BB@

1
CCA

Coefficients in the STN matrix represent weights in
the time-expanded graph and conventionally are set to

Fig. 2 Dynamics of analysed road network topologies
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zero for absent dependencies (missing edges). We refer
to the zero-valued coefficients in STN matrices as STN
sparsity. Note that we distinguish between STN matrices
and matrices of spatial weights, as is common in
empirical research. We use the “spatial weights” term for
exogenous information regarding spatiotemporal de-
pendencies as acknowledged in some methodologies
(e.g. STARIMA); whereas, STN matrices are estimated
by the methodology being applied. Also, note that some
methodologies (e.g. spatial panel models) allow spatial
dependencies within the same time moment; therefore,
the STN matrix θi, t will include one additional column
with coefficients for dependencies at time period t. In
this study, we consider traffic forecasting methodologies
that usually do not rely on the availability of any infor-
mation at the time period (t + 1); therefore, we continue
with STN matrices as defined above for simpler
formulations.
A complete STN structure includes the STN matrices

for all spatial locations at all time periods: STN = {θi, t}.
For example, for the STN structure presented on Fig. 3,
the STN matrices are:

θ1;2 ¼
1
0
0

0
@

1
A; θ2;2 ¼

0
0:3
0:7

0
@

1
A; θ3;2 ¼

0
0
1

0
@

1
A;

θ1;3 ¼
0 0:2
0:2 0:6
0 0

0
@

1
A; θ2;3 ¼

0 0
0 1
0 0

0
@

1
A; θ3;3 ¼

0 0
0 0
0 1

0
@

1
A

We will refer to the STN structure as static if a set of
STN matrices does not depend on t: θi, t = θi for all t.
Otherwise, the STN structure is considered as dynamic.
It should be noted that the total number of parameters in

the STN structure is extremely large: the maximum total
number of non-zero coefficients for the time moment t is
(t − 1) × n2 and for the complete structure is (t − 1) ! × n2.

Taking into account that modern intelligent transportation
systems (ITS) include several thousand detectors (spatial lo-
cations), the total number of coefficients could reach sev-
eral millions. Dealing with such a large number of
parameters is impractical owing to the well-known curse of
dimensionality problem, and thus, the problem of selection
of the most important features is critical in spatiotemporal
traffic flow forecasting.

3 Results and discussion
3.1 Review of spatiotemporal FSE methods
The range of utilised FSE methods is extensive. Follow-
ing the classification of feature selection methods by
Chandrashekar and Sahin [6], we conventionally divided
FSE methods into the following five classes:

(1) Exogenous feature filtering methods that utilise
information regarding dependencies in traffic flows
explicitly provided by a researcher.

(2) Endogenous feature filtering methods that select the
most informative features using traffic data Y. Note
that both exogenous and endogenous filtering
methods select spatiotemporal features before
application of forecasting models.

(3) Wrapper feature selection methods that use
information about forecasting model performance
to determine the optimal set of features.

(4) Embedded feature selection methods that consider
feature selection as an internal process of a
forecasting methodology.

(5) Dimension reduction methods that reduce the
dimensionality of the problem on the basis of
clustering or feature extraction techniques. Within
the scope of this review, we consider dimension
reduction as an alternative technique to learn
spatiotemporal relationships that are useful for
traffic forecasting.

Note that the presented classification does not corres-
pond to different approaches or data analyses (such as
supervised or unsupervised learning) but is based on a
point of the forecasting process, where the STN is iden-
tified. Exogenous feature filtering is executed before ana-
lysis of traffic flow data; endogenous feature filtering and
dimension reduction methods use traffic flow data but
are applied before construction of a forecasting model;
embedded feature selection is executed within a fore-
casting model; and wrapper feature selection is based on
the evaluation results of the forecasting model. FSE
methods of the different classes may be applied simul-
taneously to ensure a maximally sparse STN, but this is
rarely utilised in existing studies. Note that spatiotempo-
ral FSE methods may act in two dimensions—spatial and
temporal; therefore, we review them separately for all

Fig. 3 STN as a time expanded graph
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the classes. A complete list of FSE methods utilised for
spatiotemporal traffic forecasting is presented in the Ap-
pendix and summarised in Table 1.
The dynamics of different classes of FSE methods in

the spatial dimension are presented in Fig. 4.
Exogenous feature filtering is a prevailing class of

methods used in 57% of the analysed studies, but its per-
centage is gradually decreasing (it is less than 50% in the
past 5 years). The percentage of other classes that repre-
sent the importance of various FSE methods for modern
forecasting methodologies is increasing.

