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Abstract Short-term prediction of traffic flow is one of the

most essential elements of all proactive traffic control

systems. The aim of this paper is to provide a model based

on neural networks (NNs) for multi-step-ahead traffic

prediction. NNs’ dependency on parameter setting is the

major challenge in using them as a predictor. Given the fact

that the best combination of NN parameters results in the

minimum error of predicted output, the main problem is

NN optimization. So, it is viable to set the best combination

of the parameters according to a specific traffic behavior.

On the other hand, an automatic method—which is appli-

cable in general cases—is strongly desired to set appro-

priate parameters for neural networks. This paper defines a

self-adjusted NN using the non-dominated sorting genetic

algorithm II (NSGA-II) as a multi-objective optimizer for

short-term prediction. NSGA-II is used to optimize the

number of neurons in the first and second layers of the NN,

learning ratio and slope of the activation function. This

model addresses the challenge of optimizing a multi-output

NN in a self-adjusted way. Performance of the developed

network is evaluated by application to both univariate and

multivariate traffic flow data from an urban highway.

Results are analyzed based on the performance measures,

showing that the genetic algorithm tunes the NN as well

without any manually pre-adjustment. The achieved pre-

diction accuracy is calculated with multiple measures such

as the root mean square error (RMSE), and the RMSE

value is 10 and 12 in the best configuration of the proposed

model for single and multi-step-ahead traffic flow predic-

tion, respectively.

Keywords Traffic prediction � Neural networks � Genetic
algorithm � Self-adjusted framework

1 Introduction

Intelligent transportation systems (ITSs) are expected to

alleviate traffic problems around the world. Short-term

traffic prediction is a highly researched area within ITS,

and the results are used by transportation practitioners to

reduce congestion and increase mobility. Efforts in this

field started from the application of autoregressive inte-

grated moving average (ARIMA) models and nonpara-

metric techniques for traffic prediction. Since then, several

parametric, nonparametric and also hybrid methods have

been proposed by researchers. Basic parametric methods

such as ARIMA [1], seasonal autoregressive integrated

moving average method (SARIMA) [2] and Kalman filter

[3] have been widely used in the literature. Developing

these algorithms to meet the requirements of current

engineering applications has been the subject of many

research efforts in the past few decades [4]. For example,

Luo et al. [5] proposed a hybrid prediction methodology

based on improved SARIMA model and multi-input

autoregressive (AR) model with genetic algorithm (GA)

optimization, in order to provide a better prediction accu-

racy and also reduce the operation time.

Many nonparametric algorithms have also been pro-

posed in this field. Huang and Sun [6] applied kernel

regression with sparse metric learning to predict short-term

traffic flow. In 2016, Habtemichael and Cetin [7] identified

similar traffic patterns with an enhanced K-nearest
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neighbor (KNN) algorithm and provided a data-driven

short-term traffic prediction. Multilayer feedback NN [8]

and KNN-based neuro-fuzzy system [9] are examples of

applying NNs for short-term traffic prediction. Owing to

their ability to approximate any degree of nonlinearity,

NNs have been widely used in the literature. However,

because of their developmental nature, a large degree of

uncertainty is present when trying to select the optimal

network parameters. To overcome this deficiency,

researchers had to rely on very time-consuming and

questionable rules of thumb [10].

An alternative approach for improving prediction

accuracy is combining parametric, nonparametric and/or

optimization algorithms to provide a hybrid method. In this

approach, several methods are aggregated in order to pro-

vide a more efficient model. For instance, Hu et al. [11]

used a combination of particle swarm optimization (PSO)

and GA for traffic flow prediction. Cong et al. [12] pro-

posed a model combined with support vector machine

(SVM) and fruit fly optimization.

New interest in hybrid methods arises from the use of

GAs. In 2015, Feng [13] analyzed the disadvantage of

wavelet NNs and used GA to optimize the weight and

threshold of NN. The GA has also been used to optimize

NNs for different types of roads, to optimize links which

connect input cells to hidden cells in the NN trained by

Levenberg–Marquardt method [14] or to optimize the

weights of the NN [15].

