
Research Article
Towards Sophisticated Air Traffic Control System Using
Formal Methods

Abdessamad Jarrar and Youssef Balouki

Faculty of Sciences and Technologies of Settat, Computing, Imaging and Modeling of Complex Systems Laboratory,
Hassan 1st University, Settat, Morocco

Correspondence should be addressed to Abdessamad Jarrar; abdessamad.jarrar@gmail.com

Received 1 April 2018; Accepted 8 July 2018; Published 10 September 2018

Academic Editor: Jing-song Hong

Copyright © 2018 Abdessamad Jarrar and Youssef Balouki.)is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

We propose a general formal modeling and verification of the air traffic control system (ATC).)is study is based on the
International Civil Aviation Organization (ICAO), Federal Aviation Administration (FAA), and National Aeronautics and Space
Administration (NASA) standards and recommendations. It provides a sophisticated assistance system that helps in visualizing
aircrafts and presents automatic bugs detection. In such a critical safety system, the use of robust formal methods that assure bugs
absence is highly required.)erefore, this work suggests a formalism of discrete transition systems based on abstraction and
refinement along proofs.)ese ensure the consistency of the system by means of invariants preservation and deadlock freedom.
Hence, all invariants hold permanently providing a handy solution for bugs absence verification. It follows that the said deadlock
freedom ensures a continuous running of a given system.)is specification and modeling technique enable the system to be
corrected by construction.

1. Introduction

Despite the advancements in technology and science, air
traffic management still remains one of the most complex
critical safety problems. It is ensured by interaction between
human and technical system [1]. Many technical systems
were built up and developed to assist controllers to do their
job successfully. Although, several of these systems operate
very well, it is not possible to ensure that they will not stop
working at a certain moment.)is possible shortcoming
may be due to some design errors. To overcome these errors,
this paper develops a formal model of an assistance system
for air traffic management. According to the ICAO, FAA,
and NASA standards and recommendations, this contri-
bution aims to provide a well-structured model useful in
future systems and for reverse engineering.

Few works take, however, different tasks; some of them
are interested in “taking off” [2, 3], while others are in-
terested in “landing” of aircraft [4].)is research may claim
to be one of the formal modelings of the ATC system
which at the same time considers both tasks. It is, however,

unreasonable to separate “landing” from “taking off” since
these two operations occur in the same airport sharing the
same runways although different aircrafts may be involved.

)is paper specifies the system’s functional and non-
functional requirements.)e functional requirements de-
scribe the behavior of the system, whereas the nonfunctional
requirements specify some other properties such as security
and safety.)ese requirements are formalized using Event-
B, which is a formal method for software and system design.
Event-B method is based on both refinement and mathe-
matical language, this is exactly what motivates us to choose
this method.

During development, we establish proofs called proof
obligations to ensure the correctness of each model before
and after refinement. Invariants preservation and deadlock
freedom are the most important proof obligations.)e
combination of these two types of proofs provides “correct
by construction” system.

)e rest of the paper is structured as follows. Section 2
gives some background on formal methods and validation
tools that we use.)emain content of the paper is in Section 3,

Hindawi
Modelling and Simulation in Engineering
Volume 2018, Article ID 1692432, 13 pages
https://doi.org/10.1155/2018/1692432

mailto:abdessamad.jarrar@gmail.com
http://orcid.org/0000-0002-8792-7014
http://orcid.org/0000-0003-0713-5613
https://doi.org/10.1155/2018/1692432

describing our approach to develop the air traffic control
system along three models.)e first one includes the essence
of air trafficmanagement.)e second presents how the system
schedules taking off and landing of aircrafts.)e last model
introduces the nonfunctional requirements. Section 4 presents
proof statistics that are generated by the Rodin platform.
Section 5 concludes the paper.

2. Background

2.1. RelatedWorks. To avoid undesirable delay in flights at
the airports during the departure and arrival processes of
aircrafts, Yousaf et al. [3] propose a systematic modeling
process using a “VDM++” as a methodology. Aiming to
ensure safety and accuracy, the method identifies and
anticipates errors at the first levels and stages of system
designing. It likewise offers an extremely valuable solu-
tion of problem and improves the confidence of the
quality of the software. Nevertheless, the “VDM++” is not
sufficient and adequately analyzed, so it is considered as
an abstract process, and its real concretization is
impossible.

Similar to the last approach, Zafar [2] combines a VDM-
SL and graph theory to build a formal specification of
aircrafts’ take-off procedure.)is formal specification of
graph-based model, taxiways, aircrafts, runways, and con-
trollers is provided in the static part of the model.)e state
space analysis describing takeoff algorithms is provided by
defining optimal paths and possible operations in a dynamic
model expediting the departure procedure.)e model is
developed by a series of refinements following the stepwise
development approach. Although this work presents a de-
tailed specification of the departure procedure, it requires
further investigation to real-time management that is
a major factor in this procedure. On the other hand, Méry
and Singh [4] introduce a formal model of an aircraft
landing system.)is work is considered as a benchmark for
techniques and tools dedicated to the verification of be-
havioral properties of the landing system. However, it ne-
glects the procedure of landing which must be taken into
consideration to ensure system safety and focus more on the
mechanical system.

)e most important work in this area is the UK National
Air Traffic Services’ iFACTS system [5].)is is also a system
developed using the correctness-by-construction paradigm.
)e system was developed from a formal specification in Z
using the SPARK technology. It has been in daily use for
some years, managing UK airspace, and it has operated
without error.)e method used in this paper is a developed
version of the Z specification language which provides more
possibilities.

In this work, we aim to present a formal modeling and
verification of an ATC system, considering aircrafts de-
parture and landing side by side.)is model ensures the
consistency between the two procedures; however, we see
that formalizing taking off and landing separately ignore the
fact that these operations occur at the same airport and share
the resources (runways, airport airspace, etc.).)erefore,
they must be modeled together.