3.1.1 Class 1: Exogenous feature filtering methods
The most natural explanation of spatiotemporal relation-
ships in traffic flow is based on cars’ movement: if a car
is observed at a spatial point, it is expected to be ob-
served later at another, downstream point. This fact cre-
ates a background for the most popular exogenous
feature filtering approach (utilised in 44 studies) – to
limit spatiotemporal dependencies to one direct up-
stream neighbour location. This approach perfectly
matches the classic macroscopic traffic flow theory, and
its effectiveness for traffic volume prediction is sup-
ported by many studies. For other traffic characteristics
such as speed or travel time, the direction of this rela-
tionship could be different—congestion at a downstream
spatial location affects upstream traffic flow; therefore,
four studies consider selection of a direct downstream
neighbour as a separate alternative specification of spa-
tiotemporal links, and 34 studies simultaneously con-
sider direct upstream and downstream neighbours.
Approaches based on direct neighbours work well if two
basic conditions are satisfied: 1) a time delay interval
(time lag) of phenomena (traffic volume, speed, etc.) be-
tween spatial locations is identified correctly, and 2) the
analysed road segment is a linear arterial road without
traffic signals or ramps. The first issue can be solved
within modern forecasting methodologies, but the sec-
ond one is very limiting for real world urban road net-
works. A potential workaround is to include the number
of intersections (of different types) into the model [7],
but the general treatment is to model links between
neighbouring spatial locations via independent model
parameters. Thus, the Bayesian network, which allows a
separate identification of every link, is the most popular
modern methodology (10 studies) utilising direct
neighbour-based spatiotemporal FSE.
A natural extension of the direct neighbour-based ap-

proach is simultaneous utilisation of several upstream
locations (13 studies) or a predefined spatial “window”
of upstream and downstream locations (8 studies). This
approach is more flexible with respect to time lag identi-
fication, but in the case of a large interconnected net-
work, it is highly dimensional and requires additional

filtering of features. Convolutional neural networks, a
modern deep learning approach applied in four studies
[8–11], utilise a predefined spatiotemporal window as an
input and implement further FSE by embedded
mechanisms.
Many researchers (26 studies) simultaneously utilised

data from all available spatial locations, but given that
most case studies included only a limited road network
segment, this approach can be considered as a special
case of the “window” feature selection.
Several researchers (six studies) utilised travel times

between locations to reduce the number of spatial links
(by excluding locations that are too close and too far to
have an explainable influence within a specified time
lag). For instance, Min and Wynter [12] utilised this ap-
proach to limit the number of coefficients in their vector
autoregressive model and found it beneficial for traffic
forecasting accuracy. If travel times between spatial loca-
tions are assumed as equal, these restrictions could allow
use of a higher order neighbourhood (i.e. neighbours of
neighbours are included in relationships for the second
time lag). Higher order neighbours are typical in STAR-
IMA models and were utilised in seven studies, based on
this methodology.
An alternative exogenous feature filtering approach,

which is not directly based on connections between
spatial locations, has been suggested by Ermagun and
Levinson [13–15]. The introduced network weight
matrix utilises graph characteristics of the road network
such as betweenness centrality and vulnerability to dis-
cover complementary and competitive spatial links. Net-
work weights can be purely graph-based or enhanced by
associated characteristics of traffic flows (e.g. weighted
by traffic volume). Associated links are not necessarily
connected directly, thus, such spatiotemporal relation-
ships can reach beyond the bounds of the physical road
network.
Finally, exogenous filtering of spatiotemporal relation-

ships can be performed on the basis of individual cars’
routes. Stathopoulos, Dimitriou, and Tsekeris [16, 17] re-
port application of a micro-simulation procedure for a
detailed analysis of spatiotemporal links under different
traffic conditions. To the best of our knowledge, there
are no studies that utilise real cars’ routes for FSE pur-
poses, although the growing availability of probe cars’
data creates the possibility of new developments in this
direction.
Considering the temporal dimension, the most popular

exogenous feature selection method (utilised in 95 stud-
ies) is to set a maximum time lag T and include all lags
{1, 2, … ,T} in the model. The maximum time lag is usu-
ally based on the size of an analysed road segment (to
allow cars to leave the segment before the specified
period). This approach works well for small road
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Table 1 Spatiotemporal FSE methods

Method Short description Number of studies

Spatial Temporal

Exogenous filtering methods

All All spatial locations within the research road segment 26 –

All upstream All upstream spatial locations within the research road segment 13 –

Upstream Only direct upstream neighbour(s) 44 –

Upstream + downstream Only direct upstream and downstream neighbours 34 –

Downstream Only direct downstream neighbour(s) 4 –

Higher order Higher order neighbours (neighbours of neighbours), starting from the second
order

7 –

Window Several upstream and downstream neighbours 8 –

Predefined maximum lag A set of lags {1, 2, … , T}, where T is a predefined maximum time lag – 95

Travel time With one of the dimensions (spatial or temporal) fixed, the other can be limited
by travel time between spatial locations

6 6

Micro-simulation Estimate spatiotemporal relationships using individual cars’ routes 2 –

Network characteristics Use network characteristic (i.e. betweenness centrality and vulnerability) to
discover complementary links

3 –

Endogenous filtering methods

CCF Cross-correlation function between traffic at different spatial locations 32 26

Graphical LASSO Graphical least absolute shrinkage and selection operator 4 1

Granger causality Granger causality tests, incl. Vector autoregressive model 2 2

LARS Least-angle regression 3 2

MARS Multivariate adaptive regression splines 3 3

Custom Authors’ custom formulas (e.g. a combination of physical distance and correlation
between spatial locations)

9 2

Wrapper methods

Empirical Empirical feature selection based on the forecasting model characteristics
(information criterion, RMSE, permutation feature importance, etc.)

