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Abstract

A norm minimization problem posed in K-dimensional finite arrays without non-negativity constraints
was efficiently solved by Romero Romero [11]. Going beyond we provide here an explicit, exact solution
in case the arrays are replaced by L2-Hilbert spaces. Furthermore, we propose a polynomial procedure
yielding an approximate optimal solution when non-negativity constraints must be taken into account for
K = 2.
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Introduction

Closely related to optimization problems that
arise when updating input-output matrices in
economic studies [6], inferring migration patterns
in demography [10], and reconstructing images
in tomography Kak and Slaney [5], or among
other applications in the realm of statistical sam-
pling [3], Romero [11] considered

Problem 1.1. Given real vectors

u˜ = (u1, . . . , um) and v˜ = (v1, . . . , vn)

satisfying
m∑
i=1

ui =
n∑

j=1

vj, and an m-by-n real ma-

trix A = (Aij), find X ∈ Rm×n that minimizes

m∑
i=1

n∑
j=1

(Xij − Aij)
2 subject to linear constraints

n∑
j=1

Xij = ui, for i = 1, . . . ,m, and
m∑
i=1

Xij = vj,

for j = 1, . . . , n.

and proved that its optimum X∗ = (X∗ij) can be
found by means of the explicit, compact formula:

X∗ij = Aij +
ui − u′i
n

+
vj − v′j
m

− ϕ

mn
,

i = 1, . . . ,m; j = 1, . . . , n,

where u′i =
n∑

`=1

Ai`, v′j =
m∑
k=1

Akj, and ϕ =
m∑
i=1

(ui−u′i),

for i = 1, . . . ,m and j = 1, . . . , n, thus yielding a
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solution algorithm of linear computational com-
plexity in the number mn of variables.

Calvillo and Romero [2] furnished a polyno-
mial algorithm to solve Problem 1.1 when non-
negativity constraints are added, namely,

Problem 1.2. Given real vectors (u1, . . . , um)
and (v1, . . . , vn) satisfying
m∑
i=1

ui =
n∑

j=1

vj, and an m-by-n real matrix A =

(Aij), find X ∈ Rm×n minimizing
m∑
i=1

n∑
j=1

(Xij −

Aij)
2 subject to

n∑
j=1

Xij = ui,

m∑
i=1

Xij = vj, and Xij ≥

0, for i = 1, . . . ,m, and j = 1, . . . , n.

On the other hand, in [11] a generalization of
Problem 1.1 to K-dimensional arrays (K ≥ 2)
was described and explicitly solved as follows.

For given positive integers K, d1, d2, . . . , dK
(K ≥ 2), let K be the set of the first K positive
integers and let G be the grid

I1 × I2 × . . .× IK ,

where Ik (k ∈ K) denotes the set of the first dk
positive integers. Further, let A : G → R be
a K-dimensional array of real numbers over G,
and for every k ∈ K let

b̂k = (b̂k1, b̂k2, . . . , b̂kdk) : Ik → R

be a one-dimensional array of real numbers. Fi-
nally, letting α denote an element (i1, . . . , iK)
of G, W := { (k, `) | k ∈ K, ` ∈ Ik } and
Sk` := {α ∈ G | ik = ` }, consider

Problem 1.3.

PK


minimize

∑
α∈G

(Xα − Aα)2

subject to
∑
α∈Sk`

Xα = b̂k` , (k, `) ∈ W.

Note that adding non-negativity constraints to
the norm minimization problem PK yields an ax-
ial transportation polytope as defined in Yemeli

chev et al. [13], which has been object of numer-
ous studies (see for example [9], and references
therein). Assuming feasibility, namely,∑

`∈Ij
b̂j` =

∑
`∈Ik

b̂k` =: ϕ̂ ,

for every j, k ∈ K, the following result arises.