2.2. Formal Methods. Modeling is the process of repre-
senting a real-world system as a graphical representation or
mathematical equations. It is a phase before building
a system that clarifies its structure. Modeling helps also to
study and test some system properties to reduce the risk of
failures. For example, if we are building a self-driving car
system, we can ensure theoretically that these two cars will
never collide. Modeling can be done by means of graphical
representation or mathematical equations.)e first one is
easy to read and can visualize the system structure better,
which means it can be shown to clients. However, it is not
very powerful at verifying bugs absence, and it is inaccurate.
On the other hand, mathematical representations need
mathematical knowledge to be read and cannot be shown to
most clients. It is also harder to establish due to mathe-
matical difficulties such as proofs and accuracy. Despite all
this, it is very powerful for detecting errors and ensures
a strong assurance of bugs absence.)erefore, we use
modeling based on mathematical equations called formal
methods.

)ese methods were originally developed for specifying
and verifying the correct behavior of software and hardware
systems and have been applied in many system development
fields, and many achievements have been made [6]. Mod-
eling a system using a formal method and proving system
correctness require mathematical knowledge and accuracy.
In some cases, it requires a lot of time to completely model
a complex system. However, the strong assurance of bugs
absence is very important especially in safety-critical systems
such as air traffic management.

)ere are a variety of formal methods available:

(i) Hoare logic is a formal method for reasoning on
computer program correctness where specifications
are of the form {P} procedure {Q} [7].

(ii) Petri nets are a graphical and mathematical modeling
tool applicable to many systems. It is often used to
describe and analyze information processing systems
that are characterized as being concurrent, asyn-
chronous, distributed, parallel, nondeterministic, and
stochastic [8].

(iii))e Language Of Temporal Ordering Specification
(LOTOS) is a formal description language de-
veloped by the International Standard Organization
(ISO) for open system formal specification. Systems
in LOTOS are specified by drawing the temporal
relation between interactions establishing the dis-
cernible behavior of system [9].

(iv))e Z language is a specification language based
on predicates.)e specification of invariants and
the specification of operations have the form of
a predicate [10].

(v))e B method (development of the Z language) is
a method of software development based on an
abstract machine notation used in the development
of computer software (B language) [11].

(vi) Event-B is a formal method for software and system
design.)is method is based on refinement and

2 Modelling and Simulation in Engineering

proof obligations, which ensures a strong assurance
of bugs absence [12].

In Event-B, a system is developed as sequence of models.
)ese models are enriched in successive steps by adding more
details; this is called refinement. In other words, we start with
a very abstract model called initial model, and then, we refine
it to get more concrete models.)ese models are made up of
contexts and machines. Contexts are the static parts of
models; they are presented in terms of sets, constants, and
axioms, whereas, machines are the dynamic part of models. In
a machine, variables describe the current status of a system;
these statuses are constrained by invariants. Invariants are the
necessary properties that must be preserved during system
function. Status transitions are described by events, which are
a set of actions. Each action changes the value of certain
variable. Events may have some necessary conditions to be
triggered; these conditions are called guards. Figure 1 illus-
trates the process of development in Event-B.

To ensure system correctness, some properties must be
proved.)ese proofs are called proof obligations.)ey
include invariants preservation, which ensure that all in-
variants are permanently obeyed during system function.
)ey include also deadlock freedom to ensure that the
system will never be in a status where no guard is verified,
which means no event can be triggered. Most of these proofs
are done automatically by means of the platform Rodin.
Rodin is a tool that supports the application of the Event-B
formal method. It provides core functionality for syntactic
analysis and proof-based verification of Event-B models
[14]. In some cases, Rodin may need to be manually guided
to prove some properties.)is is done by indicating some
hypotheses that Rodin must consider.)ese hypotheses may
be ignored by Rodin because he sees that it is not needed for
the desired proof. In other cases, we add hypothesis and then
Rodin prove the desired property; after that, we prove
separately the added hypothesis.

2.3. Code Generation. Although developing a system using
formal method reveals future failure and improves security,
it is highly desirable to be able to translate this modeling to
a code. Most of works in this sense such as [15] presented
a method for generating Java code based on Event-B model.
In [15], authors develop EB2J, a software tool that translates
Event-B models into Java code which can be used in our case
to develop a proof-based Java program for ATC manage-
ment. Figure 2 illustrates the EB2J architecture.

3. Formal Development

)is section presents the proposed approach aiming to
develop the air traffic control system based on

(i) ICAO [16] which provides strategic objectives
concerning safety, capacity and efficiency, security
and facilitation, economic development, and envi-
ronmental protection;

(ii) FAA [17–19] which has a predetermined number of
air traffic manuals, publications, and orders;

(iii) NASA [20] standards and recommendations con-
sidered as the main constraints in this modeling in
order to provide a system with maximum feasibility.

)is development is designed progressively by starting
with an abstract model that captures the essence of traffic
management and integrating more details in successive
steps.)is activity is called refinement technique.)e first
refinement introduces the scheduling method used during
taking off and landing.)e said scheduling method assigns
priority of taking off using FCFS (first comes first served)
and the priority for landing based on deadline monotonic.

Moreover, this complex system gives the highest priority
to emergency situations such as medical and terroristic
threats.

)e proposed model is based on one runway. However,
this model maximizes the use of one runway to land and
takeoff aircrafts while maintaining deadlines as much as
possible [21].

)e second refinement introduces safety properties
which strongly avoid issues that may cause serious disasters.
For example, a minimum separation landing time must be
respected in order to maintain aircrafts’ aerodynamic sta-
bility [22].

3.1. Initial Model: An Abstract Model of the Landing Process.
In this initial model, we introduce the essence of the ATC
system and the different components taken into consider-
ation [23].)e first component is the runway which is,
according to the International Civil Aviation Organization
(ICAO), a rectangular area on a land aerodrome prepared
for the landing and takeoff of aircrafts [16]. Runways are
equipped with lights indicating their status; these lights are
called runway status lights (RWSL).)e RWSL system was
developed by the Federal Aviation Administration (FAA) to
improve air crew and vehicle operator situational awareness.
)ese lights are embedded in the pavement of runways and
taxiways and turn red when it is not safe to enter for a certain
reason [17–19].