This study proposed a hybrid approach by applying GA

optimization method to different kinds of NNs, such as

simple back-propagation multilayer perceptron with ‘‘sig-

moid’’ activation function and back-propagation multilayer

feed-forward NN with momentum, to optimize network’s

architecture. The main difference of our NN structure from

the existing ones is that we consider it as multi-output so

that we can predict multi-step-ahead traffic flow with the

original set of data. Main concerns of this study are as

follows:

1. Multi-step-ahead prediction with NNs is usually pro-

vided with two approaches: (1) training separate NNs

for each prediction horizon or (2) using one trained NN

and sequentially predicting the traffic flow at time

t ? 2 using the predicted traffic flow at t ? 1 and so

on. The first approach is very time-consuming, and in

the second approach, the accuracy of results decreases

as the prediction horizon increases. The best approach

is to use a multi-output NN which then raises the

challenge of optimizing its parameters using a consis-

tent optimization algorithm. In this paper, the result of

applying a multi-objective optimization algorithm on

multilayer perceptron (MLP) NNs is discussed.

2. The effort of this paper is to optimize these parameters

for a multi-output MLP in a self-adjusted and evolu-

tionary manner. Our goal is to reduce the dependency

of final parameters on the manually initialized

parameters.

The optimized model is used to predict multi-step-ahead

flow at a given highway site considering both spatial and

temporal features. Both temporal and spatial effects are

essential for more accurate results.

The remainder of this paper is organized as follows:

Sect. 2 presents the methodological and optimization

framework used in this paper. Section 3 discusses the data

used in this study and also the temporal and spatial rep-

resentation of the traffic data. In Sect. 4 we present the

empirical results, and finally, in Sect. 5 we discuss the

findings of this paper.

2 Methodology

The framework employed for prediction entails two major

blocks: the traffic estimator and its optimizer. The esti-

mator structure is developed based on MLP NN with back-

propagation learning algorithm. The optimizer used for

setting the optimal set of variables is based on a specific

kind of GAs called ‘‘non-dominated sorting genetic algo-

rithm II’’ or briefly NSGA-II. This section gives a brief

review on the properties of these two blocks.

2.1 MLP NNs

2.1.1 Standard back-propagation algorithm for MLP

The MLP belongs to the feed-forward NNs that are usually

trained using the error back-propagation learning rule. The

concept of a back-propagation MLP can be thought as a

two-pass procedure through the different layers of the

network: a forward one, in which the weights are fixed, and

a backward pass, where the weights are adjusted according

to the error correction rule. Consider the learning of a

single neuron. Let us assume that a nonlinear activation

function is chosen to be a hyperbolic tangent function, i.e.,

yj ¼ u uj
� �

¼ tanh cjuj
� �

¼
1� e�2cjuj
1þ e�2cjuj

; ð1Þ

where yj is the actual output of neuron j, u �ð Þ is activation
function, cj is the slope of the activation function, and

uj ¼
Pn

i¼1 wjixi þ hj; cj [ 0, in which wji are synaptic

weights from neuron j to i.

The aim of learning is to minimize the instantaneous

squared error of the output signal by modifying the
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synaptic weights, wji. This error can be calculated using

Eq. (2).

Ej ¼
1

2
dj � yj
� �2¼ 1

2
e2j ; ð2Þ

where Ej is the instantaneous squared error of neuron j, dj is

the predicted output, yj represents the actual output, and ej
is the difference between the predicted and actual output of

neuron j.

The problem of learning can be formulated as follows.

Given the current set of synaptic weights wji, we need to

determine how to increase or decrease the local error

function Ej. This can be done using the steepest descent

gradient rule as follows:

Dwij ¼ �g
oEj

owji

; ð3Þ

where g is a positive learning parameter determining the

speed of convergence to the minimum [16].

