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Abstract

Effective symptom management is a critical component of cancer treatment. Computational

tools that predict the course and severity of these symptoms have the potential to assist

oncology clinicians to personalize the patient’s treatment regimen more efficiently and pro-

vide more aggressive and timely interventions. Three common and inter-related symptoms

in cancer patients are depression, anxiety, and sleep disturbance. In this paper, we elabo-

rate on the efficiency of Support Vector Regression (SVR) and Non-linear Canonical Corre-

lation Analysis by Neural Networks (n-CCA) to predict the severity of the aforementioned

symptoms between two different time points during a cycle of chemotherapy (CTX). Our

results demonstrate that these two methods produced equivalent results for all three symp-

toms. These types of predictive models can be used to identify high risk patients, educate

patients about their symptom experience, and improve the timing of pre-emptive and per-

sonalized symptom management interventions.

Introduction

A growing body of evidence, [1–3] as well as clinical experience suggests that the symptom

experience of oncology patients is extremely variable. While some patients experience very few

symptoms, other patients undergoing the same treatment experience multiple co-occurring

symptoms that are severe and extremely distressing. The clinical dilemma is how to identify

these high risk patients prior to the initiation of treatment, so that aggressive symptom man-

agement interventions can be initiated and deleterious outcomes can be avoided. The
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application of machine learning techniques to develop algorithms to identify this high risk

phenotype is the first step toward individualized symptom management.

For this investigation, we applied machine learning techniques to develop an algorithm that

could identify patients with the highest severity scores for three common and inter-related

symptoms (i.e., depression, anxiety, sleep disturbance). Depression occurs in up to 60% of can-

cer patients. [4] Between 35% and 53% of patients report anxiety during cancer treatment [5]

and 45% of patients experience both of these symptoms. [6] Equally deleterious and linked to

both depression and anxiety are complaints of sleep disturbance in 30% to 50% of oncology

patients. [7] All three symptoms are associated with decrements in patients’ ability to function

on a daily basis as well as on their quality of life. Of note, according to a systematic review by

Alvaro et al. [8] as depression, anxiety and sleep disturbances are often grouped together, the

treatment of insomnia may prevent the development of anxiety and depressive disorders, and

vice-versa. Therefore, if we can predict the patients who are at a higher risk for these symp-

toms, treatments can be initiated to manage these symptoms. In addition, these efficient

machine learning methods could be used to predict the severity other symptom in patients

with cancer, as well as in patients with other chronic medical conditions.

A large variety of machine learning techniques and algorithms can be used to predict data

by learning from previous observations. Choosing the most appropriate one for the prediction

of symptom severity is a challenging task. Several common problems exist with this type of

research including: small sample sizes; a significant number of missing values; the large num-

ber of symptom assessment instruments with different measurement scales; the different types

of variables (e.g., categorical, ordinal, continuous); and the subjective nature of symptom mea-

surements, themselves. Regression analysis is a common supervised machine learning method

that can be used to solve several biological and clinical problems. It is used to estimate the rela-

tionship between a dependent variable (i.e., depression, anxiety, sleep disturbance) and one or

more independent variables (i.e., predictor(s)). Canonical Correlation Analysis is another ana-

lytical method for exploring the relationships between two multivariate sets of variables (e.g.,

set of variables from Time Point 1 (TP1) and Time Point 2 (TP2) of a chemotherapry (CTX)

cycle). In this study, we used Support Vector Regression (SVR) with different kernels (i.e., lin-

ear, polynomial, radial sigma) and Non-linear Canonical Correlation Analysis by Neural Net-

works (n-CCA) [9] to predict efficiently our dependent variables (i.e., symptom severity scores

of depression, anxiety and sleep disturbance at TP2). The Multiple Imputation (MI) and Maxi-

mum Likelihood Estimation (MLE) methods were applied in order to account for missing

data. Similarly, in order to accommodate the small sample size and avoid over-training, we

applied a 10-times Repeated 10-fold Cross-validation (RCV) to our predictive models. To the

best of our knowledge, this study is the first of its kind in oncology symptom management to

applying n-CCA to predict the severity of three common symptoms in oncology patients. An

overview of our analysis is provided at Fig 1.