)is paper develops a system for ATC to manage air-
crafts’ traffic in the vicinity of the airport airspace. Hence, it
focuses only on status lights’ modelization of the runway due
to their relation to the airspace traffic management [22].

)e first proposed model is made up of two parts: static
part and dynamic one [12].)e static part (called context)
contains carrier sets, constants, and associated axioms,
whereas the dynamic part (called machine) contains vari-
ables, invariants, and events. In the first context, we in-
troduce the carrier set RW_STATUSES corresponding to the
possible statuses of the runway {available, unavailable}
(axm1), as for RWL_STATUSES represents runway lights
statuses {ON, OFF} (axm2).)e AIRCRAFTS set denotes all
possible aircrafts that might exist (currently or in the past or
even in the future) which is axiomatized to be finite (axm3).

For each aircraft in the radar range, a significant status is
associated which is proposed and introduced to help con-
trollers for distinguishing between aircrafts landing, taking
off, entering airport, waiting for landing clearance, etc. [20].
When an aircraft enter the aircraft vicinity, the Blocked

Modelling and Simulation in Engineering 3

status is assigned to it. If the aircraft intend to land, it
ies
toward the VOR area (very high-frequency omnidirectional
radio range) to be quali�ed to get landing clearance. At this

stage, the system assigns to the aircrafts readyL status, which
means that it is ready for landing. After getting landing
clearance, it is assigned to landing state until �nishing
landing and passengers’ departure; and then, it is considered
in TerminatedL status. Likewise, an aircraft in the runway,
after passengers’ arrival, is considered ready to takeo� and
being assigned to readyT status. Immediately upon takeo�
clearance con�rmation, it is considered in taking o� status.
Finally, the aircraft leaves out the VOR and returns to the
Blocked status until getting out of the airport radar range
[20, 24, 25]. �ese statuses are expressed as the elements of
a carrier set called STATUSES (axm5). Figure 3 illustrates
this process and the di�erent statuses [26].

To summarize, the �rst context is made up of �ve sets
(RW_STATUSES, RWL_STATUSES, AIRCRAFTS, and
STATUSES), ten constants (Available, Unavailable, ON,
OFF, Blocked, ReadyL, Landing, TerminatedL, ReadyT, and
TakingO�), and four axioms (axm1, axm2, axm3, and axm4).
�is is expressed as shown in Box 1.

�e partition predicate is an easy way to enumerate sets.
Mathematically, the partition predicate is de�ned as follows:

partition(S, x, y)⇔x∪y � S∧x∩y � ∅. (1)

In the dynamic part (machine), we introduce two var-
iables curr_RW_status and curr_RWL_status denoting,
respectively, the current statuses of the runway and runway
lights (whereas, RW_STATUS and RWL_STATUS repre-
sent all the possible statuses).�ese two variables are de�ned
by means of two invariants inv1 and inv2. Inv1 de�nes
curr_RW_status as an element of the RW_STATUS, which
means that curr_RW_status may equally be available or
unavailable. Likewise, curr_RWL_status is an element of
RWL_STATUS.

In order to ensure the tra�c safety in the runway, the
status lights are turned ON whenever the runway is un-
available. However, taxiways intersect the runway at many
points, and therefore, vehicles must be aware of the runway

Requirement document

Executable code

Final concrete model
(Final refinement)

More concrete model
(Refinement i)

Initial model
(Refinement 0)

Refining

Model
(Refinement)

Variables
Invariants

Events

Sets
Constants

Axioms

MachineContext

Guards Actions

Figure 1: Process of development in Event-B [13].

Rodin project

Java language
context file

Generated
proof obligation

Filter context
and concrete files

Lexical analysis

Syntactic analysis

Code generation

Events scheduling

Generated
code verification

Code compilation
and execution

Preprocessing

Event-B to Java
translator

Code optimization

Code verification

Figure 2: �e EB2J tool architecture [15].

4 Modelling and Simulation in Engineering

usage. �ese lights help to determine when it is not safe to
proceed into or across the runway. However, the FAA
con�rms that the RWSL does not act as a substitution of the
ATC clearance, which means that the vehicle should not
enter the runway without a controller clearance even if the
RWSL have gone out [16–20]. Formally, this is modeled by
means of implication between the RWST and runway status
(inv3). �e proposed approach introduces also a subset of
AIRCRAFTS called aircrafts_in_airport denoting the set of
aircrafts in the airport (inv4).

As mentioned before, the system associates with each
aircraft in the radar range a signi�cant status. �erefore, the
introduction of a variable statusof associating with each
aircraft its status formalized as a total function from

aircrafts_in_airport to the set AIRCRAFTS (inv5). �e
de�nition of the variables and the invariants of the initial
model are shown in Box 2.

After de�ning all variables and invariants of the �rst
machine, we present the di�erent machine statuses’ trans-
actions described by events. Firstly, we have to de�ne what
happens at the beginning. For this purpose, the proposed
approach de�nes the INITIALIZATION event that corre-
sponds to the initial statuses of the system. It assumes
initially that the runway is available, runway lights are o�,
there are no aircrafts in the airport, and no aircraft status is
assigned. In addition, the initialization event should not have
any guard, since the initialization must always be possible.
�is event is formalized as shown in Box 3.

Runway

Very high frequency
omnidirectional radio

range VOR

Radar range

Aircraft entering airport

Blocked

ReadyLLanding

TerminatedL

Blocked

ReadyT

Takingoff

Aircraft Lefting airport

Figure 3: Aircrafts landing/taking o� statuses.

