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Abstract Catenary-free operated electric trains, as one of

the recent technologies in railway transportation, has

opened a new field of research: speed profile optimization

and energy optimal operation of catenary-free operated

electric trains. A well-formulated solution for this problem

should consider the characteristics of the energy storage

device using validated models and methods. This paper

discusses the consideration of the lithium-ion battery

behavior in the problem of speed profile optimization of

catenary-free operated electric trains. We combine the

single mass point train model with an electrical battery

model and apply a dynamic programming approach to

minimize the charge taken from the battery during the

catenary-free operation. The models and the method are

validated and evaluated against experimental data gathered

from the test runs of an actual battery-driven train tested in

Essex, UK. The results show a significant potential in

energy saving. Moreover, we show that the optimum speed

profiles generated using our approach consume less charge

from the battery compared to the previous approaches.

Keywords Electric train � Catenary-free operation � Speed
profile optimization � Energy efficiency

1 Introduction

In the recent years, there has been an increasing interest in

catenary-free operated electric trains equipped with on-

board energy storage devices. Catenary-free operated

electric trains can minimize the cost by reducing the

maintenance and installation costs of the catenary system

and at the same time benefit from the high efficiency of the

electric traction system.

There are already light rail vehicles (LRV) such as short

distance metro trains or trams with on-board energy storage

devices in service (see, e.g., [1]). However, the concept of

the catenary-free operation of medium sized electric mul-

tiple units (EMU) with on-board energy storage devices for

intercity operations remains mostly in the prototype phase

or short distances [2]. An exception is a battery-driven train

operated by East Japan Railway Company. In 2014, East

Japan Railway Company introduced a battery train equip-

ped with lithium-ion batteries; the train is equipped with

190 kWh batteries and can go up to 100 km/h and run

approximately 20 km in catenary-free operation [3].

A major challenge in designing a catenary-free EMU is

the sizing of the batteries, since both the weight of the

vehicle and the longer distance that the vehicle needs to run

in catenary-free mode requires batteries with both high

energy capacity and high power output. Moreover, a

standard regenerative brake system is not always sufficient

for charging the batteries, and charging stations are needed.

The charging stations should further be capable of charging

the batteries in a short time. Fast charging stations for the

battery trains are already developed [4], and train units are

becoming more energy efficient than before. In spite of the

recent developments in designing charging stations and

increasing efficiency in train units, energy optimal opera-

tion procedures are still crucial for battery-driven trains.
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According to Al-Ezee et al. [5], energy management sys-

tems are needed to monitor the state of charge and optimize

the usage of the batteries during catenary-free operation.

The general focus of this paper is on including the battery

characteristic in the problem of energy optimal operation

and verifying the results with experimental evaluations.

2 Related work and contributions

For around five decades, studies have been performed on

energy-efficient train operation for electric and diesel trains

(see, e.g., [6–12]). The proposed solutions cover a wide

range of applications from diesel heavy haul trains (e.g.,

[13]) to multiple-train operation (e.g., [14–16]). Apart from

the methodological research in this field, there has also

been research on designing driver advisory systems based

on mathematical formulations and optimizations (see e.g.,

[17]). Hybrid electric trains have also been studied for the

speed profile optimization. Miyatake and Matsuda [18]

proposed an algorithm based on sequential quadratic pro-

gramming for energy-efficient operation of hybrid electric

trains with an on-board electric double-layered capacitor

(EDLC) as the secondary energy source beside the catenary

systems. Iannuzzi and Tricoli [19] also proposed an energy

management control strategy for a similar train configura-

tion with supercapacitors as the secondary energy source.

Sumpavakup et al. [20] presented an approach to minimize

the power consumption on the substation through opti-

mizing the use of on-board supercapacitors on the train

during the operation. A comprehensive review on different

energy-efficient train control methods is provided by

Scheepmaker et al. [21].

Although the energy-efficient train operation is a well

studied subject, due to the immaturity of the technology,

literature is sparse regarding the energy-efficient catenary-

free operation of EMUs. Miyatake and Haga [22] assumed

an EDLC as the on-board energy storage for an LRV and

solved the energy-efficient catenary-free operation problem

using dynamic programming by minimizing the electric

power at the capacitors as the objective function. Colak

et al. [23] considered the problem as a coast control

problem and used particle swarm optimization to find the

optimum coasting points for the catenary-free operation of

LRVs with an EDLC as the on-board energy storage

device. Li et al. [24] proposed a charging strategy for on-

board supercapacitors during the catenary-free operation to

improve the dynamic performance and the reliability of the

charging system. Ishino et al. [25] studied the effects of

charging and running time on energy-efficient operating

strategies for an LRV with an on-board EDLC. Miyatake

and Ko [26] presented three solutions for energy-efficient

train control problem based on dynamic programming,

gradient method and sequential quadratic programming

and argued that they can also be used for the catenary-free

operation; the energy storage device used in the simulation

done by Miyatake and Ko is also assumed to be an EDLC.