12 50

GA Genetic algorithm with spatiotemporal links in a chromosome and the model
performance is based on a fitness function

5 3

PSO Particle swarm optimisation with spatiotemporal links in a candidate solution 2 2

PSO-GA Combination of genetic algorithm and particle swarm optimisation 1 1

Embedded methods

LASSO Least absolute shrinkage and selection operator (L1-norm loss function)
regularisation

7 3

MCP, SCAD Maximum concave penalty regularisation
Smoothly clipped absolute deviation regularisation

1 1

SRM Structural Risk Minimisation 1 1

Regularised kernel Regularised kernel function (i.e. Laplacian) 1 1

RBM Restricted Boltzmann machine, usually as part of a deep learning network 2 2

Sparse AE Sparse autoencoders, usually as part of a deep learning network 1 1

LSTM Long short-term memory unit stores temporal information for either long or
short time periods

– 5

Internal Other methodology-specific regularisation – 2

Dimension reduction

Spatial clustering/ Temporal aggregation Clustering of spatial locations using different methods (self-organising maps,
empirical grouping, etc.)
For temporal dimension – selection of an appropriate temporal aggregation level

12 1

PCA-EVD Principal component analysis, based on eigenvalue decomposition 9 8
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segments and regular traffic conditions but is not always
suitable for large networks. The effects of congestion in
a segment could continue for 2–3 h, and thus, the re-
quired maximum time lag for moderately detailed 5-min
time spans is quite large. If related spatial locations are
predefined, the number of time lags can be limited by
the travel time (to exclude excessively fast and slow ef-
fects). The former approach is utilised in six analysed
studies.

3.1.2 Class 2: Endogenous feature filtering methods
In contrast to exogenous feature filtering methods, en-
dogenous methods are based on information regarding traf-
fic flow at different spatial locations. The most widely used
statistical technique is based on correlation analysis and the
cross-correlation function (CCF). The CCF returns correl-
ation coefficients between traffic flows at different spatial
locations with specified time lags and can be used for iden-
tification of spatiotemporal relationships. Note that CCF is
not based on physical connectivity of the road network and
thus it can discover potential relationships between remote
spatial locations (e.g. simultaneous traffic flows from differ-
ent directions to the city centre every morning or to a

stadium on match days). Authors in 21 studies utilise CCF
for identification of both spatial and temporal relationships,
six studies use it for temporal analysis and 11 studies for
spatial dimensions. Application of the CCF function re-
quires definition of a threshold value to exclude insignifi-
cant or weak spatial relationships. The formal Student’s test
for insignificance of a correlation coefficient is not always
appropriate, because this could lead to too many spatiotem-
poral links. Thus, many authors use a predefined threshold
to reach a required level of STN sparsity (e.g. Li et al. [18]
used a 0.94 value for the correlation coefficient). The mod-
ern graphical least absolute shrinkage and selection oper-
ator (LASSO) algorithm allows automatic identification of
the most informative spatiotemporal links via estimation of
the precision matrix (an inverse of the covariance matrix)
based on l1-regularisation. The graphical LASSO is applied
in four studies [18–21] for filtering spatial relationships, but
to the best of our knowledge, only Haworth and Cheng
[20] applied it in both spatial and temporal dimensions sim-
ultaneously. The results of the graphical LASSO application
are promising, but application of other forms of regularisa-
tion (i.e. the maximum concave penalty) is also recom-
mended by authors [19].

Table 1 Spatiotemporal FSE methods (Continued)

Method Short description Number of studies

Spatial Temporal

PCA-SVD Principal component analysis, based on singular-value
decomposition

4 2

LSDA Local shrunk discriminant analysis 1 1

NMF Non-negative matrix factorisation 2 1

SSA Singular spectrum analysis 3 3

Fig. 4 Dynamics of FSE methods’ usage
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Application of the CCF function for non-stationary
time series may lead to a well-known problem of spuri-
ous correlations and incorrect conclusions reached re-
garding significant spatial relationships. To overcome
this problem, Hasan and Kim [22] and Pavlyuk [23] ap-
plied Granger causality tests for identification of spatio-
temporal relationships.
Another endogenous feature filtering approach is based

on a preliminary application of regularised regression
models. Least-angle regression (LARS) is an l1-norm--
based algorithm that produces a full piecewise linear solu-
tion and excludes weak predictors. Recently, it was
successfully applied to spatiotemporal FSE by Polson and
Sokolov [24] and Yang et al. [25, 26]. Note that although
the LARS algorithm and LASSO regularisation share the
same principle, we distinguish them within this study
based on the point of their application—outside of the
model for LARS and within the model for LASSO. Thus,
the LASSO approach will be separately discussed with
other embedded feature selection methods.
Another technique, multivariate adaptive regression

splines (MARS), also was successfully applied by Xu et
al. [27, 28] and by Ye et al. [29]. Xu et el. [27] applied
MARS to preliminary feature selection for the SVR
model, while authors of other studies applied MARS dir-
ectly to traffic flow forecasting.
Finally, several recent studies discover spatiotemporal

relationships on the basis of special methods or indica-
tors, designed by the authors to apply deeper analysis of
traffic similarities. Dong et al. [7] constructed an indica-
tor that simultaneously includes adjacency of spatial lo-
cations – the shortest distance and number of
intersections between them; Zhu et al. [30] utilised simi-
larity of traffic flows at different spatial locations; Cheng
et al. [31] weighted the similarity by the distance be-
tween links; Deng and Jiang [32] suggested empirical as-
sociation rules; Pascale and Nicoli [33] utilised a mutual
information indicator; Chan et al. [34] applied the
Taguchi method; Cai et al. [35] constructed an indicator
using the distance and a connective grade of spatial loca-
tions and correlations for traffic flows; Wu et al. [36]
suggested a custom bi-square function; Chen et al. [37]
applied weighted traffic flows as a similarity metric.