This paper trains the MLPs with error back-propagation

algorithm and two hidden layers with respect to four

parameters: (1) learning parameter, (2) slope (gain) of the

activation function, (3) number of the first layer’s neurons,

and (4) number of the second layer’s neurons.

2.1.2 Back-propagation algorithm with momentum

updating

The described learning algorithm has some important

drawbacks. First of all, the learning parameter should be

chosen small to provide minimization of the total error

function Ej. However, for a small learning parameter, the

learning process becomes very slow. On the other hand,

while large values correspond to rapid learning, they lead

to parasitic oscillations which prevent the algorithm from

converging to the desired solution. Moreover, if the error

function contains many local minima, the network might

get trapped in some local minimum or get stuck on a very

flat plateau. One simple way to improve the back-propa-

gation learning algorithm is to smooth the weight changes

by over-relaxation, i.e., by adding the momentum term

(Eq. 4) [16].

Dw s½ �
ji kð Þ ¼ gd s½ �

j O
s�1½ �
i þ aDw s½ �

ji k � 1ð Þ; ð4Þ

where Dw s½ �
ji kð Þ is the kth correction for weight wji in the sth

layer, s is the layer number, Oi is the ith neuron output, d½S�j

is the local error in the sth layer, and a 2 0; 1½ � is the

momentum. The second term is the so-called momentum

term which may improve the convergence rate and the

steady state performance of the algorithm (by damping

parasitic oscillations).

More precisely, if we are moving through a plateau

region of the performance surface function, then the gra-

dient component
dEj

dWji
will be the same at each step and we

can write

Dwji ¼ �g
oEj

ow
s½ �
ji kð Þ

þ aDw s½ �
ji k � 1ð Þ ffi � g

1� a
oE

ow
s½ �
ji kð Þ

:

ð5Þ

This means that the effective learning rate increases to

the value geff ¼ g
1�a without magnifying the parasitic

oscillations [16]. This NN is trained with respect to five

parameters: (1) learning parameter, (2) slope (gain) of the

activation function, (3) momentum term, (4) number of the

first layer’s neurons, and (5) number of the second layer’s

neurons.

2.2 NSGA-II

The main approach in multi-objective evolutionary algo-

rithms (MOEAs) is to find a set of Pareto-optimal solutions

in one single run. In multi-objective models, a set of Par-

eto-optimal solutions are reported instead of finding a

single solution that optimizes all the objectives

simultaneously.

In comparison with a number of MOEAs proposed in

the past decade, NSGA-II is a well-known multi-objective

GA proposed by Deb that finds a better spread of solutions

in different problems [17].

This algorithm evaluates a set of solutions in a bi-/multi-

directional search space, step by step. In each step, half of

the solutions are picked as the elite set called parent pop-

ulation. In order to make a new set of solutions, genetic

operators (crossover and mutation) are applied to the elite

set to develop a child population. In the next step, members

of the elite set are selected among the parent and child

populations. Different versions of GAs move toward the

optimum solution(s) based on this method and select the

elite members with respect to fitness and spread. Several

methods have been proposed for computing fitness and

spread criteria. Fast non-dominated sorting is the method

used in NSGA-II to arrange population in different ranks

based on their fitness values. In this method, each solution

is compared with every other solution in the population to

find whether it is dominated. The spread criterion is mea-

sured by density estimation. Density estimation of solu-

tions surrounding a particular point in the population is

defined equal to the average distance of the two points on

either side of this point along each of the objectives. The

overall process of NSGA-II is shown in Fig. 1, where Pt is

the adult population at time t, Qt is the child population at

time t, and Rt is the entire population.
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3 Optimizing NN using NSGA-II

NNs’ dependency on parameter setting is the major chal-

lenge in using them as a predictor. Given the fact that the

best combination of NN parameters results in the minimum

error of the predicted output, the main problem is NN

optimization. So, it is viable to set the best combination of

the parameters according to a specific traffic behavior. On

the other hand, an automatic method—which is applicable

in general cases—is strongly desired to address the

appropriate NN’s parameters. In this section, a self-ad-

justed framework is developed using an optimized NN for

short-term prediction.