Most of the research done under the subject of energy-

efficient catenary-free operation of electric trains consider

an ELDC or a supercapacitor as the energy storage device.

EDLC can provide high power and fast charge/discharge

time. But on the other hand, it suffers from the extreme

voltage drop and low energy density. Hence, it is used for

LRVs such as trams with low speed [27]. The few available

intercity catenary-free EMUs use lithium-ion batteries or

fuel cells as the energy storage device, which have dif-

ferent behavior than ELDCs or supercapacitors [28–30].

A model of the behavior of the battery can be used to

consider the battery characteristics for the problem of

speed profile optimization. Battery models are divided in

three categories of mathematical, electrochemical, and

electrical models [31]. Mathematical models are catego-

rized in two groups of stochastic models (that are mostly

based on Markov Chain, e.g., see [32]) and analytical

models (e.g., [33]). Electrochemical battery models use

electrochemical equations to model the behavior of each

cell. Since these types of models are physics-based, they

can provide information on the full dynamic behavior of

the battery. But they use a set of partial differential equa-

tions, which makes them too complex for fast simulation

purposes. According to Fotouhi et al. [34], reduced-order

electrochemical models and electrical models are the best

choices for the energy management application. Reduced-

order electrochemical models are basically a simplification

of the complex electrochemical models. Hence, in order to

generate such models, an accurate high-fidelity electro-

chemical model needs to be generated, which can be a

complex procedure. Electrical battery models on the other

hand use different electrical components (e.g., capacitors

and resistors) to build an electrical circuit with a behavior

similar to the battery. These models provide enough

accuracy needed for the battery management application,

while avoiding unnecessary complexities of the electro-

chemical models [34]. Due to their simplicity, electrical

models are widely used for battery management applica-

tions, such as the application for electrical vehicles (e.g.,

[35, 36]) and even hybrid propulsion systems for aviation

purposes [37, 38]. Electrical models have also been used

for other applications such as the modeling of renewable

energy systems [39]. An overview on different electrical

models is presented by Mousavi and Nikdel [40].

Energy-efficient catenary-free operation of EMUs with

lithium-ion batteries differs from the case where a super-

capacitor or an EDLC is used, as the dynamic behavior of

capacitors is different from lithium-ion batteries [41]. In

the literature, there is no consideration of dynamic battery
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characteristics for the problem of speed profile optimiza-

tion. The only exception is the research presented by Noda

and Miyatake [27], in which the dynamic characteristics of

the lithium-ion batteries are considered using a fitted

function from the battery supplier’s discharge curve. Noda

and Miyatake [27] also note that one of the next steps in the

field of energy optimal operation of catenary-free operated

electric trains is to present a relationship between the travel

time and energy consumption. Furthermore, all of the

solutions for the problem of speed profile optimization of

catenary-free battery trains minimize the energy con-

sumption in kWh on the battery (e.g., DC link) as the

objective function, which is calculated based on the

mechanical power calculation. But the mechanical power

calculation does not provide the best solution as it does not

consider the dynamic behavior of the battery (i.e., voltage

fluctuation). Most importantly, there are no experimental

evaluations of the methods presented in the literature for

the speed profile operation during the catenary-free

operation.

In this paper, we consider the characteristics of the

battery in the problem of speed profile optimization for

catenary-free operated battery trains. Since one of the few

available intercity catenary-free EMUs is equipped with

lithium-ion batteries, we consider the problem of speed

profile optimization with such batteries as energy storage

device. The problem will be different with other energy

storage devices, such as supercapacitors. We use a dynamic

programming approach, which was previously used for the

speed profile optimization without the consideration of the

battery behavior [42], and modify the models and objective

function to consider the characteristics of the lithium-ion

battery. We also evaluate our solution using experimental

measurements of an actual battery train during the cate-

nary-free operation. More specifically, based on the

knowledge gaps presented in the previous section, the

contributions of this work are as it follows:

• We present a method to estimate the state of charge of the

battery for the speedprofileoptimization. For this purpose,

we combine the single mass point train model with an

electrical battery model. The method is later on used in a

dynamic programming approach for the speed profile

optimization of battery-driven electric trains during the

catenary-free operation. We minimize the charge taken

from the battery instead of the energy consumption

in kWh as the objective and show that our approach will

result in more energy-efficient speed profiles.

• The method and battery models used for the estimation

of state of charge are validated against the measure-

ments from the test runs of an actual battery-driven

train. We also evaluate the performance of the dynamic

programming approach and measure the potential

energy saving against the actual test runs of the train.

This is the first experimental evaluation of an energy

optimal strategy for the catenary-free operated electric

trains against measured values.

Table 1 shows a comparison between the research pre-

sented in the literature in the field of energy optimal

operation of catenary-free operated electric trains and the

Table 1 Summary of the research presented in the field of energy optimal operation of catenary-free operated electric trains compared to the

current paper

References Train Energy Approach Experimental

evaluation

Objective

Type Mass

(t)

Maximum speed�

ðkm/hÞ
Storage

Miyatake

and Haga

[22]

LRV 30 30 EDLC, electrical

model

Dynamic

programming,

x ¼ ðs; v;VÞy

No Minimizing power on

EDLC (V � IÞy

Colak et al.