SETS

RW_STATUSES, RWL_STATUSES, AIRCRAFTS, STATUSES

CONSTANTS

Available, Unavailable, ON, OFF, Blocked, ReadyL, Landing, TerminatedL, ReadyT, TakingO�

AXIOMS

axm1: partition(RW_STATUSES,{available},{unavailable})
axm2: partition(RWL_STATUSES,{ON},{OFF})
axm3: �nite(AIRCRAFTS)
axm4: partition(STATUSES, {Blocked}, {ReadyL}, {Landing}, {TerminatedL}, {ReadyT}, {TakingO�})

BOX 1

Modelling and Simulation in Engineering 5

Besides the initialization event, eight more events
are introduced: Entering_Radar_Range, Entering_VOR,
Start_Landing, Terminating_Landing, Takeoff_Preparing,
Start_takingoff, Terminating_takingoff, and Air-
port_Departing.)e Entering_Radar_Range triggers when
an aircraft enters the range of the airport radar. An entering
aircraft must be added to the set of aircrafts in the airport
(aircrafts_in_airport) and assigned to the Blocked status.
However, during carrying out the proof obligation for dif-
ferent events, it is discovered that some guards are needed in
each event. For the Entering_Radar_Range event, two guards
are needed to be added: the first ensures that the entering
aircraft is effectively a well-defined aircraft and known by the
system and the second guard guarantees that it is not an
element of the aircrafts_in_airport set. Similarly, the
Entering_VOR is the event associated with an aircraft
entering the VOR.)is event assigns to an aircraft the
status Ready under the condition that it is an element of the
aircrafts_in_airport set, and it was in the Blocked status.
Moreover, the Start_Landing event triggers whenever an
aircraft gets landing clearance. To get that clearance, it must
have been in the VOR (which means in Ready status) and
an element of the aircrafts_in_airport. Furthermore, the
runway must be currently available, and the runway lights
must be OFF. After the aircraft landing and passengers’
departure, the Terminating_Landing event triggers in-
dicating the end of landing process by assigning the aircraft
to the status TerminatedL; therefore, freeing the runway
and turning runway’s lights off [16–20].

)e Takeoff_Preparing event triggers when an aircraft is
ready to take off.)is means that the aircraft previously
finished its landing (it is in TerminatedL status).)is event
assigns to the aircraft the status ReadyL. After finishing take-

off preparation, the aircraft get take-off clearance [17].)e
event triggered at this stage is Start_takingoff; this event al-
locates the runway for the aircraft and turn lights on under the
condition that the runway is not reserved by another aircraft
[16]. Afterward, the aircraft terminates taking off and leaves
the VOR to return to the first status Blocked.)e event
corresponds to this is Terminating_takingoff; this event has
two guards: the first ensures that the aircraft is an element of
the aircrafts_in_airport set and the second is that it is in
Takingoff status [18, 20]. Ultimately, the Airport_Departing
event triggers indicating that the aircraft is leaving the radar
range, thus removing it from aircrafts_in_airport. Moreover,
the position of the aircraft is deleted by removing it from the
total function statusof.)e proposed approach formalizes the
events of the initial model in Boxes 4–9.

In this initial model, the very basic process of circulation
in the airport vicinity is modeled.)erefore, most invariants
are simply typing invariants; however, other invariant in the
next refinement will be presented.

3.2. First Refinement: Introducing Scheduling Methods.
)e first refinement is more precise and contains more
details; however, it should not contradict with the initial
model.)erefore, some consistency proofs are established.

In this refinement, we present how the system manages
aircrafts taking off and landing [19, 20].)erefore, we need
to define some additional variables and invariants.)e first
variable is deadline which is a total function from the
aircrafts_in_airport set to some natural numbers.)e
second is a set for aircrafts ready to take off denoted as
ready_to_takeoff_aircrafts. We present also another variable
that refers to the moment that an aircraft became ready to
land. Finally, we introduce a set for aircrafts requiring urgent
landing due to a certain issue (Box 10).

)e currently used method for aircrafts taking off is
FCFS where aircrafts take off in the order that they are ready
[16, 19]. We formalize this by introducing firstly a set of
aircrafts ready to take off and a total function returning for
each aircraft the moment it is ready to take off.)ese
moments are associated with the same time aircrafts are
associated with the readyL status.)is is done during the
takeoff_preparing event in addition to adding the aircraft to
the ready_to_takeoff_aircrafts set. Once having these data
about aircrafts, the system adopts the FCFS scheduling for

VARIABLES:

curr_RW_status, curr_RWL_status, aircrafts_in_airport, statusof

INVARIANTS:

inv1: curr_RW_status ∈RW_STATUS
inv2: curr_RWL_status ∈RWL_STATUS
inv3: curr_RW_status� unavailable⇒ curr_RWL_status�ON
inv4: aircrafts_in_airport⊆AIRCRAFTS
inv5: statusof ∈ aircrafts_in_airport⟶ STATUSES

BOX 2

INITIALIZATION
BEGIN

act1: curr_RW_status≔ available
act2: curr_RWL_status≔OFF
act3: aircrafts_in_airport≔∅
act4: statusof ≔∅

END

BOX 3

6 Modelling and Simulation in Engineering

giving take-off clearance by means of the guards shown in
Box 11 in the start_takingoff event.

)e first guard requires that there is no other aircraft
using the runway to take off [16].)e second one ensures
that the aircraft that will get take-off clearance is the one with
the minimum ready to take-off moment (the one has been

ready to take off first) [17–19]. Finally, we delete information
about the aircraft after give it landing clearance by means of
the two actions shown in Box 12.