Most prediction systems are dependent on data trans-

mission. This suggests that a continuous flow of data about

traffic parameters is necessary to operate efficiently.

However, it is common for most real-time traffic data

collection systems to experience failures. So, a real-time

prediction system must be able to generate predictions for

multiple steps ahead to ensure its operation in cases of data

collection failures [18].

One approach for multi-step-ahead predictions is to

increase the number of outputs to achieve the single-/multi-

step-ahead prediction at the same time. Consider V(t) as the

time series of traffic flow data which varies as a function of

time. The input–output relation can be written as

V tð Þ;V t þ 1ð Þ½ � ¼ f V t � 1ð Þ;V t � 2ð Þ; . . .;V t � nð Þð Þ;
ð6Þ

where f(�) is the function that defines the relation between

the historical traffic flows and target traffic flows (traffic

flows at time t and t ? 1, in this case) and n is the look-

back window size.

Although multi-step-ahead prediction is reckoned to be

a proper solution in cases of failures of data collection

systems, it was found in some previous relevant studies

such as [10] that the correlation coefficient between actual

and predicted flow series decreases as the prediction

horizon increases. In order to solve this problem, we use a

multi-output NN and used an MLP to optimize its param-

eters. The advantage of this combination is predicting

multiple steps ahead through the original set of data with

high accuracy (It will be shown that the correlation coef-

ficient between actual and predicted flow series does not

decrease as the prediction horizon increases). Optimizing

the model using NSGA-II assures that we are getting the

minimum error simultaneously for all steps ahead.

As previously discussed, the essential concern in mod-

eling MLPs is the specification of their optimal parameters

with respect to the number of hidden units and the learning

rule. In a more microscopic view of optimizing these two

issues, one can trace many network parameters such as

learning rate, momentum rate, as well as the number of

hidden units that have to be estimated by the practitioner.

The most commonly used approach is to adopt a trial-and-

error process in order to discover an optimal value for the

three variable parameters [10]. The effort of this paper is to

optimize these parameters for a multi-output MLP in a self-

adjusted and evolutionary manner. The high-level

flowchart presented in Fig. 2 shows the outline of our

procedure. More detailed steps are provided in Fig. 3.

As illustrated in Fig. 3, the optimized value for the

number of neurons in the first and second layers of the NN,

learning ratio and slope of the activation function—shown

by q1, q2, eta and gamma—is resulted from using NSGA-II

to minimize NN error. In this process, EV1 and EV2 rep-

resent the error of validation data for one-step and two-

step-ahead prediction, respectively. P and Q are the parents

and children populations. The NNBP is the MLP utilized

by back-propagation algorithm. After that, these efficient

values are transferred to the NN algorithm to be set as the

initial values of the mentioned parameters. The NN algo-

rithm can be run once to provide the weights of links

connected in three layers. These weights alongside the

estimated parameters are structuring our final NN for

multi-step-ahead prediction.

Parents

Children

Rank1

Rank3

….

Population

Non-dominated sorting Crowding distance sorting

Pt

Qt

Rejected

Pt+1

Rank2

Rejected

Rt

Fig. 1 NSGA-II procedure at generation time t [17]
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4 Study data

As previously mentioned in Sect. 3, the proposed frame-

work is self-adjusted and data-independent. So, it is

expected to predict the traffic flow for each set of data

regardless of the different situations. In order to test the

framework with a comprehensive set of data, data were

collected from a six-lane section along the Hashemi Raf-

sanjani Highway/Tehran with 1,500 m length for three

consecutive typical days. Traffic behavior during 24 h on

this highway includes both congested and non-congested

hours. Graphical representation of the selected area and

organization of the loop detectors are shown in Fig. 4.