[23]

LRV 45 50 EDLC, electrical

model

Coast control, particle

swarm optimization

No Minimizing energy on the

EDLC (CðV2
1 � V2

2 Þ=2Þ
y

Ishino et al.

[25]

LRV 25 40 EDLC, electrical

model

Simulation No Effects of charging/travel

time on energy

consumption

Noda and

Miyatake

[27]

EMU 80 50 Li-ion battery,

regression model

Dynamic

programming,

x ¼ ðs; vÞy

No Minimizing mechanical

power on batteries (F � vÞy

Current

research

EMU 185 100 Li-ion battery, two

electrical models

Dynamic

programming,

x ¼ ðs; v; socÞy

Yes Minimizing charge from the

battery (I � tÞy

*The maximum speed presented in the simulation or experiment

y V voltage , v velocity , I current , s distance , x state variable , soc state of charge , t time , Ft tractive effort , C EDLC capacity
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research presented in this article. It is to be noted that

optimizing the life cycle of the battery through the

optimum speed profile opens a new optimization problem

which is out of the scope of this paper.

The rest of the paper is as it follows: In Sect. 3, we

present the optimization approach together with a model

and method for estimating the state of charge. We first

summarize the dynamic programming approach used for

the speed profile optimization of electric trains together

with a description of the modifications needed for the

problem with the battery-driven trains (Sect. 3.1). Con-

sidering the dynamic programming approach, we present a

model and an approach for estimating the state of charge

for the speed profile optimization in Sect. 3.2. The

approach requires a battery model. Two battery models are

suggested for this purpose in Sect. 3.3. Section 4 includes

the experimental validation and evaluation using mea-

surements from the test runs of an actual battery-driven

train. We use a battery-driven train designed by Bom-

bardier Transportation and tested in UK as the experi-

mental case for our evaluations. We first validate the

suggested battery models and the method for estimation of

the state of charge in Sect. 4.1. Further, we evaluate the

results of the dynamic programming approach against the

test runs of the battery-driven train in Sect. 4.2. The paper

continues with discussions on the method for the estima-

tion of the state of charge and the optimization approach in

Sect. 5. Section 5 also includes a discussion on the choice

of the objective function. We end the paper with an overall

conclusion and a short discussion on the future work in

Sect. 6.

3 Optimization and system modeling

In this paper, we use dynamic programming as the opti-

mization technique for the speed profile optimization. The

methodology to apply dynamic programming for the speed

profile optimization and its application for designing a

driver advisory system is presented by Ghaviha et al. [17].

The basics of the same method have been used to solve the

problem of speed profile optimization for catenary-free

operated EMUs using the objective function of minimizing

energy consumption on the DC link [42]. Ghaviha et al.

[42] did not consider the behavior of the battery, nor did

they have any experimental evaluation of their results. The

same approach is used in this paper as the basis for the

speed profile optimization considering the characteristics

of the battery. Here, we briefly present the approach

introduced by Ghaviha et al. [17, 42] and we further pre-

sent the modifications needed for the consideration of the

battery characteristics. The final approach uses the state of

charge of the battery as an input variable. Hence, we

present a method to estimate the state of charge for our

application, which represents a propulsion system model

for the speed profile optimization of battery trains. Finally,

we present two battery models suitable for our application.

3.1 Optimization technique

For the dynamic programming approach in this research,

we assume travel time as the horizon and total charge from

the battery as the cost function. In other words, the aim is

to minimize the charge taken from the battery over the

travel time.

Let xk be state of the system and uk be the control

variable at time step k. Dynamics of the system are defined

using function f, presented in Eq. (1):

xkþ1 ¼ f ðxk; ukÞ: ð1Þ

For the case of the battery-driven electric train, the state

variable (i.e., xk) is defined using three variables of distance

(sk), velocity (vk) and state of charge (sock). The battery

train modeled here is equipped with the notch system, in

which the driver has access to a certain percentage of the

tractive effort, using a notched handle. In this paper, we use

the notch number (i.e., tractive effort) as the control

variable (uj). Let T be the last time step in the horizon and

let gðxi; uiÞ be the charge taken from the battery in one time

step if control ui is applied to state xi (i.e., transition cost).

Further, p (p ¼ uk; . . .; uT�1) is defined as a sequence of

control variables that is applied consequently to state xk
using Eq. (1). The aim is to find a series of control

variables p which minimizes the right-hand side of Eq. (2):

JpðxkÞ ¼
XT�1

i¼k

gðxi; uiÞ þ gTðxTÞ; ð2Þ

where gTðxTÞ is the terminal cost (i.e., cost at the last time

step) and JpðxkÞ is the total charge taken from the battery

(i.e., total cost) when p is applied to state xk. To solve the

problem, we assign the same terminal cost presented by

Ghaviha et al. [42]. Assuming that the terminal cost is

known, we do a backward iteration in time and find the

optimum control variable for each state at each step in the

horizon using Eq. (3):

J�ðxkÞ ¼ min
u

gðxk; ujÞ þ J�ðxkþ1Þ; ð3Þ

where J�ðxkÞ is the minimum charge taken from the battery

at state xk. Having the optimum decision at each state in the

horizon and by forward simulation in time using Eq. (1),

the optimum speed profile is found for any state during the

trip [17].