Theorem 1.1. [11]Romero The optimal solu-
tion X∗ = (X∗i1,...,iK) to PK is given by

X∗i1,...,iK = Ai1,...,iK +
1

Ω

[
K∑
j=1

djbjij − (K − 1)ϕ

]
,

(i1, . . . , iK) ∈ G,

where ϕ = ϕ̂ −
∑

α∈GAα, Ω =
∏K

k=1 dk, and

bk` = b̂k` −
∑

α∈Sk`
Aα for (k, `) ∈ W .

The aim of this paper is twofold: first to
generalize Theorem 1.1, then to tackle Problem
1.2 by algorithmic means, both considering the
minimization of the quadratic functional that
arises when the arrays are replaced by L2-Hilbert
spaces as is explained now.

Let B ∈ RK be the K-box B ≡ [0, d1]×· · ·×
[0, dK ], and B

(j)
xj ∈ RK , for xj ∈ [0, dj], be the

slice

B(j)
xj
≡ [0, d1]× · · · × [0, dj−1]× {xj} × [0, dj+1]×

· · · × [0, dK ].

Also, we denote by vol(B) ≡
∏K

j=1 dj the K-
dimensional content of box B, and by

vol(B(j)
xj

) ≡
K∏

k=1,k 6=j

dk

the (K − 1)-dimensional content of slice B
(j)
xj .

As the content of vol(B
(j)
xj ) is independent of xj

we write vol(B(j)) instead of vol(B
(j)
xj ). Now,

consider the space of observable real functions

Y ≡ L2[0, d1]× · · · × L2[0, dK ], (1)
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where L2[0, dj] is the classical space of quad-
ratic integrable real functions in the Lebesgue
sense over [0, dj], equipped with the inner prod-

uct 〈y, z〉Y ≡
∑K

j=1

∫ dj
0 z(xj) y(xj) dxj. Clearly,

Y is a Hilbert space. We take as reconstruction
space the classical space L2(B) of the quadratic
integrable real functions in the Lebesque sense
over B, equipped with the usual inner product
〈X, Y 〉L2(B) ≡

∫
B Y (x˜)X(x˜)dx˜ .

Problem 1.4. Given the observable functions
fj ∈ L2[0, dj] of X, for j = 1, . . . , K, find X ∈
L2(B) minimizing Ψ(X) ≡ 1

2
‖X‖2

L2(B), subject

to linear integral constraints∫
B(j)

X(x˜) dx˜ [j] = fj(xj), (2)

xj ∈ [0, dj], j = 1, . . . , K,

where dx˜ [j] ≡ dx1 . . . dxj−1dxj+1 . . . dxK.

Our aim in this paper is twofold. First, we
study the Problem 1.4 and then we discuss the
natural generalization of Problem 1.2 in an infi-
nite dimensional context. In Section 3, we pro-
vide an operator formulation of Problem 1.4,
which is used in Section 3 to furnish an explicit
formula for its solution. In Section 4, a natural
generalization to Problem 1.2 is given, and it is
solved by a polynomial algorithm relaying on a
discretization of the problem. Finally, Section 5
is devoted to our conclusions.

Operator formulation

We start by reformulating Problem 1.4 in terms
of continuous linear operator

Rj[X](p) ≡ R[X](êj, p)
=
∫
B

(j)
p
X(x1, .., xj−1, p, xj+1, .., xK)dx˜ [j]

=
∫
B

(j)
p
X(x˜)dx˜ [j].

close related with the Radon transform

R[X](ω˜ , p) =

∫
ω˜ ·x˜=p

X(x˜)dx˜

where ω˜ ∈ SK−1, namely, the unit sphere in RK ,

and p is a real number1.

Proposition 2.1. The linear transforms

Rj : L2(B)→ L2[0, dj] ,

for j = 1, . . . , K, are continuous.