Our study is organized as follows: the Methods section provides the research methodology

along with all of the approaches used in the proposed model. The Results section presents the

comparison and evaluation of the aforementioned methods and provides a summary of our

results.

Materials and methods

Study procedure

The study, from which our data was drawn, was approved by the Committee on Human

Research at the University of California, San Francisco and by the Institutional Review Board

at each of the study sites. From February 2010 to December 2013, all eligible patients were
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approached by the research staff in the infusion unit to discuss participation in the study. Writ-

ten informed consent was obtained from all patients. Depending on the length of their CTX

cycles, patients completed questionnaires in their homes, a total of six times over 2 cycles of

CTX (i.e. prior to CTX administration (Time 1 and 4), approximately 1 week after CTX

administration (Time 2 and 5), approximately 2 weeks after CTX administration (Time 3 and

6). For this study, which is a secondary analysis of existing data, symptom data from the Time

1 and Time 2 assessment were analysed. Patients were asked to report on their symptom expe-

rience for the previous week. Medical records were reviewed for disease and treatment infor-

mation. The methods for the parent study are described in fully detail in previously published

work. [2, 10, 11]

Patients and settings

We carried out a secondary analysis of existing data from this longitudinal study of the symp-

tom experience of oncology outpatients receiving CTX. The data used in this study were

obtained from the same dataset and relate to two different Time Points (i.e., Time Point 1

(TP1, n1 = 1343; prior to CTX administration), Time Point 2 (TP2, n2 = 1278; one week after

CTX administration).

According to the study’s eligibility criteria: patients were� 18 years of age; had a diagnosis

of breast, gastrointestinal (GI), gynecological (GYN), or lung cancer; had received CTX within

the preceding four weeks; were scheduled to receive at least two additional cycles of CTX; were

able to read, write, and understand English; and gave written informed consent. Patients were

recruited from two Comprehensive Cancer Centers, one Veteran’s Affairs hospital, and four

community-based oncology programs.

Instruments

The study instruments included a demographic questionnaire, the Karnofsky Performance

Status (KPS) scale, [12, 13] the Self-administered Comorbidity Questionnaire (SCQ), [14] the

Lee Fatigue Scale (LFS), [15] the Attentional Function Index (AFI), [16, 17] the General Sleep

Disturbance Scale (GSDS), [18] the Center for Epidemiological Studies-Depression Scale

(CES-D), [19] and the Spielberg State-Trait Anxiety Inventories (STAI-S and STAI-T). [20]

The demographic questionnaire provided information on age, marital status, years of edu-

cation, living arrangements, ethnicity, employment status and exercise. In addition patients’

Fig 1. Overview of our analytic approach to learn from data to predict future symptoms of oncology patients.

https://doi.org/10.1371/journal.pone.0208808.g001
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medical records were reviewed to obtain information on: body mass index (BMI), hemoglobin

(Hgb), type of cancer, number of metastatic sites, time since cancer diagnosis, number or prior

cancer treatments, and CTX cycle length.

To estimate changes in self-reported sleep disturbance, the GSDS was administered at each

time point. The GSDS consists of 21 items designed to assess the quality of sleep in the past

week. Each item was rated on a 0 (never) to 7 (every day) numeric rating scale (NRS). The

GSDS total score is the sum of the 21 items that can range from 0 (no disturbance) to 147

(extreme sleep disturbance). A GSDS total score of� 43 indicates a significant level of sleep

disturbance. [21] The GSDS has well-established validity and reliability in shift workers, preg-

nant women, and patients with cancer and HIV. [18, 22, 23]

The CES-D consists of 20 items selected to represent the major symptoms in the clinical

syndrome of depression. Scores can range from 0 to 60, with scores� 16 indicating the need

for individuals to seek clinical evaluation for major depression. The CES-D has well-estab-

lished concurrent and construct validity. [19, 24, 25]

The STAI-T and STAI-S inventories consist of 20 items each that are rated from 1 to 4.