Since tractive effort is assumed as the control variable,

the equation representing the dynamics of the system (i.e.,

Eq. (1)) is rewritten as Eq. (4):
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xkþ1 ¼ ðsk þ 0:5aDt2; vk þ aDt; sockþ1Þ; ð4Þ

where a is the acceleration rate (i.e., dv
dt
) and Dt is the length

of one time step. Considering the fact that the tractive

effort is the control variable, a is calculated using equations

of motion [43]. Note that apart from the constraints on

other state variables (e.g., constraints resulting from the

local speed limits [17]), there is a boundary condition on

the state of charge, which is presented in Eq. (5):

Lsoc � sock �Hsoc; ð5Þ

where Lsoc and Hsoc are the lower and higher bounds for the

state of charge at each time. Ideally, the values of the lower

and higher bounds are 0 and 100%, respectively. In

application, however, this is not the case, because the

batteries are rarely fully charged or totally empty. This is

due to the instructions from the battery manufacturers and

the self discharge characteristics of the batteries [44].

In the previous research in the literature, the transition

cost was assumed to be the energy consumption on the DC

link in kWh. In this paper, in order to consider the char-

acteristics of the battery, we assume the transition cost to

be the charge taken from the battery in Ah.

3.2 State of charge estimation and the propulsion

system model

We estimate the state of charge of the battery (i.e., sockþ1

in Eq. (4)) using the single mass point train model and an

electrical battery model. The single mass point train model

is successfully used in the literature to estimate the power

on the power source for the speed profile optimization of

electric trains [8]. The model calculates the power by

calculation of the mechanical power (i.e., tractive effort

times velocity) and the efficiency of the propulsion system.

The mechanical power can also be considered as the

electrical power on the batteries (i.e., battery voltage times

battery current). Hence, the propulsion system model is

presented by Eq. (6):

Vbat � Ibat ¼
g � Ft � vþ PAux if Ft\0;

1

g
� Ft � vþ PAux Otherwise;

8
<

: ð6Þ

where g is the efficiency of the propulsion system, Ft is the

tractive effort, v is the velocity, PAux is the power con-

sumption of the auxiliary systems, Vbat is the battery ter-

minal voltage and Ibat is the current on the battery. There is

a limitation on the maximum tractive effort available on

each velocity which is presented by the tractive effort

curve. The tractive effort curve in the EMUs operated

under the overhead lines is limited by the maximum torque

from the traction motor together with the maximum power

available from the propulsion system [17]. In the catenary-

free battery-driven trains, the limitation on the maximum

power from the batteries is also added as a limiting factor

on the maximum tractive effort available. Figure 1 presents

a generic tractive effort curve for a battery-driven train.

In Fig. 1, Area I is limited by the maximum torque

available from the traction motor, whereas Area II is lim-

ited by the maximum power available from the propulsion

system and the battery. The tractive effort curve is

designed based on the maximum acceleration and decel-

eration rate of the train with the batteries included. The

state of charge of the battery at time i (soci) is calculated

using Eq. (7):

sociþ1 ¼ soci � ðIbat-i � dtÞ=Q; ð7Þ

where Ibat-i is the battery current at time i, Q is the battery

capacity in Ah and dt is the time in h. The term Ibat-i � dt in
Eq. (7) presents the charge taken from the battery.

As presented in Eq. (7), the state of charge at time iþ 1

is calculated using the battery current (i.e., Ibat-i) and the

state of charge (i.e., soci). Assuming that the speed, the

applied tractive effort, the battery voltage, and the state of

charge at time i are known, Ibat-i and consequently sociþ1

are calculated using Eqs. (6) and (7). The value of Vbat,

however, may not be constant in all the situations.

According to Fotouhi et al. [34], current and state of charge

are two of the main factors in defining the battery voltage.

In this paper, we assume the battery voltage at time i (i.e.,

Vbat-i) as a function of current and state of charge (denoted

by function U and presented in Eq. (8)), which is a general

function for different battery models in the literature [40]:

Vbat-i ¼ UðIbat�i; sociÞ: ð8Þ

Let us consider Eqs. (8) and (6) at time i, in which the

values of Ibat-i and Vbat-i are unknown. Having two

equations and two unknowns, the values of Ibat-i and Vbat-i
are calculated and consequently, the state of charge is

estimated using Eq. (7).
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Fig. 1 A generic tractive effort curve
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3.3 Battery models

As presented in Sect. 2, electrical battery models provide a

balance between simplicity and accuracy needed for

transportation application [34, 40]. In this section, two

electrical battery models are suggested and validated, and

the suitable one is chosen for the speed profile optimization

using dynamic programming.