Terminating_Landing
ANY

aircraft

WHERE

grd1: aircraft ∈ aircrafts_in_airport
grd2: statusof(aircraft)� Landing

THEN

act1: statusof(aircraft)≔TerminatedL
act2: curr_RW_status≔ available
act3: curr_RWL_status≔OFF

END

BOX 5

Start_Landing
ANY

aircraft

WHERE

grd1: aircraft ∈ aircrafts_in_airport
grd2: statusof(aircraft)�ReadyL
grd3: curr_RW_status� available
grd4: curr_RWL_status�OFF

THEN

act1: statusof(aircraft)≔ Landing
act2: curr_RW_status≔ unavailable
act3: curr_RWL_status≔ON

END

BOX 4

Takeoff_Preparing
ANY

aircraft

WHERE

grd1: aircraft ∈ aircrafts_in_airport
grd2: statusof(aircraft)�TerminatedL

THEN

act1: statusof(aircraft)≔ReadyT

END

BOX 6

Start_takingoff
ANY

aircraft

WHERE

grd1: aircraft ∈ aircrafts_in_airport
grd2: statusof(aircraft)�ReadyL
grd3: curr_RW_status� available
grd4: curr_RWL_status�OFF

THEN

act1: statusof(aircraft)≔TakingOff
act2: curr_RW_status≔ unavailable
act3: curr_RWL_status≔ON

END

BOX 7

Terminating_takingoff
ANY

aircraft

WHERE

grd1: aircraft ∈ aircrafts_in_airport
grd2: statusof(aircraft)�TakingOff

THEN

act1: statusof(aircraft)≔Blocked
act2: curr_RW_status≔ available
act3: curr_RWL_status≔OFF

END

BOX 8

Airport_Departing
ANY

aircraft

WHERE

grd1: aircraft ∈ aircrafts_in_airport
grd2: statusof(aircraft)�Blocked

THEN

act1: aircrafts_in_airport:�
aircrafts_in_airport\{aircraft}

act2: statusof ≔ {aircraft} statusof

END

BOX 9

Modelling and Simulation in Engineering 7

Similarly to the take-off process, the currently used
method for aircraft landing is FCFS [22, 27].)is method is
very basic and simple which ease its implementation. How-
ever, the aircraft with a low landing speed may increase the
waiting duration of other faster ones which affect the total
landing duration. In addition, the FCFS limits flexibility to air
traffic controllers to act in emergency situations [20, 27, 28].
Hence, we propose the use a new approach based on real-time
scheduling algorithm, deadline monotonic (DM) in our case
[29].)is approach assigns landing priority to aircrafts with
the shortest deadline which offers an effective method for
meeting deadlines as much as possible. However, maintaining
deadlines respected is not always possible. In some cases, the
sum of some high priority aircrafts landing durations is
greater than the deadline of an aircraft with a lower priority. In
this situation, we have two choices: the first is to proceed
landing even if that some aircrafts will not respect their
deadlines (note that we still optimize deadlines respecting)
[25] and the second is to prevent the aircraft from entering
VOR and redirect it to another runway.)is choice is up to
controller to decide, and the system will only notify him.)is
notification is done as soon as the aircraft try to enter the
VOR; therefore, the guards shown in Box 13 in the Enter-
ing_VOR event are added.

For each guard, there are two cases: the first one is when
there is no emergency landing request (Urgents�∅, where
Urgents is the set of aircrafts requesting emergency landing)
[19]. In this case, the aircraft entering the VOR should have
a deadline greater than or equals the sum (SIGMA function) of
all average landing durations (AVERAGE_LD function) of
aircrafts in the airport having a deadline lower than the entering
aircraft deadline.)e SIGMA function and AVERAGE_LD are
formalized in the second context as shown in Box 14.

)e second case is when the entering aircraft is requesting
an emergency landing (aircraft∈Urgents), the Urgents
cases like: aeronautical failure, bad climate, terrorist attacks,

kidnapping, and threat may affect passenger safety. According
to the landing process on DM scheduling, the emergency
cases have the highest priority to land in the first time, and the
VOR and the supervisor must look for a not-used runway
where the aircraft may be landed. In the second time, those
having the lowest deadline are able to be landing.)is is
formalized as guards in the start_landing event as shown in
Box 15.

Finally, we present below a new set associated with the
aircrafts in the runway, that is, a subset of the air-
crafts_in_airport (inv 5). We introduce also an inv 6 that
expresses that the curr_RW_status is “unavailable” if and only
if there is a single airplane in the state TakingOff or Landing.
And such invariant would ensure that no accident may
happen on the runway. Associated basic guardsmust be added
in the start landing event to ensure that the system preserves
these invariants and also some actions for adding and re-
moving aircrafts from the aircrafts_in_runway set (Box 16).

3.3. SecondRefinement: Towards anAlert System for a Secured
ATC. In the previous models, we formalized the functional
aspect of the system. Here, a model of alert system more
security for the ATC is provided [16–20]. However, we need
to firstly define the carrier set and constants shown in Box 17.

In this context, we introduce the aircraft brands set.)ese
brands will be needed to determine the minimum separation
time between two aircrafts. Besides, we present the LOCA-
TION as a Cartesian product of three natural number sets
which refer, respectively, to altitude, latitude, and longitude.
Finally, we define a total function (Separation_Time) from the
BRAND set to natural numbers formalizing the fact that the
separation time between two aircraft landing depends
strongly upon the last aircraft brand.)is requirement is
based on aerodynamic consideration: an aircraft generates
a great deal of air turbulence when it flies. If another aircraft

grd5: ∀A·A ∈ aircrafts_in_airport⇒ statusof(A)≠TakingOff
grd6: ∀A·A ∈ ready_to_takeoff_aircrafts⇒ the_ready_to_takeoff_moment(A)≥ the_ready_to_takeoff_moment(aircraft)

BOX 11

INVARIANTS
inv1: deadline ∈ aircrafts_in_airport⟶N

inv3: ready_to_takeoff_aircrafts⊆ aircrafts_in_airport
inv2: the_ready_to_takeoff_moment ∈ ready_to_takeoff_aircrafts⟶N

inv4: ∀A·(A ∈ ready_to_takeoff_aircrafts⇒A ∈ aircrafts_in_airport∧ statusof(A)�ReadyT)

BOX 10

act4: ready_to_takeoff_aircrafts≔ ready_to_takeoff_aircrafts\{aircraft}
act5: the_ready_to_takeoff_moment≔ {aircraft} the_ready_to_takeoff_moment