The scores for each scale are summed and can range from 20 to 80. A higher score indicates

greater anxiety. The STAI-T measures an individual’s predisposition to anxiety determined

by his/her personality and estimates how a person feels generally. The STAI-S measures

an individual’s transitory emotional response to a stressful situation. It evaluates the emo-

tional response of worry, nervousness, tension, and feelings of apprehension related to how

people feel “right now” in a stressful situation. The STAI-S and STAI-T inventories have

well-established criteria and construct validity and internal consistency reliability coeffi-

cients. [20, 26, 27]

Data analysis and missing data

Our data were collected from a cohort of oncology patients at two different Time Points, Time

Point 1 (i.e., TP1, nTP1 = 1343), Time Point 2 (i.e., TP2, nTP2 = 1278). By merging the two dif-

ferent Time Points we created a new dataset of 1278 samples (nTP1+TP2 = 1278). When we

dropped the cases with at least one missing value in one of their variables, we were left with

799 cases (65,1% of nTP1+TP2). To assess whether the missing values were missing completely

at random (MCAR), missing at random (MAR), or missing not at random (MNAR) [28, 29]

we analysed our data with SPSS version 23 (IBM, Armonk, NY). Furthermore, in order to

avoid the problem of biasing our analysis by including only the complete cases, we used two

different statistical approaches to impute the missing values, namely, Multiple Imputation

(MI) [29, 30] and the Maximum Likelihood Estimation (MLE) [29, 31].

Multiple Imputation (MI) is a statistical approach to address the problem of the missing

observations that are frequently encountered in all types of epidemiological and clinical stud-

ies. [32] It minimizes the uncertainty around our missing data by creating different imputed

data sets several times and integrating their results into a final, pooled result. Fig 2 illustrates

the MI procedure with an example.

During the first stage, MI creates multiple copies of the dataset, with the missing values

replaced by imputed values. These are sampled from their predictive distribution based on the

observed data. [30] MI must fully account for all uncertainty in predicting the missing values

by inserting appropriate variability into the multiple imputed values. During the second stage,

MI fits the model of interest to each of the imputed datasets. The predicted estimations in each

of the imputed datasets will differ because of the variation introduced in the imputation of the

missing values. These estimates are only useful when averaged together to give the overall,

pooled predicted associations.

Predictive modelling for cancer symptoms
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Maximum Likelihood Estimation (MLE) is a common statistical method for estimating the

parameters of a specific model, by finding the parameter values that maximize the likelihood

of making the observations given these parameters. To elaborate more on this topic, [29] sup-

pose we try an experiment with N people where the probability of a success for an individual is

p and the probability of a failure is 1-p. If n people succeed and N-n people fail, the likelihood

is proportional to the product of the probabilities of successes and failures or pn × (1 − p)N − n.

The value of p that maximizes the likelihood is n/N or the overall proportion of success. In our

analysis for example, maximum likelihood produces the best estimate of the difference in the

parameters between TP1 and TP2 that maximize the probability of observing the collected

data. Unlike MI, MLE provides a unique estimate of the missing values and it requires fewer

decisions than MI.

To impute the missing values with the MI approach and the MLE, we used SPSS version 23

(IBM, Armonk, NY). For the MI approach, we configured SPSS to automatically choose an

imputation method based on a scan of our data and produce 10 output datasets with imputed

values. For the MLE approach, we configured SPSS AMOS to use an independence model

with a regression imputation and produce 1 output dataset with imputed values.