Proof. For X ∈ L2(B), the Cauchy-Schwarz in-
equality yields

|Rj[X](p)|2 =

∣∣∣∣∫B(j)
p

1 ·X(x˜)dx˜ [j]

∣∣∣∣2
≤
∫
B

(j)
p
| 1 ·X(x˜)|2dx˜ [j]

≤

∣∣∣∣∣
(∫

B
(j)
p

1 dx˜ [j]

) 1
2
(∫

B
(j)
p
|X(x˜)|2 dx˜ [j]

) 1
2

∣∣∣∣∣
2

= vol(B(j))
∫
B(j) |X(x˜)|2 dx˜ [j]

Consequently,

‖Rj[X] ‖2
L2[0,dj ]

≤
∫ dj

0

(
vol(B(j))

∫
B

(j)
p

|X(x˜)|2 dx˜ [j]

)
dp

where the right-hand side becomes

vol(B(j))

∫ dj

0

(∫
B

(j)
p

|X(x˜)|2 dx˜ [j]

)
dp

= vol(B(j))

∫
B

|X(x˜)|2 dx˜ .
So, we get that Rj[X] ∈ L2[0, dj], and

‖Rj[X] ‖L2[0,dj ] ≤ (vol(B[j])1/2 ‖X‖L2(B) ,

and the proposition follows.

Now, in terms of the observational operator
A : L2(B)→ Y given by

A[X] ≡

 R1[X]
...

RK [X]

 , (3)

we see that Problem 1.4 can be reformulated as
1See Natterer Natterer [8] and Helgason Helgason [4] for applica-

tions of the Radon transform in Computarized Tomography, and in
Integral Geometry and Partial Differential Equations, respectively.
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Problem 2.1. Given f ∈ Y, find X ∈ L2(B)
minimizing φ(X) ≡ 1

2‖X‖
2
L2(B) and subject to

A[X] = f .

Proposition 2.2. A sufficient and necessary con-
dition for Problem 2.1 to be feasible is

ϕ = d1 f̄1 = d2 f̄2 = · · · = dK f̄K , (4)

where f̄j ≡
1

dj

∫ dj
0 fj(xj) dxj is the mean value of

fj on [0, dj], for j = 1, . . . , K.

Proof. Let X ∈ L2(B) be a feasible solution of
Problem 2.1. Then, by Fubini’s theorem,∫

B

X dx˜ =
∫ dj

0

(∫
B(j) X dx˜ [j]

)
dxj

=
∫ dj

0 f(xj) dxj = dj f̄j ,

for j = 1, . . . , K.
Thus, we get (4).

To prove the sufficiency, let f ∈ Y satisfy the
feasibility condition (4), take

X(x˜) = ϕ−(K−1)
K∏
j=1

fj(xj) ,

and apply the Fubini theorem to obtain

Rj[X](xj) =

∫
B(j)

X dx˜ [j]

=

∫
B(j)

ϕ−(K−1)fj(xj)
K∏
i 6=j

fi(xi) dx˜ [j]

= ϕ−(K−1)fj(xj)

∫
B(j)

K∏
i 6=j

fi(xi) dx˜ [j]

= ϕ−(K−1)fj(xj)
∏K

i6=j

∫
L2[0,di]

fi(xi) dxi

= ϕ−(K−1)fj(xj)
(∏K

i6=j dif̄i

)
so that Rj[X](xj) = fj(xj), for j = 1, . . . , K.
Hence, the set of feasible solutions is not empty.

Corollary 2.1. If (4) holds for f ∈ Y given,
then the set of feasible solutions of Problem 2.1
is an affine subspace of L2(B).

Proof. It follows directly from propositions 2.1
and 2.2.

Proposition 2.3. Problem 2.1 has a unique op-
timal solution X̂ ∈ L2(B). Further, if the oper-
ator AA∗ is invertible, where A∗ is the adjoint
of operator A, then

X̂ = A∗(AA∗)−1[f ]. (5)

In other words, if P is the orthogonal projection
operator over N(A)⊥ then P = A∗(AA∗)−1.

Proof. See Luenberger [7], section 6.10 .

Problem solution

In this section we obtain an explicit solution to
Problem 2.1 (or, equivalently, to Problem 1.4).

Lemma 3.1. The adjoint operator A∗ : Y →
L2(B) of A is linear, continuous, and given by

A∗[f ](x˜) ≡
K∑
j=1

fj(xj). (6)

Proof. From the general theory of linear con-
tinuous operators in Hilbert spaces ( Luenberger
[7], page 151 ), the adjoint A∗ of A given by (3)
is also a linear continuous operator, and

‖A∗‖L(Y,L2(B)) = ‖A‖L(L2(B),Y).