The traffic flow data are collected from certain data

collection points every 5 min. In this paper, data are nor-

malized to values between 0 and 1. The data samples used

for training, validation and testing of the NNs are nor-

malized using the min–max normalization technique given

as follows:

Xn ¼
X � Xmin

Xmax � Xmin

; ð7Þ

where Xn is the normalized value, and Xmin and Xmax are an

instance of the minimum and maximum values of the

vector to be normalized. This reduces the possibility of

reaching the saturation regions of the sigmoid transfer

function during training. Figure 5 shows the traffic flow

data in the selected area, in 5-min resolution.

4.1 Temporal and spatial representation of data

In this section, different datasets used in this study are

discussed. Finding a way of incorporating both temporal

and spatial characteristics of traffic data time series is a

worth mentioning issue. For example, consider the traffic

flow series which varies as a function of time, V(t). Sup-

pose that traffic data are collected using two detectors, one

located in the desired section and the other one at the

upstream. We name the data series collected by these

detectors as Vdown(t) and Vup(t), respectively. In order to

predict the value of Vdown at a given time t, the network

must be trained using pairs of input–output values, where

the input values could be

1. Time-lagged events of Vdown, such as

Vdown t � 1ð Þ;Vdown t � 2ð Þ; . . .;Vdown t � nð Þ.
2. Time-lagged events of Vdown plus spatial attributes. In

this case, input values are time-lagged events of both

Vdown and Vup, such as Vdown t�1ð Þ;Vdown t�2ð Þ;
. . .;Vdown t�nð Þ;Vup t�1ð Þ;Vup t�2ð Þ; . . .;Vup t�nð Þ.

The first approach is considered as a univariate nonlinear

prediction model, and the second one is a multivariate

model.

The chosen highway section has three loop detectors: One

is for collecting data at the desired section, and other two are

placed at the upstream sections. Suppose that A and B rep-

resent the traffic data of the upstream sections (collected by

No. 02 and No. 03 detectors, respectively) and C is for the

downstream and the desired section (collected by No. 01).

Using the following relationship between these time

series, the model can easily carry out traffic data forecasts:

C tð Þ ¼ f A t � 1ð Þ ;B t � 1ð Þ;C t � 1ð Þ;C t � 2ð Þ; . . .;C t � nð Þð Þ:

Obviously, when input values only contain temporal

attributes, it does not contain A and B time series:

Start

Set NN parameters 
using NSGA-II

Run NN 

Run tuned NN

end

NN optimization
using NSGA-II

NN weights generation

Run NN and find errors

Acceptance test

No

Yes or max. itr. is reached 

Transfer train 
instances of flows

Transfer NN parameters 
which are set by NSGA-II

Transfer errors of NN

Transfer optimized 
parameters for NN

Transfer weights of 
optimized NN

Transfer current 
road condition

Transfer predicted speed

Prediction using tuned NN

Fig. 2 Basic steps of optimizing multi-output MLP NN using NSGA-

II
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C tð Þ ¼ f C t � 1ð Þ;C t � 2ð Þ; . . .;C t � nð Þð Þ:

The main purpose of this paper is to discuss the

optimization of NNs when we have more than one output.

We also consider two input types containing temporal or

spatiotemporal attributes. Here, network outputs will be

one- and two-step-ahead predictions, which are the next 5

and 10 min. So simply assuming an MLP structure with

two outputs, different types of input–output pairs used in

this paper are as follows:

• Univariate (type 1 input):

C tð Þ;C t þ 1ð Þ½ � ¼ f C t � 1ð Þ;C t � 2ð Þ; . . .;C t � nð Þð Þ:

• Multivariate (type 2 input):

C tð Þ;C t þ 1ð Þ½ � ¼ f A t � 1ð Þ ;B t � 1ð Þ;C t � 1ð Þ;ð
C t � 2ð Þ; . . .;C t � nð ÞÞ:

4.2 Finding the input dimension

This section defines the aforementioned look-back window

size or simply the input dimension. Increasing the input

POF

Ranked population

Optimum weights for NN

The process of
tuning NN

The process of  
prediction

NNBP()
q1, q2, eta, gamma

EV1, EV2 
NN-set 
errors()P, Q

NN-
initialization()