Fig 2. Multiple imputation.

https://doi.org/10.1371/journal.pone.0208808.g002
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Model selection

To train and evaluate the performance of our different predictive models we divided our data-

set into two sub-sets: the Training (nTrain = 1000) and Validation (nVal = 278) datasets. Cross-

validation (CV) and Bootstrap are two common approaches that are known to provide unbi-

ased estimates for the test results of a predictive model. [33] Cross-validation (CV) provides

unbiased results but with a high error variance. On the other hand, Bootstrap is known to have

better performance in small samples, achieving a small variance but requiring much heavier

computation than CV. Combining the strengths of both approaches, Repeated Cross-valida-

tion (RCV) appears to be a good validation method for general use providing small bias with

limited variability and a reasonable computation load. [33] In fact, RCV is a repeated CV

method, in which the CV is repeated several times and then the average is taken. By the same

rationale, Boostrap.632 is designed to address the pessimistic bias of the standard Bootstrap

method, where the Bootstrap samples only contain approximately 63.2% of the unique samples

from the original dataset. [34, 35]

Before training our models on the data, we empirically compared all the aforementioned

validation methods on the original dataset before and after imputation for the missing values.

Based on the validation method results, we compared the two different types of predictive

models in our study with a 10-times and 10-fold RCV method.

We divided the original dataset with the missing values into a Training set of nTrain = 624

cases, and a Test set of nTest = 175 cases. For the MI and MLE imputation methods, we divided

the datasets into a Train set of nTrain = 1000 cases, and a Test set of nTest = 278 cases. As already

mentioned, the MI produced 10 such datasets, with each one of them having a total of

n = 1278 cases.

Support Vector Regression. Support Vector Machine (SVM) is a popular machine learn-

ing algorithm used to analyze a variety of oncology data, [36–38] among many other applica-

tions. SVM became increasingly popular because of its successful application for a different set

of problems (e.g. image recognition, text categorization, biosignals, bioinformatics). [39–41]

SVM works by mapping data to a high-dimensional feature space so that data points can be

categorized, even when the data are not otherwise linearly separable. SVM manages this chal-

lenge with an operation called the kernel trick. Through a variety of different kernel functions

(e.g. Linear, Polynomial, Radial Basis Function), SVM takes low dimensional input space and

transforms it to a higher dimensional space, thus converting non-separable problems to sepa-

rable ones. With SVM, the data are transformed in such a way that separators between the dif-

ferent categories of the dataset can be found, optimized, and drawn. These separators are

called the Optimal Separation Hyperplanes (OSH).

Support Vector Regression (SVR) is an extension of the SVM classifier, estimating the con-

tinuous function of a specific dataset. [42, 43] Similarly to SVM, SVR can model complex non-

linear relationships by using an appropriate kernel function which maps the input data points

onto a higher-dimensional feature space, transforming the non-linear relationships into linear

forms. The efficiency of the procedure is determined by the kernel function’s parameters

which do not depend on the dimensionality of feature space. Both SVM and SVR depend on

defining a loss function, called epsilon intensive (�), which ignores the errors that are situated

within a certain distance of the true value. Fig 3 shows an example of a non-linear regression

function with its epsilon intensive band. In our study, we implemented all the different SVR

models using R version 3.3.0 and the Caret Package. [44]

Non-linear Canonical Correlation Analysis by neural networks. In our study, we

adapted the n-CCA which was introduced by Hsieh et al. in 2000. [9] Our implementation was

Predictive modelling for cancer symptoms
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done with PyCharm Professional Edition 4.5, using Python 2.7 and the Scikit-Learn, Theano,

and Lasagne libraries. [45–47]

Canonical Correlation Analysis (CCA) is a method to identify the linear combinations of a

set of variables X that have the highest correlations with linear combinations of a set of vari-

ables Y. It estimates the correlated modes between the two data sets of variables X (i.e, the data

from TP1) and Y (i.e., the data from TP2) by solving the equations,

iÞ U ¼ a � X; iiÞ V ¼ b � Y; ð1Þ

while maximising the Pearson correlation between U and V. To achieve a better performance

in cases where the correlation between the two data sets is non-linear, the equations can be

modified to include a non-linear relationship. Hsieh et al. [9] have introduced an implementa-

tion of n-CCA utilising three neural networks. For a more in-depth mathematical description

of the method, we refer to the original paper. [9] In this paper, we describe the concepts of

how the neural networks can be used to extract the correlation between the two sets of vari-

ables (i.e., data from TP1 and TP2).