Now, observing that

〈A[X], f〉Y =
∑K

j=1

∫ dj
0
fj(xj)Rj[X](xj) dxj

=
∑K

j=1

∫ dj
0
fj(xj)

(∫
B(j) X(x˜) dx˜ [j]

)
dxj

=
∫ dj
0

∫
B(j) X(x˜)

(∑K
j=1 fj(xj)

)
dx˜ [j] dxj

=
∫
B
X(x˜)

(∑K
j=1 fj(xj)

)
dx˜

= 〈X,A∗[f ] 〉L2(B)

we get A∗[f ](x˜) ≡
∑K

j=1 fj(xj).

Corollary 3.1. ker(A)⊥ = {X ∈ L2(B) | X(x˜) =∑K
j=1 fj(xj), f ∈ Y}.
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Proof. It follows directly from the known fact
ker(A)⊥ = im(A∗) (Luenberger [7], page 156),
and Lemma 3.1.

Lemma 3.2. The operator AA∗ : Y → Y is
linear, continuous, and given by

AA∗[f ](x˜) ≡


v(B(1))(f1(x1) +
∑K

j 6=1 f̄j)

v(B(2))(f2(x2) +
∑K

j 6=2 f̄j)
...

v(B(K))(fK(xK) +
∑K

j 6=K f̄j)


(7)

Proof. Since AA∗ is the composition of linear
continuous operators, it is a linear continuous
operator itself. Now, we have

(AA∗)[f ](x˜) = A(A∗[f ])(x˜)
= A[

∑K
j=1 fj(xj) ]

=

 R1[
∑K

j=1 fj(xj) ]
...

RK [
∑K

j=1 fj(xj) ]

 (8)

and

Rk

[∑K
j=1 fj(xj)

]
=
∫
B

(k)
xk

(∑K
j=1 fj(xj)

)
dx˜ [k]

=
∑K

j=1

∫
B

(k)
xk

fj(xj) dx˜ [k]

= vol(B(k)) fk(xk)

+
∑K

j=1
j 6=k

∫
B

(k)
xk

fj(xj) dx˜ [k].

(9)
Besides, for j 6= k:∫

B
(k)
xk

fj(xj) dx˜ [k]

=
∫
B(j,k)

(∫ dk
0 fj(xj) dxj

)
dx˜ [j,k]

=
∫
B(j,k)

(
dj f̄j

)
dx˜ [j,k]

= vol(B(k)) f̄j,

(10)

where2 B(j,k) =
∏
6̀=j,k[0, d`], and in dx˜ [j,k] all

differentials dx` appear whenever ` 6= j, k. Thus,
(7) follows from (8), (9), and (10).

2For j < k we write B(j,k) =
∏

` 6=j,k[0, d`] instead of

B
(j,k)
xj ,xk = [0, d1]×· · ·× [0, dj−1]×{xj}× [0, dj+1]× [0, dk−1]×{xk}×

[0, dk+1]× · · · × [0, dK ].
A similar consideration is applied for k < j.

Lemma 3.3. W = {f ∈ Y | (4) is satisfied } is
a closed linear subspace of Y and it is invariant
under AA∗.

Proof. If f, g ∈W then ϕ = d1f̄1 = · · · = dK f̄K
and ψ = d1ḡ1 = · · · = dK ḡK , obtaining ϕ + ψ =
d1f1 + g1 = · · · = dKfK + gK , and f + g ∈ W.
Similarly, for α ∈ R we have α f ∈ W. Hence,
W is a linear subspace of Y. Further, the set

Wj,k = {f ∈ Y |
∫ dj

0 fjdxj =
∫ dk

0 fkdxk}, j 6= k,
is clearly closed in Y, and since W is a finite
intersection of the closed sets Wj,k, j 6= k, it
follows that W is also closed. To prove that W
is invariant under AA∗, from Lemma 3.2 it is
sufficient to show that, for f ∈W,