3.1.3 Class 3: Wrapper feature selection methods
Wrapper feature selection methods are based on multiple
evaluations of a forecasting model for selection of an optimal
set of features. We consider traffic forecasting as the primary
research problem; therefore, the natural key performance in-
dicator is the model’s forecasting accuracy. Root mean
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are the most widely used
model performance indicators. All mentioned indicators esti-
mate the in-sample forecasting accuracy and can lead to

incorrect preference of overfitted models with too many spa-
tiotemporal relationships. Thus, many researchers penalise
the model’s complexity by applying information criteria
(Akaike or Bayesian). This approach is applied in most stud-
ies based on statistical forecasting models (VAR, STARIMA,
etc.). Another option is to apply a cross-validation procedure
(e.g. rolling window analysis [38]) to estimate the out-of-
sample model performance.
Given the performance indicator of a forecasting model

and repeated model evaluations, researchers apply different
techniques to find an optimal set of features. The majority
of researchers (50 studies) identify an optimal number of
time lags empirically (testing the forecasting model for dif-
ferent time lag values), and 12 studies utilised a similar
technique for the spatial dimension (e.g. using empirical
identification of an optimal number of upstream sensors
[38, 39]). In addition, many researchers (24 studies) com-
pared different exogenous and endogenous filtering
methods (e.g. network-connectivity versus CCF-based ap-
proaches), which can be considered as a special case of em-
pirical wrapper feature selection.
Many forecasting methodologies provide specific met-

rics to support a decision on feature exclusion. Statistical
methodologies apply hypothesis testing routines (i.e.
Student’s test) for identifying significant features; neural
networks allow estimation of elasticities of input compo-
nents [40]; and random forests include permutation im-
portance heuristics [41]. Using these metrics, researchers
can refine the feature set of the forecasting model.
High computational complexity is a well-known prob-

lem in wrapper feature selection methods, which is
widely solved by application of heuristic algorithms,
such as particle swarm optimisation (PSO) and genetic
algorithms (GA). Abdulhai et al. [42, 43] suggested ap-
plication of GA for selection of an optimal number of
upstream and downstream spatial locations (as well as
for other parameters of their neural network-based fore-
casting model). Recently GA were applied for spatial
[44–46] and temporal [47] feature selection. The PSO
approach was applied by Chan et al. [48, 49] and re-
cently combined with GA by Zheng et al. [50].

3.1.4 Class 4: Embedded feature selection methods
Embedded methods incorporate feature selection as part
of a forecasting model’s training process. The LASSO
approach is the most widely used in spatiotemporal traf-
fic forecasting (seven studies) and is based on the
l1-norm of spatiotemporal links:

l1 ¼
Xn
i¼1

XT−1
t¼1

θi;t
�� ��

The l1-norm in the Lagrangian form is included in the
objective function and ensures meaningful feature
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selection. Kamarianakis et al. [51] applied LASSO to
vector autoregressive models; Piatkowski et al. [52] uti-
lised LASSO and elastic net techniques to construct a
graphical (random field) model; Li et al. [53] and Zhou
et al. [54] executed preliminary feature selection and
constructed LASSO-regularised autoregressive distrib-
uted lag models. Haworth and Cheng [55] analysed alter-
native regularisation techniques, maximum concave
penalty (MCP) and smoothly clipped absolute deviation
(SCAD), and found MCP beneficial with respect to the
estimated STN sparsity.
Long short-term memory (LSTM) units are used in re-

current neural networks for automatic selection of an
appropriate temporal memory structure. Such units are
widely used for forecasting of time series with unknown
duration of time lags between important events and have
been effectively applied in several recent studies involv-
ing traffic flow [9, 11, 24, 56, 57].
Modern deep learning approaches allow a feature se-

lection mechanism to be embedded into the multi-layer
neural network architecture. Huang et al. [58] and Niu
et al. [59] applied restricted Boltzmann machines as
deep architecture components responsible for feature
selection. Alternatively, Lv et al. [60] included sparse
autoencoders that enforce encoding of the original set
of spatiotemporal links into a smaller set of features
(this approach works similar to dimension reduction
methods, described below).