Fig 4 shows the architecture, as well as the training and validation stage, of our neural net-

work that implements n-CCA with our data from TP1 and TP2. Our model consists of three

networks which were trained separately. The first neural network is a double-barrelled one

(illustrated in the Training-(a) section of Fig 4). We called this network the inner network

and the other two the outer networks (shown in the Training-(b) and Training-(c) sections of

Fig 4).

The two barrels of the inner network (Training-(a) section of Fig 4) share the same struc-

ture and take as input the data from TP1 and TP2 respectively. The input layer of each barrel

Fig 3. Support Vector Regression.

https://doi.org/10.1371/journal.pone.0208808.g003
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has n nodes, one for each feature of the data (nFeatures = 29); see S1 Table for a full list of these

features). The hidden layer of each barrel contains 50 nodes, that have the hyperbolic tangent

function as their activation function. The output layer of each barrel has only one node, pro-

ducing an output U for the dataset from TP1 and an output V for the data set from TP2 respec-

tively. The aim of the training of the inner network is to maximise the correlation between the

two vectors, U and V. This aim is achieved by using the negative Pearson coefficient [48] as the

cost function which has to be minimised.

The outer networks (Training-(b) and Training-(c) sections of Fig 4) are trained separately,

nevertheless they share the same structure. The input layer of each outer network has only one

node, taking as input the output (U and V respectively) of the previous double-barrel inner

network. The hidden layer of each of the outer networks has 50 nodes with the hyperbolic tan-

gent function as their activation function. The output layer of each outer network produces

the features that we need to predict. In our study, we predicted the severity of three symptoms

(i.e., sleep disturbance, depression, anxiety). To predict them, each outer network learns the

inverse function of each of the barrels of the inner network and maps U and V, respectively,

back to the features we are interested to predict. The first outer network (Training-(b) section

of Fig 4) maps U back to predicted values of sleep disturbance, depression and anxiety for TP1

and the second outer network (Training-(c) section of Fig 4) maps V back to predicted values

of sleep disturbance, depression and anxiety for TP2. The aim of the training of the outer net-

works is to minimise the Mean Squared Error (MSE) between the predicted output and the

true values. This training phase consists of 100 epochs, during which we used a 10-times and

10-fold RCV.

When the training stage (Training section of Fig 4) is finished, we can use parts of the

model to predict TP2 data from new, unseen TP1 data (Validation section of Fig 4). This pro-

cess can be used either to validate the model or to predict the TP2 data, when new patients are

introduced into the model, where only the TP1 data are available. In both cases, the TP1 data

are fed into the left barrel of the inner network (Validation-(a) section of Fig 4) to estimate the

U vector for these data. By multiplying this output with the Pearson coefficient R that was

Fig 4. n-CCA training and validation: (i) training of the n-CCA model, (ii) validation of the n-CCA model.

https://doi.org/10.1371/journal.pone.0208808.g004
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calculated during the training stage, we can estimate the corresponding V vector. This infor-

mation forms the input for the outer right network (Validation-(c) section of Fig 4), which

predicts the desired features for the TP2 data.

Comparison between SVR and n-CCA

To compare the performances of the SVR and n-CCA models we used their Root Mean Square

Error (RMSE) and Normalised Root Mean Square Error (NRMSE). The latter, was calculated

by dividing their RMSE with the mean of the measured values.

NRMSE ¼
RMSE
mean

; ð2Þ

Normalising the RMSE allows the comparison of models with different scales. Lower values

among these calculations indicate less residual variance for the predicted outcomes.

In order to compare the results produced with the SVR and the n-CCA models we used

the Bland–Altman plot. [49, 50] The Bland-Altman plot is a graphical method to compare

two different measurement techniques. The difference between each technique’s measure-

ment for each case is plotted against the average of the other technique’s measurement for

the same case. The former is represented on the y-axis and the latter on the x-axis. The full

Bland-Altman plot draws these differences and averages for every case in the test dataset. In

our study, the mean difference and the mean difference plus and minus 1.96 times the stan-

dard deviation of the differences are represented on the Bland-Altman plot with horizontal

lines (see Fig 5).