∫ dk

0

vol(Bk)

f(xk) +
k∑
j 6=k

f̄j

 dxk

has a constant value, independent of k. In fact,
we have∫ dk

0 vol(Bk)
(
f(xk) +

∑K
j 6=k f̄j

)
dxk

= vol(Bk)
(
ϕ+ dk

∑K
j 6=k ϕ/dj

)
= ϕvol(Bk)

(
1 + dk

∑K
j 6=k 1/dj

)
= ϕvol(Bk)

(
1 +

∑K
j 6=k vol(B

j)

vol(Bk)

)
.

This is to say

∫ dk

0

vol(Bk)

f(xk) +
K∑
j 6=k

f̄j

 dxk

=

(
K∑
j=1

vol(Bj)

)
ϕ ,

and the proof is completed.

Proposition 3.1. The linear operator AA∗ : Y→
Y restricted to observable functions f ∈W is in-
vertible and given by
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(AA∗)−1[f ](x˜) ≡


f1(x1)
vol(B(1))

+
∑K

k 6=1 f̄k∑K
k=1 vol(B

(k))

...
fK(xK)
vol(B(K))

+
∑K

k 6=K f̄k∑K
k=1 vol(B

(k))

 .
(11)

Proof. By Lemma 3.2, (AA∗)[f ] = 0 implies,
for j = 1, . . . , K,

fj(xj) +
K∑

k=1,k 6=j

f̄k = 0, (12)

which leads to

fj(xj) = f̄j. (13)

and dj f̄j + dj
∑K

k=1,k 6=j f̄k = 0. So, using the
solubility conditions (4), from (12) and (13) we
get

0 = f̄j +
∑K

k=1

k 6=j
f̄k

= f̄j +
∑K

k=1

k 6=j

dj
dk
f̄j

= f̄j + dj f̄j
∑K

k=1

k 6=j
1
dk

= f̄j + f̄j

∑K
k=1
k 6=j

vol(B(k))

vol(B(j))
,

which comes to 0 =
(∑K

k=1 vol(B
(k))
)
f̄j, and we

have fj(xj) ≡ f̄j = 0, for j = 1, . . . , K. There-
fore, f ∈ N(AA∗) leads to f = 0 and so AA∗ is
invertible.

Now, taking f(x˜) = (AA∗)[z](x˜) with z ∈
Y satisfying the solubility conditions (4), and
applying Lemma 3.2 leads to

fj(xj) = vol(B(j))

zj(xj) +
K∑
k=1

k 6=j

z̄k

 , (14)

for j = 1, . . . , K.
Hence,

zj(xj) =
fj(xj)

vol(B(j))
−

K∑
k=1

k 6=j

z̄k. (15)

From (14) we have

dj f̄j =
∫ dj

0 f(xj) dxj

= vol(B)
(
z̄j +

∑K
k=1,k 6=j z̄k

)
,

thus

f̄j = vol(B(j))

z̄j +
K∑

k=1,k 6=j

z̄k

 .

Now, using the solubility conditions dkz̄k = dj z̄j,
for all k, j, we have

f̄j = vol(B(j))z̄j +
(∑K

k=1,k 6=j
djvol(B

(j))
dk

)
z̄j

=
(∑K

k=1 vol(B
(k))
)
z̄j .

Thus, z̄j =
f̄j∑K

k=1 vol(B
(k))

and

K∑
k=1,k 6=j

z̄k =

∑K
k=1,k 6=j f̄k∑K

k=1 vol(B
(k))

. (16)

Therefore, (11) follows from (15) and (16), and
the proof is complete.