The function presented in Eq. (8) models the battery

voltage based on two variables of current and state of

charge. We use two electrical battery models that follow

the same function for our application: simple battery model

and generic battery model. The simple battery model is an

electrical model, which consists of a voltage source and an

internal resistance. Voltage of the battery in the simple

model [40] is modeled using Eq. (9):

Vbat ¼ E0 � Ibat � R; ð9Þ

where R is the internal resistance and E0 is the battery open

circuit voltage value, obtained from the battery manufac-

turer’s data sheet. The simple battery model assumes that

the voltage of the battery is constant with respect to the

state of charge. We also study the generic battery model,

which considers the state of charge as one of the design

variables.

The generic model was first introduced for hybrid

electric vehicles [45] and later on validated for electric

vehicle application [46]. Eqs. (10) and (11) present the

discharge and charge voltage of the battery (i.e., Vbat-dischr
and Vbat-chr) in the generic battery model, respectively:

Vbat-dischr ¼E0 � R � Ibat � K � Q

Q� It
� ðIt þ IbatÞ

þ A � expð�B � ItÞ;
ð10Þ

Vbat-chr ¼E0 � R � Ibat � K � Q

It � 0:1Q
� Ibat

� Q

Q� It
� It þ A � expð�B � ItÞ;

ð11Þ

where Q is the battery capacity in Ah, and the coefficients

K in V/(Ah), A in V, and B in Ah�1 are acquired from the

discharge curve provided by the battery supplier [45, 46].

The generic characteristic of these models is one of the

main reasons for the wide application of them, since both

battery models can be applied to different batteries with

different chemistries [34]. Moreover, the design variables

of both models can be easily calculated using the manu-

facturers’ data sheet [46]. The simple battery model has

been used before for different applications such as lead-

acid battery modeling (see, e.g., [47]) and for the appli-

cation of wind power generation (see, e.g., [48]). The

generic battery model has also been used in different

applications such as photovoltaic power generation (e.g.,

[39]), wind energy generation (e.g., [49]) and DC micro-

grid (e.g., [50]).

To choose the right model for the speed profile opti-

mization, we need to validate and compare both models for

the estimation of the state of charge during operation.

4 Validation and evaluation

In this section, we validate and evaluate both battery

models and the method for the estimation of the state of

charge and choose the suitable battery model. Further, we

apply the dynamic programming approach presented in

Sect. 3 using the chosen battery model and present the

results compared to the experiments with an actual battery

train.

The train used as the case study for modeling and

optimization in this research is a catenary-free operated

EMU designed by Bombardier Transportation and tested

on a section of Mayflower line in Essex, UK (Independent

Powered Electric Multiple Unit, i.e., IPEMU). The IPEMU

train was a Bombardier 4 car Electrostar Class 379 EMU,

which was modified with lithium-ion batteries mounted on-

board. The batteries had a total capacity of around 550Ah.

The train mass was around 185 t and it could go up to

120 km/h. Figure 2 presents a picture of the IPEMU train

on the track ready for the operation.

The IPEMU train was operated in two modes: the

catenary mode and the catenary-free mode. During the

catenary mode, the train would run under the overhead

lines and use the power grid for both driving and charging

the batteries. In the catenary-free mode, the train would

operate without the connection to the power grid and by

using only the batteries. Regenerative brake system charges

the batteries during the catenary-free mode. The operation

mode targeted in this research paper is the catenary-free

mode.

Fig. 2 IPEMU battery-driven train. Image courtesy of Bombardier

Transportation goo.gl/KSzRou
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4.1 Battery models validation

The validation is done in two parts. We first validate each

of the models regarding voltage estimation (Eq. (8)). In the

next step, we also validate both models regarding state of

charge estimation. For the validations purpose, the coeffi-

cient of determination (R-squared) and mean absolute

percentage error (MAPE) are used. Equations (12)

and (13) present the definition of R-squared and MAPE:

R2 ¼ 1�
Pn

i¼1ðpi � p̂iÞ2Pn
i¼1ðpi � �pÞ2

; ð12Þ

MAPE ¼ 100

n
�
Xn

i¼1

p̂i � pi

pi

����

����; ð13Þ

where pi is the measured value, p̂i is the modeled value, �p is

the mean of the measured values, and n is the size of the

sample.

We use a journey of around 34 km and 2200 s from the

IPEMU test runs to validate the voltage estimation using

each of the battery models. The models estimate the volt-

age based on current and state of charge (Eq. (8)). Figure 3

present the current and state of charge profile of the driving

cycle used for this validation.

Figure 4 shows a comparison between the measured

battery voltage versus the modeled battery voltage using

the generic and the simplified battery models. Figure 5

shows the parity plot of the modeled voltage values com-

pared to the measured values on the train and during the

catenary-free operation for each of the battery models.

Moreover, Table 2 presents the values of MAPE and R-

squared for voltage estimation using each of the models.