3.1.5 Class 5: Dimension reduction methods
The feature selection methods described thus far are
based on identification of the most important spatiotem-
poral features (edges in the time-expanded graph). An
alternative approach is to apply a dimension reduction
technique to limit the number of time periods (layers) or
spatial locations (vertices in the time expanded graph).
The most widely used technique is spatial clustering and
followed by application of a forecasting model to clus-
ters. This technique is applied in 12 studies using differ-
ent clustering methods. Examples of these methods
include neural networks [61, 62], self-organising maps
[63], k-means [64, 65], simulated annealing [66], and
empirical spatial aggregation [67, 68].
Temporal aggregation is an issue widely addressed in

time series forecasting. Although the importance of cor-
rect temporal aggregation is widely acknowledged for
traffic forecasting [2], it has rarely been directly ad-
dressed in publications (recently, Fusco et al. [68] pro-
vided empirical evidence of temporal aggregation effects
on forecasting accuracy).
Feature selection methods and spatial clustering con-

sider STN identification as a step of forecasting. If STN
identification is not a required research result, then
standard feature extraction techniques (e.g. principal

component analysis based on eigenvalue decomposition
(PCA-EVD)) can be applied to prepare composed inputs
for an efficient predictor. Such composed inputs do not
represent the STN structure, but do include its most im-
portant aspects. PCA-EVD was used in nine studies as a
preliminary step for different forecasting models: neural
networks [69, 70], support vector regression [71–75],
Bayesian networks [76], and random forests [77].
PCA-EVD has also been used as a method for tensor de-
composition [78]. In most studies, PCA-EVD was applied
for both temporal and spatial dimensions simultaneously.
Amongst other dimension reduction methods, we note

applications of PCA based on singular-value decompos-
ition [74, 79–81], non-negative matrix factorisation [82,
83], local shrunk discriminant analysis [84], and singular
spectrum analysis [79, 85, 86].

3.2 Review of forecasting methodologies and their
coverage by FSE methods
The range of utilised spatiotemporal methodologies is
large and exceeds 30 methodologies, even after grouping
variants of the same methodology. Table 2 summarises
the methodologies, their modifications and their cover-
age by FSE methods. The methodologies are divided into
two classes – artificial neural networks (ANN) and stat-
istical models; this classification is conventional and is
based on the philosophy and primary goals of modelling
(statistical models focus on the structure of relationships
amongst inputs and outputs; whereas, ANN are usually
used to provide an efficient prediction by learning com-
plex relationships).
A detailed discussion of the presented methodologies,

their advantages and shortcomings, lies outside of this
review’s scope; therefore, we pay limited attention to the
dynamics of the different approaches’ applications and
primarily examine their coverage by FSE methods. The
dynamics of utilised spatiotemporal traffic forecasting
methodologies are presented in Fig. 5 (data is grouped
in two-year periods for better trend representation).
First, we note a considerable reduction of feed-forward

neural network (FFNN) applications in the spatiotempo-
ral domain (from more than 30% of studies in 2004–
2007 to less than 10% in 2017). This reduction is partly
explained by the replacement of FFNN with more ad-
vanced neural network architectures (recurrent neural
networks, time-delayed neural networks, and, recently,
by deep learning techniques). Advances of neural net-
works widely related to the FSE problem are recurrent,
time-delayed, LSTM, and other ANN that include em-
bedded mechanisms for automated feature selection.
The fact that such mechanisms directly improve the per-
formance of a pure FFNN (with complicated FSE and
the related curse of dimensionality) is supported by the
mentioned studies. Second, we note a significant growth
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of non-parametric statistical methods (especially k-nearest
neighbour regression, support vector regression, and
Bayesian networks). Third, multivariate parametric statis-
tical methods (VAR, STARIMA) also exhibit growth in
popularity. In our opinion, these trends are at least partly
related to advances in FSE methods. Different approaches
to FSE, discussed in the previous section, allow application

of modern statistical methodologies to forecasting of traf-
fic flows in large, highly interconnected urban road net-
works. In combination with the high flexibility of
non-parametric approaches, this leads to the observed
growth of statistical methodologies’ popularity in scientific
literature. Note that the observed popularity of method-
ologies is not directly related to the best forecasting

Table 2 Coverage of traffic forecasting methodologies by FSE methods

Model Short description Total number
of applications

Number of applications of FSE methods’ class

Exogenous
feature
filtering

Endogenous
feature
filtering

Wrapper
feature
selection

Embedded
feature
selection

Dimension
reduction

Artificial neural networks (ANN)

FFNN Feedforward ANN 41 34 4 9 – 6

TDNN Time-delayed ANN 9 13 – 2 – 2

RNN Recurrent ANN 9 13 2 – – 2

LSTM Long short-term memory ANN 6 3 2 – – 1

SSNN State-space ANN, incl. Time-delayed
state-space ANN (STDNN)

4 4 2 – – –

CNN Convolutional ANN 4 4 – – – –

DBN Deep belief network, incl. Restricted
Boltzmann machine (RBM), stacked
autoencoders (SAE), generative
adversarial networks (GAN)

4 1 – – 4 –

NARX Nonlinear autoregressive exogenous
ANN

3 3 – – – –

Other NN
architectures

Incl. counter-propagation ANN (CPNN),
fuzzy ANN, Graph ANN, general
regression ANN, group method of data
handling (GMDH)

8 4 1 2 – 1

Statistical models

BN Bayesian networks, incl. Conditional
random fields

30 15 8 2 1 6

DL/ARDL Distributed lags /autoregressive
distributed lag models, incl.
Smoothing models, chaos models

26 19 8 2 2 1

SVR Support vector regression, incl.
Extreme learning machine

23 8 2 4 2 11

KNN k-nearest neighbour regression 22 15 2 4 0 3

VAR Vector autoregressive models 21 22 5 – 2 –

STARIMA Space-time autoregressive integrated
moving average, incl. Generalised STARIMA