Theorem 3.1. If f ∈ W then the unique solu-
tion of Problem 2.1 is

X̂(x˜) =

∑K
j=1 dj fj(xj)− (K − 1)ϕ

vol(B)
. (17)

Proof. From Propositions 2.3 and 3.1, X̂ =
A∗(AA∗)−1[f ] is the solution of Problem 2.1. Thus,
applying Lemma 3.1 and Proposition 3.1 we get

X̂(x˜) = A∗(AA∗)−1[f ](x˜)

= A∗


f1(x1)
vol(B(1))

+
∑K

k=1,k 6=K f̄k∑K
k=1 vol(B

(k))

...
fK(xK)
vol(B(K))

+
∑K

k=1,k 6=K f̄k∑K
k=1 vol(B

(k))

 .
Therefore, an explicit solution of the quad-

ratic optimization problem with linear constraints
(2) is given by

X̂(x˜) =
K∑
j=1

fj(xj)

vol(B(j))
− (K − 1)

∑K
j=1 f̄j∑K

j=1 vol(B
(j))

6



or by

X̂(x˜) = 1
vol(B)

∑K
j=1 djfj(xj)

− (K − 1)
∑K

j=1 f̄j∑K
j=1 vol(B

(j))
.

Now, substituting f̄j = ϕ/dj, for all j, we
obtain (17) after a trite simplification.

Theorem 3.1 generalizes the solution given by
Romero [11] for this problem in the finite dimen-
sion case (see Theorem 1.1), which is continuous
if the observable functions are continuous. Our
next result establishes that Problem 2.1 is well-
posed in the Hadamard sense.

Proposition 3.2. If f ∈W then

‖X̂‖L2(B) ≤ ‖f‖Y .

Proof. It follows directly from Proposition 2.3,
and from the fact that every orthogonal projec-
tion operator P has norm equal to the unity.

Non-Negativity constraints case

In this section we still consider Problem 2.1, this
time incorporating non-negative constraints
over X ∈ L2(B). More specifically, we discuss

Problem 4.1. Given f ∈ Y, find X ∈ L2(B)
minimizing φ(X) = 1

2‖X‖
2
L2(B), subject to

A[X] = f , and X ≥ 0 almost everywhere in B.

Subsection 4.1 is devoted to prove that this
problem is well-posed in the Hadamard’s sense.
Then, in Subsection 4.2 we propose a polynomial
procedure to approach the optimal solution of
the two-dimensional case of Problem 4.1.

Feasibility

Clearly, C0 = {X ∈ L2(B) | X ≥ 0 almost
everywhere in B} is a non-empty closed cone,
and under feasibility conditions (4) Cf = {X ∈
L2(B) | A[X] = f} is a non-empty, closed linear
manifold.

Lemma 4.1. N(A) ( {X ∈ L2(B) | X = 0}.

Proof. Let X ∈ N(A) be given. Then, as -
Rj[X](xj) ≡ 0 implies Rj[X] = 0, for j = 1, . . . , K,
by the Fubini theorem we get

0 =
∫ dj

0 Rj[X](xj) dxj

=
∫ dj

0

(∫
Bj X(x˜ [j], xj) dx˜ [j]

)
dxj

=
∫
B X(x˜) dx˜ ,

where for convenience we have written

Rj[X](xj) =

∫
Bj

X(x˜ [j], xj) dx˜ [j].

Hence, X = 0, and N(A) ⊂ {X ∈ L2(B) | X =
0}.

Now, let X ∈ L2(B) be such that X = 0.
Applying the Fubini theorem again, we have

0 =
∫
B X(x˜) dx˜

=
∫ dj

0

(∫
Bj X(x˜ [j], xj) dx˜ [j]

)
dxj

=
∫ dj

0 Rj[X](xj) dxj,

thusRj[X] = 0 andRj(xj) 6≡ 0, for j = 1, . . . , K.
In conclusion, we come toN(A) ( {X ∈ L2(B) |
X̄ = 0}, and the proof is completed.

Proposition 4.1. The closed subspace N(A) is
a support subspace at the origin of the positive
cone set C0 in L2(B).

Proof. Clearly, the intersection of C0 with the
set {X ∈ L2(B) | X̄ = 0} is X ≡ 0. So,
the proof of this proposition follows from Lemma
4.1.

Given f ∈ Y, by f ≥ 0 we mean fj(xj) ≥ 0
almost everywhere in [0, dj], for j = 1, . . . , K.