In order to evaluate the agreement between the real and predicted values, we compared the

mean, range, and kernel density plots of the results from the analyses on the dataset with the

MLE imputation. We compared the predictions of the SVR with polynomial kernel and n-

CCA models against the real values of our Test set (nTest = 278 cases).

Fig 5. Bland—Atman plot of the SVR model with the polynomial function and the n-CCA model on the dataset

with Maximum Likelihood imputation.

https://doi.org/10.1371/journal.pone.0208808.g005
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Results

Data analysis and handling missing data

Our initial dataset that contained the data from both TP1 (prior to CTX administration) and

TP2 (one week after CTX administration; nTP1+TP2 = 1278), had 799 fully completed cases

(65,1% of nTP1+TP2). The empty values in the dataset were missing completely at random (Lit-

tle’s MCAR test, p>0.05; Fig 6). These missing values are due to missing responses from

patients. In order to use the collected values of all of our cases, we applied the MI [29, 30] and

MLE [29, 31] to compensate for missing values.

Model selection

As our validation method, we selected a 10-times and 10-fold RCV. Beforehand, we compared

the performance of this validation method with Bootstrap, Bootstrap .632 and 10-fold CV. As

predictor variables we used the data collected from TP1 (for a full description of these predic-

tors see S1 Table). Moderate correlations were found among a number of predictors (see Fig

7). Type of cancer was correlated with gender because 40.6% (n = 519) of the patients in our

study had breast cancer. The number of prior cancer treatments was correlated with time from

patients’ initial cancer diagnosis. Income was correlated with being married and living alone.

KPS score [12, 13] was moderately correlated with sleep disturbance, attentional function,

depression, and morning fatigue. Finally regarding the symptoms collected in our dataset,

moderate correlations were found between sleep disturbance, anxiety, depression, attentional

function, morning energy, and morning fatigue.

Our analytical models were implemented in all three types of datasets (i.e. the original

ones with the missing values, the ones imputed with MI, the ones imputed with MLE). The

Fig 6. Missing values pattern (Little’s MCAR test, p>0.05).

https://doi.org/10.1371/journal.pone.0208808.g006
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performance of the models was evaluated based in the RMSE and the R-squared (R2). Table 1

shows the performance of different SVR models for predicting depression (CES-D) at TP2.

Based on these results (Table 1), we selected the 10-times and 10-fold RCV as our preferred

validation method to test and compare the remaining analyses. The best overall performance

for predicting CES-D at TP2 with SVR was implemented with the polynomial kernel on the

MI imputed dataset (RMSE = 6.191, R2 = 0.644). This result could be due to the method of

imputation used in the latter dataset and the type of kernel function that was used to construct

the prediction model. All four validation methods provided equivalent results with their best

performance implemented on the MI datasets. Bootstrap .632 combined with the polynomial

kernel had the worst performance on all three types of datasets (i.e. RMSE = 9.954, R2 = 0.323).

Fig 7. Correlation analysis of predictor variables.

https://doi.org/10.1371/journal.pone.0208808.g007

Table 1. Performance of Support Vector Regression (SVR) models for predicting depression (CES-D) at TP2.

10-times Repeated 10-fold

CV

10-fold CV Bootstrap Bootstrap .632

Dataset Kernel RMSE R2 RMSE R2 RMSE R2 RMSE R2

Missing data Linear 6.484 0.589 6.484 0.589 6.484 0.589 6.484 0.589

Polynomial 6.435 0.592 6.435 0.592 6.436 0.592 8.268 0.416

Radial Sigma 6.475 0.591 6.470 0.592 6.473 0.591 6.752 0.559

Multiple Imputation Linear 6.201 0.644 6.201 0.644 6.201 0.644 6.201 0.644

Polynomial 6.191 0.644 6.191 0.644 6.193 0.644 8.121 0.517

Radial Sigma 6.401 0.628 6.387 0.630 6.389 0.630 6.512 0.587

Maximum Likelihood Linear 7.102 0.548 7.102 0.548 7.102 0.548 7.102 0.548

Polynomial 7.081 0.549 7.081 0.549 7.053 0.552 9.954 0.323

Radial Sigma 7.189 0.540 7.182 0.541 7.192 0.540 7.393 0.508

https://doi.org/10.1371/journal.pone.0208808.t001
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Comparison between SVR and n-CCA