21 20 13 – – 1

Kernel Kernel regressions, incl. Gaussian process
regression (GPR)

10 7 4 – – –

State-space State-space models 10 8 – 2 – –

Tensor
models

Tensor completion models, incl. Probabilistic
principal component analysis (PPCA)

6 – 1 – – 6

Decision tree
models

Incl. random forest and regression tree 5 4 2 – 1 1

SCTM Stochastic cell transmission model 4 3 2 – – –

MARS Multivariate adaptive regression splines, incl.
Generalised additive model (GAM)

3 1 – – 2 –

Spatial panel Spatial panel models 2 1 2 – – –
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accuracy. Recently, the requirements for traffic forecasting
methodologies have shifted from forecast accuracy to
identification of causality. Thus, methodologies that allow
easier interpretation of the results and identification of the
underlying STN present an advantage in this regard.
Another trend in the scientific literature is growing

attention to the comparison of spatiotemporal meth-
odologies of different classes. Early studies compared
spatiotemporal specifications of a selected model with
non-spatial baseline models. Vlahogianni et al. [46]
were the first to compare the spatiotemporal FFNN
with the spatiotemporal statistical (state-space) model.
The number of studies with such comparisons was
limited to eight studies until 2015, but during the last
3 years, 14 of 67 studies (21%) directly compare spa-
tiotemporal models of different classes. Nevertheless,
such comparisons were executed for different case
studies (road network segments) and the findings are
contradictory. Preferred spatiotemporal FSE is natur-
ally a function of a selected methodology, topology
and size of the road network, temporal resolution of
traffic data, forecasting horizon, and other methodo-
logical issues, and identification of this function in
the form of guidelines appears to be impossible based
on the limited existing evidence. Development of a
framework for the careful comparison of different
methodologies (similar to the famous M-competitions
[87]) seems extremely important for further methodo-
logical development of spatiotemporal traffic flow
forecasting.
Coverage of methodologies by different FSE method-

ologies is not uniform. Figure 6 presents the distribution
of different FSE methods over the set of methodologies.

The diagram presents a wide range of uncovered areas
that can be considered as potential research directions.
Note that not all weakly covered areas make sense or
would be considered fruitful for future studies; therefore,
we primarily note a lack of general guidelines for select-
ing spatiotemporal FSE methods.
Exogenous feature filtering is the most widely used ap-

proach in almost all forecasting methodologies, except
in the SVR, DBN and tensor decomposition models. The
use of other FSE methods for DBN and tensor decom-
position models is naturally explained by their structure,
but the significant number of SVR applications with
non-exogenous FSE can be speculatively explained by
the significant improvement of empirical results ob-
tained by applying FSE methods from other groups. This
conclusion is also supported by the growing total share
of non-exogenous FSE, as presented in Fig. 4.
Statistical methodologies are better covered by different

FSE methods; whereas, there is a lack of such applications
for ANNs. ANNs are, especially, weakly covered by en-
dogenous feature filtering methods (11 studies for ANN
versus 49 studies for statistical models). Partly this fact is
explained by the “black box” approach that is natural for
ANN structures based on an implicit FSE in the ANN
training process. This approach has evident shortcomings,
especially taking into account that the goal of modern
forecasting models is not limited to the forecasted values
themselves, but also includes revealing casual relation-
ships. This statement is empirically supported by develop-
ment of deep learning architectures that explicitly contain
FSE mechanisms (e.g. in the form of restricted Boltzmann
machines or autoencoders, as described in the previous
section).

Fig. 5 Dynamics of spatiotemporal traffic forecasting methodologies
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In contrast, wrapper feature selection methods are more
frequently used in ANN than in statistical methodologies.
Application of evolutionary algorithms for generating
ANN (neuro-evolution) is an emerging methodological
trend, but it appears that GA application with statistical
methods is an under-researched area in the spatiotempo-
ral traffic forecasting field. In particular, to the best of our
knowledge, there are no applications of wrapper feature
selection for the popular VAR and STARIMA models.
Applications of dimension reduction methods are dis-

tributed more uniformly amongst methodologies, with
the only notable exception being SVR. There are several
applications where SVR is combined with clustering or
PCA-based dimension reduction; therefore, SVR has re-
ceived the highest coverage by the various feature selec-
tion methods generally.
Finally, we note that there is a lack of systematic empir-

ical research on FSE methods in spatiotemporal forecast-
ing models. In summary, 80% (170 studies) consider only
one approach to spatiotemporal feature selection, 7% (15
studies) apply several methods within the same class (e.g.
different dimension reduction techniques), and 10% (20
studies) compare a pair of selected exogenous and en-
dogenous methods (e.g. CCF versus upstream/down-
stream connectivity). Amongst the remaining six studies,
Hu et al. [63] combined a clustering technique using
self-organising maps and their physical connectivity in an
FFNN predictor; similarly, Lu et al. [66] consequently ap-
plied clustering of spatial locations and CCF-based feature
selection; Niu et al. [59] and Tan et al. [79] used CCF for
preliminary feature filtering, and RBM and SVD (respect-
ively) for second-stage feature selection; Gebresilassie [72]
compared linear regression features with exogenously

selected and PCA-generated features; and Schimbinschi et
al. [88] combined road connectivity and CCF-based fea-
ture selection with structural risk minimisation regularisa-
tion (embedded feature selection). Taking into account a
very limited number of studies that compare different FSE
methods and potential combinations of methods from dif-
ferent classes, we conclude that this represents an exten-
sive uncovered area for further research.