Comparing both battery models using Fig. 5, it can be

seen that the simplified battery model is underestimating

the voltage value. This is because in the simple battery

model, the battery voltage is assumed to be constant with

respect to the state of charge. Despite the underestimation,

there is still a low deviation of 0:77% in average for the

voltage estimation (Table 2). This issue is improved in the

generic battery model, as the state of charge is one of the

considered variables in this model.

The second part of validation is for the state of charge

estimation, using the mass point train model and the battery

models. In other words, the state of charge is estimated

based on the speed profile. For this purpose, we apply the

validated battery models to another driving cycle of around

18 km/h and 1300 s. Figure 6 presents the speed profile of

the driving cycle used for the validation of the state of

charge estimation.

A visual comparison between the measured and mod-

eled values of state of charge using both models together

with the parity plot of the results are presented in Figs. 7

and 8. Values of MAPE and R-squared for state of charge

estimation are presented in Table 3.

The results of the state of charge estimation validation

show that both battery models can estimate the state of

charge with minor error (MAPE in Table 3 and Fig. 7). It

is also understood from the value of R-squared and the

parity plots in Fig. 8 that both models provide values with

minor deviation from the measured values.
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Fig. 3 Current (a) and state of charge (b) profile of the driving cycle used for the voltage estimation validation
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The validation results in general show that both battery

models function with similar accuracy for our application

in modeling of the state of charge. Apart from the accuracy,

there is also the factor of simplicity of the model. The final

goal is to use the battery and train models in a dynamic

programming approach to minimize the charge used from

the battery. Although DP is known to be suitable for speed

profile optimization of trains and battery-driven trains (see,

e.g., [27]), it is also well-known that it suffers from the

curse of dimensionality [17]. Therefore, it is important to

keep the calculations as simple as possible. Moreover,

there is a problem of generating the coefficients for the

generic battery model (Eqs. (10) and (11)) from the dis-

charge curve. To generate the coefficients, three points

from the discharge curve need to be selected [45, 46]. In

our experience, the points need to be selected with a high

accuracy to have a precise model. In light of this, consid-

ering the overall simplicity of the simplified battery model
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over the generic model (both the equations and the coef-

ficients), and the similar accuracy of both models in esti-

mating the state of charge, we can conclude that the

simplified battery model is suitable for our optimization

application.

4.2 Experimental evaluation

The battery-driven EMU was tested for a limited number of

test runs on a certain line section in UK. We apply the

presented dynamic programming approach using the sim-

plified battery model to find the optimum speed profiles for

two trips.

The first trip (Trip I) is 3 km from Manningtree station to

Mistly station and the second trip (Trip II) is 6:27 km from

Mistly station to Wrabness station. Figure 9 presents a

comparison between the charge consumption of the

experiments versus the charge consumption of the opti-

mum speed profiles. The circled points are the charge taken

from the battery during the different test runs of the battery

Table 2 MAPE and R-squared values for voltage estimation

– Generic battery model Simplified battery model

R-squared 0.95 0.93

MAPE (%) 0.63 0.77
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train for each of the trips. The solid line represents the

optimum charge taken from the battery in different travel

times as the result of the optimization on a computer. The

results depicted in Fig. 9 show that on average, it is pos-

sible to save around 31.6% of the charge on the battery.

The solid lines in Fig. 9 are also known as the cost-time

curve for the optimal train journey. The cost-time curve for

the optimal journey is used as an essential tool for the

energy-efficient timetabling of a network of trains [51]. As

an example, we present a comparison between one of the

experiments and the respective optimum driving style in

Fig. 10. The trip depicted in Fig. 10 corresponds to a travel

in Trip II with the travel time of 330 s and with the initial

state of charge of 75%.

5 Discussion

5.1 Battery models validation

The validation is done against the results from two of the

longest journeys a battery-driven train has ever done in the

catenary-free mode. The journey consists of constant load
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Table 3 MAPE and R-squared values for state of charge estimation

– Generic battery model Simplified battery model

R-squared 0.99 0.99

MAPE (%) 0.11 0.17
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phases and multiple charge/discharge phases in which the

peak charge and discharge powers were observed. In other

words, the full scope of the operation is included in the

validation experiments. The validation experiments cover a

range of state of charge from 85% to 25%. The perfor-

mance of the lithium-ion batteries are relatively stable be-

tween around 95% and 5% of the state of charge, which is

also the recommended operating condition from most of

the battery suppliers [44]. Therefore, the validation is

acceptable, even though it was done for a specific range of

state of charge. This can also be understood from the

results of the validation. Both battery models result in a

similar accuracy, which shows that in the IPEMU train, the

performance of the battery is relatively stable with respect

to the changes in state of charge. Moreover, the batteries

used for the application of catenary-free operation are sized

with the consideration of redundancy for the extreme cases.

During the test runs of the IPEMU train for instance, the

state of charge below 25% was not observed.