BOX 12

8 Modelling and Simulation in Engineering

flies too close behind it, it will lose aerodynamic stability
[16, 24]. For safety purpose, the landing time between two
aircrafts should be always greater than the separation time
defined by the Separation_Time function. After each landing,

CONSTANTS

BAG
SIGMA
AVERAGE_LD

AXIOMS

axm1: BAG� {e·e ∈N ↛ N∧ finite(e)∧ dom(e)� 1 ‥ card(e) ∣ e}
axm1: SIGMA ∈BAG⟶N

axm2: SIGMA(∅)� 0
axm3: ∀e·e ∈BAG∧ e≠∅⇒ SIGMA(e)� e(card(e))+ SIGMA({card(e)} e)

END

BOX 14

grd3: (SIGMA({i↦ ld ∣ ∃A·i∈ card(aircrafts_in_airport)∧ ld�AVERAGE_LD(A)∧ A∈ aircrafts_in_airport∧ deadline(A)≤ deadline
(aircraft)})≤ deadline(aircraft)∧Urgents�∅)∨ aircraft∈Urgents
grd4: (∀A·A ∈ aircrafts_in_airport∧ deadline(A)> deadline(aircraft)⇒ SIGMA({i↦ ld ∣ ∃a·i ∈ card(aircrafts_in_airport)∧
ld�AVERAGE_LD(a)∧ a ∈ aircrafts_in_airport∧ deadline(a)≤ deadline(A)})+ deadline(aircraft)≤ deadline(A)∧Urgents�∅))∨
aircraft ∈Urgents

BOX 13

grd5: ∀A·A ∈ aircrafts_in_airport⇒ statusof(A)≠ Landing
grd6: ((deadline(aircraft)�min({dl ∣ ∃A·A ∈ aircrafts_in_airport∧ statusof(A)�ReadyL∧ dl� deadline(A)}))∧Urgents�∅)∨
aircraft ∈Urgents

BOX 15

Inv 5: aircrafts_in_runway⊆ aircrafts_in_airport
Inv 6: aircrafts_in_runway≠∅⇒ curr_RW_status≔ unavailable

BOX 16

SETS

BRAND

CONSTANTS

LOCATIONS
Min_distance
Separation_Time

AXIOMS

axm1: LOCATIONS�N×N×N

axm2: Min_distance ∈N
axm3: Separation_Time ∈BRAND⟶N

END

BOX 17

act4: last_landing_t≔ curr_t
act5: separation_t≔ Separation_Time(brandof(aircraft))

BOX 18

grd10: curr_t− last_landing_t≥ separation_t

BOX 19

Modelling and Simulation in Engineering 9

two things must be saved to ensure the safety of the next
landing: the time of the previous landing and the separation
time [16, 19, 20, 30, 31].)is is formalized in the Termi-
nating_landing event shown in Box 18.

Here, the curr_t is an event parameter denoting the current
time that will be saved using the last_landing_t variable and
separation_t which is also a variable denoting the separation
time required for the next landing. Finally, the brandof is a total
function from aircrafts to brands. In order to guarantee that the
separation time is kept, the guard shown in Box 19 must be
inserted in the start_landing event.

As the separation time, a minimum separation distance
must be maintained between aircraft during flying in the
airport airspace [17, 19, 32]. If two aircrafts are keeping this
distance, collision will be strongly avoided as well as wake
turbulence.)e minimum distance is fixed and denoted by
the Min_distance constant is presented in the previous
context. To insure that the minimum distance will be kept,
the invariant shown in Box 20 must be preserved.

)e distance function is defined from LOCATION×

LOCATION to natural numbers, and it calculates the
distance between two aircrafts based on their locations
determined by means of the locationof function.)ese two
functions are defined in the two invariants shown in Box 21.

Since the controllers should be aware of the system status
in real time, the system should response to each aircraft

movement.)erefore, we introduce two new events: Air-
craft_moving_Alert_ON and Aircraft_moving_Alert_OFF.
One of these two events triggers whenever an aircraft moves,
the first one triggers when the movement of an aircraft is not
allowed which turn an alert on.)us, its guards are verified if
one of a not-allowedmovement happens. On the other hand,
the Aircraft_moving_Alert_OFF event triggers when the
movement is allowed verifying all security properties which
turns the alert off if it is on.)is work focuses on the
minimum distance property as our example for proving
security properties [16–20, 33]. Other security properties may
be added bymeans of disjunction of different properties in the
Aircraft_moving_Alert_ON event and the conjunction of
these properties in Aircraft_moving_Alert_OFF (Boxes 22
and 23).

4. Proving Model Correctness and Result

)e Rodin platform is used to prove model correctness [14].
Table 1 presents the statistics proofs generated by Rodin.

)is table measures the size of proofs generated in-
cluding automatic and manual proofs. Note that there are
many proof obligations in the first refinement due to the
introduction of scheduling management. In order to
guarantee the correctness of this scheduling process, various
invariants must be established. Moreover, our formal model

inv7: ∀a,b·a ∈ aircrafts_in_airport∧ b ∈ aircrafts_in_airport⇒ distance(locationof(a)↦ locationof(b))≥Min_distance

BOX 20

inv1: locationof ∈AIRCRAFTS⟶ LOCATIONS
inv2: distance ∈ LOCATIONS× LOCATIONS⟶N

BOX 21

Aircraft_moving_Alert_ON
ANY

aircraft
loc

WHERE

grd1: loc ∈ LOCATIONS
grd2: aircraft ∈AIRCRAFTS
grd3: (∃a·a ∈AIRCRAFTS∧ distance(locationof(a)↦ loc)<Min_distance)∨¬ (Security property 1)∨¬ (security property 2)∨ . . .