To compare the different approaches used in our study, we applied three different SVR and

three n-CCA models to predict the severity of depression (CES-D), sleep disturbance (GSDS),

and state anxiety (STAI-S) at TP2. The SVR models were implemented with three different

kernels (i.e. Linear, Polynomial, Radial Sigma). All of our models were tested on all three types

of datasets. As predictors we used all the data collected at TP1 (see S1 Table).

We compared the performance of the models based on their RMSE, their RMSE/mean

ratio (see Tables 2 & 3), and their differences in the Bland-Atman plots (Fig 5). In general the

SVR models provided better fitted models with lower prediction error. All the models pro-

vided better results using the MI dataset. For the prediction of sleep disturbance, the SVR with

the polynomial kernel achieved a RMSE of 13.153 and a RMSE/mean ratio of 0.209. For sleep

disturbance, the n-CCA achieved a RMSE of 16.113 and R2 of 0.306. For the prediction of anx-

iety, the polynomial kernel achieved a RMSE of 7.983 and a RMSE/mean ratio of 0.220. For

anxiety the n-CCA achieved a RMSE of 8.941 and a RMSE/mean ratio of 0.677. Finally, for the

prediction of depression, the polynomial kernel achieved a RMSE of 6.191 and a RMSE/mean

ratio of 0.465. For depression, the n-CCA achieved a RMSE of 6.907 and a RMSE/mean ratio

of 0.221.

Regarding the discrepancies between the two types of measurements as shown on the

Bland-Atman plots (Fig 5), the mean differences in the measurements of all three symptoms

(i.e., sleep disturbance, anxiety, depression) were close to zero. Most of these differences were

between +1.96SD and -1.96SD from the mean difference, which suggests a normal distribu-

tion. The two types of analysis (i.e., SVR with polynomial kernel and n-CCA) show a moderate

to high level of agreement between their measurements.

Comparison between the real and predicted values. For all three symptoms (i.e., sleep

disturbance, anxiety, depression), the means of the predicted values were very close to the

means of the real values (Table 4). Regarding their ranges, the ranges of the predicted values

Table 2. Performance of Support Vector Regression (SVR) models for predicting sleep disturbance (GSDS), anxiety (STAI-S) and depression (CES-D) at TP2.

Sleep Disturbance Anxiety Depression

Dataset Kernel RMSE RMSE/mean RMSE RMSE/mean RMSE RMSE/mean

Missing data Linear 13.302 0.251 8.084 0.244 6.484 0.509

Polynomial 13.379 0.251 8.082 0.245 6.435 0.506

Radial Sigma 13.709 0.258 8.147 0.247 6.475 0.518

Multiple Imputation Linear 13.156 0.212 7.985 0.221 6.201 0.465

Polynomial 13.153 0.209 7.982 0.220 6.191 0.465

Radial Sigma 13.243 0.239 8.045 0.228 6.401 0.488

Maximum Likelihood Linear 13.316 0.248 8.583 0.256 7.102 0.537

Polynomial 13.331 0.246 8.476 0.251 7.081 0.536

Radial Sigma 13.836 0.256 8.625 0.258 7.189 0.556

https://doi.org/10.1371/journal.pone.0208808.t002

Table 3. Performance of n-CCA for predicting sleep disturbance (GSDS), anxiety (STAI-S) and depression (CES-D) at TP2.

Sleep Disturbance Anxiety Depression

Dataset RMSE RMSE/mean RMSE RMSE/mean RMSE RMSE/mean

Missing data 19.955 0.307 12.238 0.681 9.661 0.222

Multiple Imputation 16.113 0.306 8.941 0.677 6.907 0.221

Maximum Likelihood 16.680 0.305 9.320 0.676 7.583 0.218

https://doi.org/10.1371/journal.pone.0208808.t003
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from the SVR models were much closer to the ranges for the real values (Table 4). In general,

the distributions of predicted values, from both analytical models, were very similar to the dis-

tributions for real values (Fig 8). n-CCA, as a Neural Network based algorithm, appears to be

affected by our relatively small sample size and the distribution of data on the edges of the

symptom scales. In general, it performed better where the data were denser (i.e., more data).