3.3 Spatiotemporal FSE applied in related areas
This literature review is limited to spatiotemporal FSE
methods that have already been applied to urban traf-
fic forecasting. However, there are several other areas
where spatiotemporal modelling is widely used and
where the problem of spatiotemporal FSE is emerging.
Namely,

� Energy and electricity systems, e.g. solar and wind
energy. Spatiotemporal solar forecasting models use
spatially distributed solar radiation power data to
enhance forecasting at a given site [89], and wind
speed and power forecasting are widely used for
wind turbine placement and supply planning [90].
Similar to traffic models, solar and wind power
production spatiotemporal data are usually
discretised in space and time (obtained in
temporarily aggregated form from a discrete number
of spatially distributed sensors). Similar data
structures lead to similar methodological issues and
solutions, including the problem of spatiotemporal
FSE. Many of the methodologies discussed in this
review have also been applied or could be applied to
energy system forecasting [91].

Fig. 6 Coverage of methodologies by FSE methods
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� Image and video processing. Similar to traffic flow, a
video stream can be considered as spatiotemporal
data (a temporal sequence of two-dimensional
frames), and thus, the problem of learning its in-
ternal relationships is very similar to spatiotemporal
FSE for traffic flow. The problem of forecasting in
this case takes the form of video inpainting (recon-
structing lost or deteriorated parts of a video stream)
or motion detection and prediction (e.g. computer
vision). To the best of our knowledge, most popular
methods of spatiotemporal FSE for video processing
belong to embedded feature selection, as categorised
in this review (e.g. LASSO and LARS regularisation)
[92]. There are also several specific methods such as
sparse dictionary learning [93] applied in video pro-
cessing that are rarely used for traffic forecasting.
Adopting these methods for spatiotemporal traffic
forecasting is possibly a promising research
direction.

Other application areas where spatiotemporal models
play a crucial role are atmospheric and hydrological sci-
ences (e.g. meteorology, climatology and ecology). Dy-
namic models of flow (e.g. kinematic waves), inherited
from atmospheric sciences, are widely adopted for traffic
forecasting. Spatiotemporal relationships in these models
are presented in the form of partial differential equations
and usually are not considered as stochastic. Thus, al-
though the methods are promising, we do not include
them within the scope of this review.
To the best of our knowledge, there are no published

literature reviews on spatiotemporal FSE involving mul-
tiple areas/disciplines. Merging of methodologies and ex-
perience from different applied areas is an important but
extensive research direction.

3.4 Selecting an approach to spatiotemporal structure
identification
The choice of an appropriate method for identification
and weighting of spatial and spatiotemporal relationships
is a critical requirement for urban traffic forecasting. To
the best of our knowledge, there are no methodologies
or guidelines for solving this problem. A list of biblio-
graphic sources, covered by this review, contains a very
limited number of research studies where different ap-
proaches to identify spatiotemporal relationships were
compared and proper conclusions regarding their applic-
ability were made. Thus, development of guidelines for
spatiotemporal FSE is an important advantage that could
not be properly accomplished on the basis of our litera-
ture review. The best result is noting the actual method
choice made by researchers, and assuming that this
choice is well-grounded and optimal for the analysed
spatial settings (which in general may not be true).

To discover clues for preferred spatiotemporal FSE
methods, we clustered all bibliographic sources on the
basis of three variables – utilised spatiotemporal model,
analysed road topology (sequential freeway, sequential
arterial road or network), and size of the selected road
network fragment (number of spatial links). Results of
the clustering are presented in Table 3 and illustrated in
Fig. 7.
We clustered application evidence of different spatio-

temporal models; therefore, if a bibliographic source
contains results for several models, we consider them as
separate observations (393 spatiotemporal models in 211
sources). The number of clusters (three) was selected on
the basis of the average silhouette width, and clustering
was performed by the conventional k-means algorithm
with Gower’s distance-based similarity. The overall in-
ternal clustering quality is good (average silhouette
width = 0.517) and formed clusters could be convention-
ally referred to as:

� Cluster 1: Statistical models for a complex network
topology of medium size

� Cluster 2: ANN for freeways with small number of
links

� Cluster 3: Various models for arterial roads with
small number of links

Research studies in Cluster 1 utilise endogenous spa-
tiotemporal FSE more often – the most popular ap-
proach is based on cross-correlation functions. In
addition, dimension reduction methods are widely used
in this cluster (PCA is the most popular). Cluster 2 and
Cluster 3 are homogeneous in terms of selected spatio-
temporal FSE methods and are mainly based on exogen-
ous filtering (e.g. inclusion of directly connected
upstream points). Taking into account that Cluster 1
studies are newer (median year of publication is 2015),
we can conclude that conventional exogenous spatio-
temporal FSE worked well for sequential spatial settings
(freeways and arterial roads) with a small number of
analysed locations. Recently the focus of spatiotemporal
traffic forecasting has shifted to complex road networks,
where endogenous and other spatiotemporal FSE
methods are more beneficial.
In addition to observations from clustering analysis,

we attempted to apply a classifier (decision tree-based)
to discover principles or rules for selecting spatiotempo-
ral FSE methods. The estimated accuracy of classifica-
tion was extremely low, which lead us to the conclusion
regarding the absence of straightforward principles avail-
able from the literature.
Summarising the analysis above, we conclude that

there is a lack of attention to determining the proper
choice of spatiotemporal FSE methods in literature on
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Table 3 Results of bibliographic source clustering