THEN

act1: Alert≔TRUE
act2: locationof(aircraft)≔ loc

END

BOX 22

10 Modelling and Simulation in Engineering

introduces management functions such as sigma, min,
deadline, and average landing durations. According to this
report, we conclude that Rodin inference prover was able to
establish 91% of proofs, which makes the task of modeling
and proving easier.)e combination of automatic and
manual proofs ensures that the system developed here is
correct by construction.

5. Conclusion

We demonstrate formal modeling and verification of an
assisting system for air traffic management in airport
airspace. We formalize the system’s functional and non-
functional requirements using Event-B that is based on
a mathematical language.

)e present contribution deals with the system as a se-
quence of models in successive steps that add refinement to
enrich the initial abstract model in order to achieve a more
realistic model. Most of the model correctness proofs are
performed automatically by the means of Rodin theorem
proving platform that supports the applications of Event-B.
)e ATC model presented is based on a single runway that
take off and land aircraft while maintaining deadlines as
much as possible.

Successive refinements such as maintaining minimum
separation landing time in order to maintain an aircraft
aerodynamic stability and also urgent landing scenarios are
integrated.

We have started with an initial model that captures the
essence of traffic management and the different elements
taken into consideration.)e first refinement introduces
the scheduling method used during taking off and landing.
In the second refinement, we prove safety properties to
avoid system failure. Our model is proved correct by
construction including invariant preservation and dead-
lock freedom.

)e process presented in this work is based on FCFS
during taking off and on deadline monotonic during
landing.)is system is also able to verify safety properties
that must be preserved during system occurrence; these
properties are guaranteed by means of invariants and
guards.

Because of environmental, political, and geographical
constraints, capacity cannot be easily increased by building
new airports or runways.)erefore, our model is based on
one runway.

In future work, we hope to be able to improve our model
by considering the case of several runways in the same
airport and several airports. Besides, it is very useful to
combine this method with other modeling and simulation
techniques such as Monte Carlo presented in [1], which
highly improves system feasibility. Furthermore, we aim to
apply standardizations such as QoS [34] and RM-ODP [35]
in the field of air traffic management.

Abbreviations

ATC: Air traffic control system
ICAO: International Civil Aviation Organization
FAA: Federal Aviation Administration
NASA: National Aeronautics and Space Administration
FCFS: First comes first served
VOR: Very high-frequency omnidirectional radio

range
DM: Deadline monotonic
QoS: Quality of service
RM-
ODP:

Reference Model of Open Distributed
Processing.

Aircraft_moving_Alert_OFF
ANY

aircraft
loc

WHERE

grd1: aircraft ∈AIRCRAFTS
grd2: loc ∈ LOCATIONS
grd3: (∀a·a ∈AIRCRAFTS⇒ distance(locationof(a)↦ loc)≥Min_distance)∧ (Security property1)∧ (Security property 2)∧ . . .

THEN

act1: Alert≔ FALSE
act2: locationof(aircraft)≔ loc

END

BOX 23

Table 1: Rodin report (Table 1 is reproduced from Jarrar and
Balouki, (under the Creative Commons Attribution License)) [13].

Element name Total Auto Manual
Air traffic control 190 173 17
Initial context 5 5 0
First refinement context 9 9 0
Second refinement context 12 10 2
Initial machine 45 42 3
First refinement machine 66 58 8
Second refinement machine 53 49 4

Modelling and Simulation in Engineering 11

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Abdessamad Jarrar and Youssef Balouki contributed in
collecting information, writing, modeling, and reviewing.

Acknowledgments

)is research work was supported by Computing, Imaging
and Modeling of Complex Systems Laboratory, Settat,
Morocco.

References

[1] S. Bouarfa, H. A. Blom, R. Curran, and M. H. Everdij, “Agent-
based modeling and simulation of emergent behavior in air
transportation,” Complex Adaptive Systems Modeling, vol. 1,
no. 1, p. 15, 2013.

[2] N. Ahmad Zafar, “Formal specification and analysis of take-
off procedure using VDM-SL,” Complex Adaptive Systems
Modeling, vol. 4, no. 1, 2016.

[3] S. Yousaf, N. Ahmad Zafar, and S. A. Khan, “Formal analysis
of departure procedure of air traffic control system,” in 2010
2nd International Conference on Software Technology and
Engineering (ICSTE), vol. 2, San Juan, PR, USA, October 2010.

[4] D. Méry and N. K. Singh, “Modeling an aircraft landing
system in event-B,” in Proceedings of International Conference
on Abstract State Machines, Alloy, B, TLA, VDM, and Z: ABZ
2014: ?e Landing Gear Case Study, pp. 154–159, Toulouse,
France, 2016.

[5] iFACTS-air traffic management system, 2017, https://www.
adacore.com/customers/uks-next-generation-atc-system.

[6] Q. Zhang, Z. Huang, and J. Xie, “Distributed system model
using SysML and event-B,” in Proceedings of International
Conference on Machine Learning and Intelligent Communi-
cations (MLICOM 2017), pp. 326–336, Weihai, China, August
2018.

[7] T. Chajed, H. Chen, A. Chipala, M. Frans Kaashoek,
N. Zeldovich, and D. Ziegler, “Certifying a file system using
crash hoare logic,” Communications of the ACM, vol. 60, no. 4,
pp. 75–84, 2017.

[8] S. Zhang, Y. Ma, C. Meng, and H. Wang, Formal Verification
of Quantum Communication Protocols Using Petri Nets, arXiv
preprint arXiv:1704.07031, Cornell University Library, Ithaca,
NY, USA, 2017.

[9] M. U. Ashraf and W. Aljedaibi, “ATAM-based architecture
evaluation using LOTOS formal method,” International
Journal of Information Technology and Computer Science,
vol. 9, no. 3, pp. 10–18, 2017.

[10] S. Jaidka, S. Reeves, and J. Bowen, “Modelling safety-critical
devices: coloured petri nets and Z,” in Proceedings of ACM
SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS’17), Pittsburgh, PA, USA, July 2017.