On the other hand, SVR with polynomial kernel appears to be less affected by the aforemen-

tioned factors and provided predicted values with a high concordance with the real values.

Conclusion

This study is the first to use two different machine learning techniques to accurately predict

the severity of three common symptoms (i.e., sleep disturbance, anxiety, depression) from

prior to through one week following the administration of CTX. The predictions were con-

structed using the features of the experimental dataset collected at the first Time Point. Using

Table 4. Sleep disturbance (GSDS), anxiety (STAI-S) and depression (CES-D) real values compared to the predicted values with the SVR (polynomial kernel) and n-

CCA on the dataset with the Maximum Likelihood Estimation imputation.

Symptoms Real Values

(mean)

Real Values

(range)

SVR (polynomial kernel) n-CCA

Predicted Values

(mean)

Predicted Values

(range)

RMSE RMSE /

mean

Predicted Values

(mean)

Predicted Values

(range)

RMSE RMSE /

mean

Sleep

Disturbance

54.796 7.000

-

105.000

54.089 20.044

-

100.214

13.331 0.246 54.600 38.427

-

86.368

16.680 0.305

Anxiety 34.481 20.000

-

76.000

33.749 19.495

-

74.236

8.476 0.251 34.865 24.895

-

57.583

9.320 0.267

Depression 14.119 0.000

-

49.000

13.205 0.097

-

49.110

7.081 0.536 13.792 4.578

-

33.338

7.583 0.550

https://doi.org/10.1371/journal.pone.0208808.t004

Fig 8. Density plots of the sleep disturbance (GSDS), anxiety (STAI-S) and depression (CES-D) real values

compared to the density plots of predicted values with the SVR (polynomial kernel) and n-CCA on the dataset

with the Maximum Likelihood Estimation imputation.

https://doi.org/10.1371/journal.pone.0208808.g008
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the SVR method, the differences between the real values (i.e., symptom severity scores that the

patients reported) and the predicted values were not meaningful differences. Furthermore, we

obtained fairly similar results with n-CCA at the expense of having a smaller variance among

the predicted values (i.e. higher ratio of RMSE/mean in most cases). The results indicate that

relatively similar findings were obtained independent of the number of missing values or the

imputation method used to compensate for missing values in our dataset. The ability to predict

the severity of future symptoms in oncology patients will be a powerful tool for oncology clini-

cians. Developing computational tools using machine learning techniques will assist clinicians

to risk profile patients and implement pre-emptive symptom management interventions.

Using this information, clinicians will be able to customize a patient’s treatment, increase their

tolerance for CTX, and improve their quality of life. Following replication, these methods can

be evaluated as a decision support tool to assist clinicians to improve symptom management

in patients receiving CTX. Finally, the approaches presented in this paper, may be applicable

to the same set of co-occurring symptoms in other chronic medical conditions.

The optimization of the feature selection process was one of the limitations of our study.

Being an exploratory study for the performance of the aforementioned predictive models, we

focused on the construction of predictive models and their evaluation and comparison. This

effort was implemented through comparison of different imputation techniques (i.e. MI,

MLE), validation (i.e. RCV, CV, Bootstrap, Bootstrap .632) and evaluation methods (i.e.

RMSE, Bland-Altman plot). Future work will focus on defining an effective set of predictors,

as well as pre-processing and enhancing the data collection and representation to improve the

efficiency of both of the SVR and the n-CCA models. In addition, we will develop an incre-

mental learning method with additional time points and evaluate it on a similar dataset. [51]

Supporting information

S1 Table. Predictor variables for the Support Vector Regression (SVR) and the Non-linear

Canonical Correlation Analysis by neural networks models.
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