The method used in this paper to measure the state of

charge is based on the Coulomb counting method, which

measures the state of charge according to the integral of the

current [52]. This method, although accurate, is sensitive to

the initial value of the state of charge. The final goal with

speed profile optimization in this paper is to implement it

in a form of a driver advisory system on-board the train

(such as the one presented Ghaviha et al. [17]). There are

already battery systems available with battery modules that

take advantage of sophisticated electrochemical battery

models to monitor the state of charge with high accuracy.

Such systems are usually provided by the battery supplier.

A driver advisory system based on the approach presented

here will be used together with such battery management

system on-board the train and will take the initial value of

state of charge from it.

Apart from the state of charge and current, two other

variables of temperature and state of health can also affect

the voltage of a battery [34]. Although the models pre-

sented in this paper are sufficient for the speed profile

optimization, having a more detailed battery model can

lead to a more accurate voltage modeling. For instance, if

needed, the behavior seen from time 140 s to 230 s in Fig. 4

(or the behavior seen in Fig. 5 around 720V to 740V in the

measured value) can be modeled with a more detailed

battery model.

5.2 Selection of the objective function

We minimize the charge taken from the battery (in Ah)

instead of the conventional approach of minimizing the

energy consumption (in kWh) in the form of mechanical

power. Charge in Ah times voltage is the energy
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consumption in kWh. Since the voltage is not constant

during operation, measuring of the charge in A h will have

a better estimation of the energy taken from the battery and

the capacity left.

We compare both approaches to study the effects of this

change. The final aim is to minimize the charge; therefore,

we find the optimum speed profile using both approaches

and calculate the charge consumed from the battery for

each of the optimum speed profiles. For this purpose, we

consider 15 travels between Mistly and Manningtree sta-

tions (i.e., Trip II) with different travel times between 310 s

and 380 s. Table 4 presents the minimum charge taken

from the battery for each of the points using each of the

approaches.

As it can be understood from Table 4, the use of battery

charge in the objective function results in the speed profiles

that consume on average 0:23% less charge from the bat-

tery. It is expected that this value would increase in the

batteries with a more unstable voltage (e.g., in case of the

batteries with higher internal resistance that results in

higher voltage drop). To study this effect, we assume a

higher internal resistance to present a battery with a more

unstable terminal voltage. For the sake of study, we assume

that the internal resistance is doubled. We run the dynamic

programming approach with the new value for the resis-

tance and generate the speed profiles using both approa-

ches. The results are presented in Table 5. A comparison

between the results from the two approaches considering

the higher internal resistance (Table 5) shows that the

approach with the minimization of power as the objective

function consumes on average 1:05% more charge from the

battery. Comparing the results from Tables 4 and 5, we can

see that the internal resistance (as one of the main

parameters defining the dynamic behavior of the battery)

has a strong influence on the results of the speed profile

optimization. In addition, we can see that the effects of

internal resistance can be more drastic in the batteries with

higher voltage fluctuations. Considering the results, we

conclude that although the improvement in energy effi-

ciency is low for our case study, the method of using

battery charge as the objective function provides in general

more efficient speed profiles, especially in the case of

energy storage devices with a more unstable terminal

voltage.

5.3 Speed profile optimization

As the validation results in Sect. 5 showed, the simple

battery model provided enough accuracy for our case. The

reason is the fact that in case of the IPEMU train, the

battery voltage has minor fluctuations with respect to the

state of charge, which can also be understood from the

validation results. In case of batteries with a voltage more

sensitive to the state of charge, the generic battery model or

other similar models can be used instead.

Apart from the accuracy of the model, the voltage drop

of the battery will also affect the maximum tractive effort

curve. The tractive effort curve used for the simulation and

optimization purpose in this study is suitable for a certain

range of voltage. In other words, the effects of voltage

Table 4 Comparison between the optimization using charge minimization as the objective function and power consumption minimization as the

objective function

Point

no.

Time (s) Optimum charge consumed on the battery with charge in Ah as

the objective (Ah)

Optimum charge consumed on the battery with energy

consumption in kWh as the objective (Ah)

1 380 28.6784 28.7595

2 375 28.8727 28.9267

3 370 28.9993 29.1427

4 365 29.1773 29.2429

5 360 29.3331 29.4101

6 355 29.5022 29.5136

7 350 29.6528 29.7465

8 345 29.8098 29.8290

9 340 29.8791 30.0549

10 335 30.1080 30.1587

11 330 30.4443 30.4574

12 325 31.2518 31.3757

13 320 32.0509 32.1410

14 315 34.3438 34.3506

15 310 36.4492 36.4579
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fluctuations are already considered with the designed

tractive effort curve and train configuration. As presented

under the train model (Eq. (6)), there is a limitation on the

maximum tractive effort available from the traction sys-

tem, which is typically presented by the tractive effort

curve (Fig. 1). In case of a drastic voltage drop and in order

to provide a certain tractive effort, the current should be

increased drastically. This might not be possible due to the

limitation on the maximum current from the motor or

energy storage device. Hence, the original maximum

tractive effort curve will drop. As an example, the change

in the tractive effort curve in different voltages is depicted

in Fig. 11.