P, Q, PopSize, Itr

CrossOver()

Mutation()

NNBP()

R=P U Q FastNonDominatedSort()

CrowdDistance()

MakeNewPop()Elitist solutions in population

OutputGeneration()

NN-
WeightsGeneration()

q1, q2, eta, gamma
Start()

q1, q2, eta, gamma

q1, q2, eta, gamma Po
bl

em
In

fo

NSGAII()

Q

Ranked population
Crowding distances for 

ranked population

Fig. 3 The schematic representation of the optimization process

Fig. 4 Graphical representation of Hashemi Rafsanjani Highway

Traffic prediction using a self-adjusted evolutionary neural network 311

123J. Mod. Transport. (2019) 27(4):306–316



dimension of NNs can exponentially increase the compu-

tational complexity, but it may also increase the forecasting

accuracy. Therefore, choosing the best dimension is a

crucial issue. In this work, the statistical autocorrelation

function (ACF) and partial autocorrelation function

(PACF) are used for selecting the input dimension of a

given time series in the nonparametric approach for traffic

flow forecasting. Statistically, autocorrelation measures the

degree of association between data in a time series sepa-

rated by different time lags. The ACF is evaluated for

various values of the lag time, and results are plotted. For

traffic flows in 5-min intervals, the lag time will be in 5

min. Wherever the ACF curve intersects the lag time axis,

its value is zero, indicating that y(t - D) and y(t) are lin-

early independent, where D denotes the look-back window

size. The lag time corresponding to the first point of

intersection is chosen as the optimum input dimension [19].
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Figure 6a shows the time series plot of 850 and 5-min

traffic flow data continuously recorded over a period of

3 days, that is, the number of observations N = 850. It

displays a strong seasonal periodical pattern of 24 h

(1 day), as expected. Figure 6b shows the variation of the

ACF for the shown traffic flow data in Fig. 6a, with a lag

time of up to 20 (5-min). The autocorrelation plot shows

that the sample autocorrelations are very strong and posi-

tive and decay very slowly.

Table 1 Comparison results

Forecasting 10 min ahead with type 2 input data MAPE R2

Optimized NN with gradient descent 17 0.97

Seasonal ARIMA 18 0.92

Historical average 20 0.90
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The next step is to produce the partial autocorrelation

plot of the data. The partial autocorrelation plot of the data

with 95% confidence bands shows that only the partial

autocorrelations of the first, second, third and fourth lag are

significant.

The PACF curve enters the confidence band at D = 4,

indicating that y(t - 4) and y(t) are linearly independent.

The lag time D = 4 is therefore chosen as the optimum

value to be used in the input dimension (Fig. 6c).

In other words, a four-dimensional input traffic flow

vector, including four time-lagged periods of flow from

No. 01 and two output units (representing traffic flow for

No. 01 at t ? 1 and t ? 2 time intervals), will be used to

model the univariate set of data, and a six-dimensional input

traffic flow vector, including four time-lagged periods of

flow fromNo. 01, one time-lagged periods of flow from both

No. 02 and No. 03, and two output units (representing traffic

flow for No. 01 at t ? 1 and t ? 2 time intervals), will be

used to model the multivariate set of data.

5 Empirical results

In order to train and predict with NNs, 50% of the available

data is used for training, 25% for validation, and the rest

25% for testing. Mean square error (MSE) for validation

data has been used as a measure of the network’s perfor-

mance in the process of tuning NN. A set of elitist

parameters are transferred to the next iteration; finally, the

test data set is presented to the network to evaluate the

performance of the adjusted network. Root mean square

error (RMSE), mean average error (MAE) and the corre-

lation coefficient known as R2, between the actual and

predicted flow series, are the performance measures used to

compare the predicted values against the actual values.