Cluster 1 2 3

Average silhouette width 0,517 0,512 0,530

Cluster size 176 143 74

Clustering variables

Spatiotemporal model Top 1 STARIMA FFNN FFNN

Top 2 BN VAR KNN

Top 3 SVR TDNN DL/ARDL

Top 4 VAR RNN SVR

Topological structure Top 1 Network Sequential freeway Sequential arterial

Number of links Median 26 7 4

Conventionally referred as Statistical models for a network
topology of medium size

ANN for freeways with small
number of links

Various models for arterial roads with
small number of links

Target variables

Year Median 2015 2011 2014

Spatial FSE Top 1 CCF Up/downstream Up/downstream

Top 2 Upstream Upstream All

Top 3 PCA All Upstream

Temporal FSE Top 1 Predefined Predefined Predefined

Top 2 CCF Empirical Empirical

Top 3 Empirical CCF CCF

Fig. 7 Illustration of bibliographic source clustering
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urban traffic forecasting, which highlights the necessity
for empirical studies in this direction to develop com-
prehensive guidelines for selecting the appropriate spa-
tiotemporal FSE method(s).

4 Conclusions
Spatiotemporal traffic forecasting is an emerging field
in the scientific literature, and correct identification
of the spatiotemporal structure plays an important
role in this research area. Feature selection and ex-
traction methods allow revealing of spatiotemporal re-
lationships and improving the forecasting accuracy
and robustness of modern forecasting methodologies.
The present paper systematically reviews a broad
range of traffic flow forecasting literature (211 publi-
cations) regarding utilised spatiotemporal methodolo-
gies and applied feature selection and extraction
methods. The key findings and conclusions of the re-
view are as follows:

(1) Spatiotemporal approaches that utilise both spatial
and temporal relationships are gaining scientific
interest in the field of traffic flow forecasting. The
annual number of related publications has doubled
during the past decade and is expected to continue
to grow.

(2) Definition of the spatiotemporal structure of traffic
flow should not be limited to physical road network
connectivity, but should also include relationships
that are distant in space and time. Thus, the role of
data-driven feature selection and extraction
methods becomes more important in empirical
studies.

(3) Feature selection and extraction methods can be
conventionally divided into five classes (exogenous
and endogenous feature filtering, wrapper feature
selection and embedded feature selection methods
and dimension reduction methods). We analysed
the dynamics of method applications from different
classes in the field of spatiotemporal traffic
forecasting and concluded that the general trend
has recently shifted from exogenous feature filtering
to a variety of data-driven feature selection
methods.

(4) During the past 15 years, the trend of applied
spatiotemporal methodologies has gradually shifted
from ANN to multivariate parametric and non-
parametric statistical methods. We believe that this
shift is partly related to development of advanced
feature selection and extraction methods, which im-
prove statistical model estimation for large data sets.
At the same time, we note a growing number of
deep learning applications in 2017–2018 that use
embedded mechanisms for feature extraction.

(5) Another trend in the empirical literature is a
growing focus on comparing spatiotemporal
methodologies of different classes (ANN,
parametric and non-parametric statistical methods).
This type of comparison was rarely performed in
earlier studies; whereas, over the last three years,
21% of studies directly compare spatiotemporal
models of different classes.

(6) The effectiveness of spatiotemporal forecasting
methodologies is difficult to compare on the basis
of the existing literature. Most studies are based on
a selected case study (a small road network
segment) and results involving executed
methodology comparisons remain study-specific
(and are often contradictory). Development of a
framework for comparison of different methodolo-
gies (similar to the famous M-competitions) is
highly recommended for further methodological de-
velopment of spatiotemporal traffic flow forecasting.

(7) Coverage of forecasting methodologies by feature
selection methods is not uniform. Several
methodologies (i.e. SVR) have been intensively
tested with different feature selection approaches;
whereas, several others (i.e. VAR) have not been
widely analysed. In addition, the majority of
publications are limited to the application of a
single approach for feature selection and there is a
lack of studies based on combining different feature
selection methods. These findings point to a broad
direction for future research.

(8) Insufficient attention has been paid to a proper
choice of spatiotemporal FSE methods in literature
on urban traffic forecasting. We conclude that there
is a need for additional empirical studies in this
direction to develop comprehensive guidelines for
selecting appropriate spatiotemporal FSE methods.

The added value of this review includes the trends
discovered in the methodology of spatiotemporal traf-
fic forecasting and empirical insights into applied fea-
ture selection methods. The list of 211 studies,
classified by the applied methodology and spatial and
temporal feature selection and extraction methods is
a self-contained contribution to assist further litera-
ture analyses in this field. Systematically reviewing the
scientific literature, we discovered several important
methodological and empirical gaps and have sug-
gested directions for future research.
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