Corollary 4.1. If f ∈ Y satisfies the feasibility
conditions (4) and f ≥ 0 then C(f) = C0 ∩Cf is
non-empty set.

Now, under the hypothesis of Collorary 4.1,
C(f) = C0∩Cf is a non-empty, closed linear sub-
set. Namely, we can see Problem 4.1 as Problem
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2.1 over the closed and convex subset C0, and
Problem 4.1 thus consists in finding X ∈ C(f)

that is closest to the origin O ∈ L2(B). There-
fore, Problem 4.1 can be seen as a special case
(F = 0) of

Problem 4.2. Let H be a Hilbert space, and C ∈
H a closed and convex subset. Given F ∈ H,
find X̂ ∈ C such that

‖F − X̂‖L2(B) ≤ ‖ F −X‖L2(B), for all X ∈ C.

The characterization of the solution to
Problem 4.2 is given by the following result (for
a proof, see Brézis [1], Siddiqi [12]).

Theorem 4.1. (Convex Projection) Let H be a
Hilbert space. If C ⊂ H is a closed convex set
then, given F ∈ H, Problem 4.2 has a unique
solution X̂ ∈ C, characterized by the variational
inequality

〈F − X̂,X − X̂〉H ≤ 0, for all X ∈ C. (18)

Furthermore, the mapping PC : H → C given
by F 7→ X̂ is a nonlinear projection operator
satisfying

‖PC G− PC F‖H ≤ ‖G− F‖H . (19)

Observe that the orthogonal projection is a
particular case of the convex projection when
the closed convex C is a closed subspace. In
general, it appears very difficult to furnish an
explicit solution to Problem 4.2, since to give an
explicit expression of the convex projector PC
does not seem easy.

Coming back to Problem 4.1, from Theorem
4.1 it has an unique solution X̂c ∈ L2(B) char-
acterized by the variational inequality

〈X̂c, X − X̂c〉L2(B) ≥ 0, for all X ∈ C(f), (20)

which says that X̂c is orthogonal to C(f), and

from which it is not obvious that X̂c depends
continuously on f ∈ Y.

To prove that X̂c depends continuously with
respect to f ∈ Y, it is convenient to first consider

some aspects of the problem data. We denote by
W0 ⊂ Y the subset of all f ∈W (see Lemma 3.3)
with non-negative fj components, namely, fj ≥
0 almost everywhere in [0, dj], for j = 1, . . . , K.

Lemma 4.2. im(A∗|W0
) ⊂ C0.

Proof. It is a direct consequence of Lemma 3.1.

Lemma 4.3. im((AA∗)−1|W0
) ⊂ C0.

Proof. It is a direct consequence of Proposition
3.1.

Theorem 4.2. If X̂c
f and X̂c

g are the solutions
to Problem 2.1 for f and g ∈ W0, respectively,
then ‖X̂c

g − X̂c
f‖L2(B) ≤ ‖g − f‖Y.

Proof. If h ∈ W0, then X̂c
h = X̂h follows from

Lemmas 4.2 and 4.3. That is, when h ∈ W0

the convex and orthogonal projections of h co-
incide. So, applying Proposition 3.2 the proof is
completed.

In other words, Problem 4.1 is well-posed in
the Hadamard’s sense.

Approximate solution

for the 2-D case

Let us consider Problem 4.1 in the two-dimen-
sional case; more specifically

Problem 4.3. Given positive reals d1, d2, and
non-negative real functions f(x), g(y), satisfying∫ d1

0 f(x) dx =
∫ d2

0 g(y) dy, find a non-negative
real function h(x, y) that minimizes∫ d1

0

∫ d2

0

[h(x, y)]2 dx dy,

subject to∫ d1

0

h(x, y) dx = g(y), for y ∈ [0, d2],

and ∫ d2

0

h(x, y) dy = f(x), for x ∈ [0, d1].
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We were not able to find an explicit solution
to Problem 4.3. However, the polynomial pro-
cedure A below —strongly relying on the exact
method proposed in [2] to solve Problem 1.2 for
any m-by-n matrix— can be applied in case an
approximate optimal solution suffices.