These measures are defined in Eqs. (8)–(10):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 Si � Við Þ2

N

s

; ð8Þ

MAE ¼
PN

i¼1 Si � Við Þ
N

; ð9Þ

MAPE ¼ 1

N

XN

i¼1

Si � Vij j
Vi

� 100; ð10Þ

where Si is the predicted value for observation i, Vi is the

actual value for observation i, and N is the number of

observations.

Prediction results are summarized in plots presented in

Fig. 7. From the figures, all of the errors (MAE, RMSE and

MAPE) are sufficiently small to show that NSGA-II can be

used as a promising tool for optimizing NN’s parameters,

with the aim of predicting the real-world traffic behavior.

Comparing errors in detail based on NN types, we find

that using techniques like adding the momentum rate to the

classic gradient descent method did not improve the per-

formance. Both models have similar performance, and it is

notable that the R2 values in the models are very close and

high for both one- and two-step-ahead predictions. Com-

paring errors based on data types (univariate and multi-

variate) shows that using spatial attributes in addition to the

temporal ones improves the performance.

The aforementioned findings suggest that the multi-

variate approach can be used for traffic prediction at the

selected highway site according to its predictive accuracy.
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In order to compare the accuracy of the proposed

approach, multi-step-ahead prediction with the same data

set is also provided with two other approaches: (1) seasonal

ARIMA and (2) historical average. Table 1 shows the

comparison results. MAPE and R2 values are chosen to be

reported for 10-min ahead prediction and with type 2 data

as the models’ input. Our observations revealed that both

the seasonal ARIMA and the optimized NN can achieve

good forecast in application to traffic flow, but the
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Fig. 10 Scatter plot of the univariate model: a 5 min ahead; b 10 min

ahead
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Fig. 11 Actual versus predicted flow of the multivariate model for

5 min ahead
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Fig. 12 Actual versus predicted flow of the multivariate model for

10 min ahead
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Fig. 13 Scatter plot of the multivariate model: a 5 min ahead;

b 10 min ahead
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developed predictive model using multi-output NN opti-

mized with NSGA-II causes higher correlation between the

predicted and actual traffic flows. This means that the

traffic flow pattern predicted by the proposed approach is

more coincident with the real traffic flow pattern. While the

optimized NN results are comparable to the seasonal

ARIMA, they both have better results than the simple

historical average method.

Figures 8 and 9 show the predicted versus actual values

of flow for the univariate model, for the next 5 and 10 min,

respectively. Because of the similar results for both NNs,

we only plot the results of genetically optimized gradient

descent, for univariate and multivariate inputs. A portion of

data points is magnified to clearly depict the differences.

Figure 10 shows the scatter plot of the results shown in

Figs. 8 and 9.

Similarly, Figs. 11 and 12 are for the multivariate

approach and Fig. 13 shows the scatter plot.

6 Conclusion

The ability to predict the future values of traffic parameters

helps to improve the performance of traffic control sys-

tems. Both single/multi-step-ahead predictions play a sig-

nificant role in this field, but in cases of system failure,

multi-step-ahead predicted values become beneficial. In

order to avoid the low accuracy of long-term forecasts,

instead of applying the iterated approach to the results of a

single output model, multi-output NN is used in this study.

This paper applied the NSGA-II to optimize the parameters

of NNs with different learning rules and different types of

inputs. This specific genetic algorithm is a well-known

multi-objective genetic algorithm that finds a better spread

of solutions in different problems.

The proposed framework predicts traffic flow values

based on their recent temporal and spatial profiles at a

given highway site during the past few minutes. Both

temporal and spatial effects are found to be essential for

more accurate prediction. Moreover, it was found that

longer extent of prediction does not decrease the accuracy

of results in this model. The model performance was val-

idated using real traffic flow data obtained from the field.

This paper demonstrates the ability of this class of

genetic algorithms to produce the best combination of

network parameters. Results obtained from test data adduce

that the model generalization ability is satisfactory. For the

case of 5- and 10-min prediction horizon, R2 indices are at

least 0.98, which evidently shows the model generalization

ability.
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