[11] T. S. Hoang, H. Kuruma, D. Basin, and J. R. Abrial, “De-
veloping topology discovery in Event-B,” Science of Computer
Programming, vol. 74, no. 11-12, pp. 879–899, 2009.

[12] J.-R. Abrial, Modeling in Event-B: System and Software
Engineering, Cambridge University Press, New York, NY,
USA, 2010.

[13] A. Jarrar and Y. Balouki, “Formal reasoning for air traffic
control system using event-B method,” in Proceedings of
International Conference on Computational Science and Its
Applications, pp. 241–252, Springer, Melbourne, Australia,
July 2018.

[14] C. Rodin, M. Jastram, and M. Butler, User’s Handbook,
Deploy Project, Fontainebleau, France, 2011.

[15] D. Méry and N. K. Singh, “EB2J: code generation from event-
B to Java,” in Proceedings of SBMF-Brazilian Symposium on
Formal Methods, São Paulo, Brazil, 2011.

[16] In Focus, “ICAO’S strategic objectives,” 2018, https://www.
icao.int/Pages/default.aspx.

[17] Fact sheet -FAA & NTSB’s “most wanted” recommendations,
2010, https://www.faa.gov/news/fact_sheets/news_story.cfm?
newsId=11186.

[18] Department of Transportation Federal Aviation Adminis-
tration, Aeronautical Information Publication, United States
of America, 24th edition, Amendment 2, 2017.

[19] J. S. Duncan, Airplane Flying Handbook, FAA-H-8083-38,
Department of Transportation Federal Aviation Adminis-
tration Flight Standards Service, FAA-H-8083-38, Federal
Aviation Administration, Washington, DC, USA, 2016.

[20] NASA air traffic management demonstration goes live in
Charlotte, 2017, https://www.nasa.gov/aero/nasa-air-traffic-
management-demo-goes-live.

[21] J. Lygeros and N. Lynch, “On the formal verification of the
TCAS conflict resolution algorithms,” in Proceedings of the
36th IEEE Conference on Decision and Control, pp. 1829–1834,
San Diego, CA, USA, December 1997.

[22] H. Pinol and J. E. Beasley, “Scatter search and bionomic al-
gorithms for the aircraft landing problem,” European Journal
of Operational Research, vol. 171, no. 2, pp. 439–462, 2006.

[23] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for
air traffic management: a study in multiagent hybrid systems,”
IEEE Transactions on Automatic Control, vol. 43, no. 4,
pp. 509–521, 1998.

[24] S. P. Yu, X. Bin Cao, and J. Zhang, “A real-time schedule
method for aircraft landing scheduling problem based on
cellular automation,” Applied Soft Computing, vol. 11, no. 4,
pp. 3485–3493, 2011.

[25] W. Su and J. R. Abrial, “Aircraft landing gear system: ap-
proaches with Event-B to the modeling of an industrial
system,” International Journal on Software Tools for Tech-
nology Transfer, vol. 19, no. 2, pp. 141–166, 2017.

[26] S. Luo and G. Yu, “Airline schedule perturbation problem:
landing and takeoff with nonsplitable resource for the ground
delay program,” in Operations Research in the Airline
Industry, pp. 404–432, Springer, Boston, MA, USA, 1998.

[27] G. L. Vairaktarakis and T. Aydinliyim, “Benchmark
schedules for subcontracted operations: decentralization
inefficiencies that arise from competition and first-come-
first-served processing,” Decision Sciences, vol. 48, no. 4,
pp. 657–690, 2017.

[28] C. V. Schmidt, A. Heimbucher, A. Bernadou, and J. Heinze,
“First come, first served: the first-emerging queen monopo-
lizes reproduction in the ant Cardiocondyla “argyrotricha”,”
Journal of Ethology, vol. 35, no. 1, pp. 21–27, 2017.

12 Modelling and Simulation in Engineering

https://www.adacore.com/customers/uks-next-generation-atc-system
https://www.adacore.com/customers/uks-next-generation-atc-system
https://www.icao.int/Pages/default.aspx
https://www.icao.int/Pages/default.aspx
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=11186
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=11186
https://www.nasa.gov/aero/nasa-air-traffic-management-demo-goes-live
https://www.nasa.gov/aero/nasa-air-traffic-management-demo-goes-live

[29] A. Jarrar, “Modeling aircraft landing scheduling in event B,”
in International Conference on Information Technology and
Communication Systems, pp. 127–142, Springer, Berlin,
Germany, 2017.

[30] V. Carreño and C. Muñoz, “Safety verification of the small
aircraft transportation system concept of operations,” in Pro-
ceedings of AIAA 5th Aviation, Technology, Integration, and
Operations Conference (ATIO), Arlington, VA, USA, 2005.

[31] S. Umeno and N. Lynch, “Safety verification of an aircraft
landing protocol: a refinement approach,” in Proceedings of
International Workshop on Hybrid Systems: Computation and
Control, pp. 557–572, Springer, Philadelphia, PA, USA, 2007.

[32] A. Narkawicz and C. Munoz, “A formally verified conflict
detection algorithm for polynomial trajectories,” in Pro-
ceedings of AIAA Infotech@Aerospace, p. 0795, Kissimmee, FL,
USA, January 2015.

[33] A. Platzer and E. M. Clarke, “Formal verification of curved
flight collision avoidance maneuvers: a case study,” in Pro-
ceedings of International Symposium on Formal Methods,
pp. 547–562, Springer, Oxford, UK, 2009.

[34] A. Jarrar, Y. Balouki, and T. Gadi, “Formal specification of QoS
negotiation in ODP system,” International Journal of Electrical
and Computer Engineering, vol. 7, no. 4, p. 2045, 2017.

[35] H. Belhaj, Y. Balouki, M. Bouhdadi, and S. El Hajji, “Using
event B to specify QoS in ODP enterprise language,” in
Proceedings of Working Conference on Virtual Enterprises,
pp. 478–485, Springer, France, October 2010.

Modelling and Simulation in Engineering 13

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