Lines (1)–(6) are aimed to first determine
suitable discretization intervals ∆1 and ∆2, where
the parameter ε > 0 is meant to control the de-
sired accuracy level, and ν(w, h, d) denotes the
integral of a function h in the interval [0, d], ap-
proximated with the trapezoid rule on w points.
The dimensions m and n of the working matrix
are computed in line (7). Then, in lines (8)–
(12) an approximation to the optimal solution
h∗(x, y) of Problem 4.3 is produced as h′(x, y)
for discretized values x, y. Note that vectors
(u1, . . . , um) and (v1, . . . , vn) are non-negative,
and satisfy

∑m
i=1 ui =

∑n
j=1 vj. They are taken

as input to determine in line (11) the optimal
solution X∗ of Problem 1.2 with the polynomial
method proposed in [2].

Procedure A
(1) k1 ← 2 ; While
|ν(k1 + 1, f, d1)− ν(2k1 + 1, f, d1)| > ε
do k1 ← 2k1 ;
(2) k2 ← 2 ; While
|ν(k2 + 1, g, d2)− ν(2k2 + 1, g, d2)| > ε
do k2 ← 2k2 ;
(3) ∆← min{ d1/k1, d2/k2 };
∆′1 ← d1/dd1∆e;
∆′′1 ← d1/bd1∆c;
(4) If |∆−∆′1| ≤ |∆−∆′′1|
then ∆1 ← ∆′1
else ∆1 ← ∆′′1 ;
(5) ∆′2 ← d2/dd2∆e; ∆′′2 ← d2/bd2∆c;
(6) If |∆−∆′2| ≤ |∆−∆′′2|
then ∆2 ← ∆′2
else ∆2 ← ∆′′2;
(7) m← d1/∆1 ; n← d2/∆2 ;
(8) For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
do

xi ← i∆1; yj ← j∆2;
ψij ←

∫ xi
xi−1

∫ yj
yj−1

h(x, y) dy dx;

(9) For i ∈ {1, . . . ,m} do ui ←
∑n

j=1 ψij;
(10) For j ∈ {1, . . . , n} do vj ←

∑m
i=1 ψij;

(11) Find the optimal solution X∗ = (X∗ij)
to Problem 1.2;
(12) For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} do

h′(i− ∆1

2 , j −
∆2

2 )← X∗ij
∆1∆2

.

Example. Let f(x) = 496x2 − 1 984x +
1 984, g(y) = 35 y3−455 y2 +1 470 y+70, d1 = 5,

d2 = 8. Since
∫ 5

0 f(x) =
∫ 8

0 g(y) = 5 786 + 2/3,
feasibility is verified. Fixing ε = 0.1, lines (1)-(7)
yield k1 = 27, k2 = 28, ∆ = min{5/27, 8/28} =
0.03125, ∆1 = 0.03125, ∆2 = 0.03125, m = 160,
and n = 256. Then, in line (8) we get vectors
(u1, . . . , u160) and (v1, . . . , v256), which in turn
are used as the input data for the optimization
process in line (9). Finally, line (10) obtains
an approximate optimal solution, as depicted in
Figure 1.

Figure 1: Approximate solution to Problem
4.3 for f(x) = 496 x2−1 984x+1 984, g(y) =
35 y3 − 455 y2 + 1 470 y + 70, d1 = 5, and
d2 = 8.

Conclusions

In this paper the problem of finding the clos-
est point to the origin in transportation poly-
topes is studied in a Hilbert space framework.
We show that this point can be found by the
explicit formula (17). In the finite dimensional
context, an analogous explicit formula was pro-
posed by Romero [11].
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We are not aware of an explicit solution to
Problem 2.1 in case non-negative constraints are
added. However, we establish its well-posedness
as a direct consequence of the convex projection
theorem.

Finally, a two-dimensional instance of Prob-
lem 2.1 with non-negative constraints is numer-
ically solved by means of a discretization proce-
dure based on the trapezoid rule, together with
the exact, polynomial method proposed in [2].
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