The voltage of the battery used for the IPEMU project,

however, is relatively stable with respect to the state of

charge. Moreover, the designed motor converter module in

the IPEMU train can handle the voltage fluctuations of the

designed battery and keep the same tractive effort curve.

Therefore, one tractive effort curve is used in this research.

Furthermore, dynamic programming is known to be suit-

able for handling the constraints on state variables [17]. In

the dynamic programming approach used in this paper,

state of charge is assumed as a state variable. Therefore, the

constraints related to the state of charge can be handled by

this approach (such as the constraint on the battery

capacity, i.e., Eq. (5)). This also includes the constraint

resulting from different tractive effort curves in different

states of charge, which can happen in other battery types or

train configurations.

Application of dynamic programming for the speed

profile optimization using the methods presented in this

paper shows the potential of 31.6% reduction in charge

consumption from the battery (Fig. 9). It is important to

note that reduction in charge consumption can be less in

practice. Such algorithms for the speed profile optimization

are usually implemented in a form of a driver advisory

system, which gives instructions to the driver (see e.g.,

[17]). The drivers, however, may not always follow the

instructions (e.g., due to the lack of trust or difficulty of the

provided instructions), which will result in a lower energy

efficiency. Moreover, we considered the problem of

energy-efficient train operation for a single train. In order

to maximize the effectiveness of the solution in practice,

the whole network of trains and timetables should be

considered. Consideration of the whole network of trains

will result in a much more complex optimization problem,

which was out of the scope of the work presented in this

article.

Table 5 Comparison between the optimization using charge minimization as the objective function and power consumption minimization as the

objective function with higher internal resistance

Point

no.

Time (s) Optimum charge consumed on the battery with charge in Ah as

the objective (Ah)

Optimum charge consumed on the battery with energy

consumption in kWh as the objective (Ah)

1 380 29.8649 30.2438

2 375 30.1684 30.4801

3 370 30.3799 30.8610

4 365 30.6022 31.0282

5 360 30.9530 31.2961

6 355 31.1128 31.4805

7 350 31.3831 31.8490

8 345 31.6732 31.8930

9 340 31.7513 32.2436

10 335 32.1331 32.3396

11 330 32.6684 32.7130

12 325 33.5626 34.0049

13 320 34.4636 34.8746

14 315 36.9956 37.3597

15 310 39.4786 39.5495
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6 Conclusion and future work

In this paper, we studied the consideration of battery

characteristics in the problem of speed profile optimization

of battery-driven electric trains during catenary-free oper-

ation. This was done by combining the single mass point

train model and an electrical battery model. We further

applied a dynamic programming approach to minimize the

charge taken from the battery and discussed the behavior of

the battery in the speed profile optimization using this

approach. Moreover, the models and the results are vali-

dated and evaluated against the test runs of an actual bat-

tery train.

We estimated the state of charge for the speed profile

optimization using the single mass point train model and an

electrical battery model. We studied two battery models for

this purpose: the simple battery model and the generic

battery model. We showed that for the case of the IPEMU

train, the simple battery model can provide the same

accuracy as the generic battery model. However, the gen-

eric battery model or other similar battery models (models

following the function of Vbat ¼ Uðsoc; IbatÞ) can be used

for other similar cases where the behavior of the battery is

more dependent on the state of charge. There are catenary-

free light rail vehicles currently in service with EDLCs on-

board (see e.g., [1]) and there are also reports on catenary-

free EMUs with on-board fuel cell [28]. The verification

and the approach presented in this paper were specific for

the case of lithium-ion batteries, but both fuel cell and

EDLC technologies have the potential of benefiting from

the same methodology for speed profile optimization.

There are similar models for these type of energy storage

devices available in the literature (e.g., the fuel cell model

proposed by Njoya et al. [53]). Further studies are, how-

ever, needed to verify the applicability of the approach for

such technologies.

We used charge taken from the battery as the objective

function instead of the energy consumption in kWh. The

results of a comparison between the two approaches show

that, in general, the application of the battery charge as the

objective function provides more energy-efficient speed

profiles in comparison with the method with the energy

consumption in kWh as the objective. Moreover, the

dynamic programming approach used in this paper con-

siders the state of charge as a state variable. Having the

state of charge as a state variable facilitates handling dif-

ferent constraints that come from the specific behavior of

the batteries in different states of charge. This is particu-

larly important as it provides the opportunity to apply the

same optimization approach for the energy storage devices

with a behavior more dependent on the state of charge.

The experimental evaluation of our approach using the

test runs of an actual battery-driven train shows significant

potential in saving energy consumption from the batteries.

This concludes that the approach presented here can be

used as a basis for designing a driver advisory system for

catenary-free operated electric trains. Further research is

needed to investigate the barriers and challenges for the

implementation of the mathematical solution in the form of

a driver advisory system on-board the train.

This paper provided the first experimental evaluation of

a speed profile optimization approach for catenary-free

operated electric trains. Further studies in this field require

more experimentation and test runs with new battery-dri-

ven trains with different energy storage technologies.
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