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Recent studies show that charging stations are operated in an inefficientway. Due to the fact that electric vehicle (EV) drivers charge
while they park, they tend to keep the charging station occupied while not charging. This prevents others from having access.This
study is the first to investigate the effect of a pricing strategy to increase the efficient use of electric vehicle charging stations. We
used a stated preference survey among EV drivers to investigate the effect of a time-based fee to reduce idle time at a charging
station. We tested the effect of such a fee under different scenarios and we modelled the heterogeneity among respondents using a
latent class discrete choice model. We find that a fee can be very effective in increasing the efficiency at a charging station but the
response to the fee varies among EV drivers depending on their current behaviour and the level of parking pressure they experience
near their home. From these findings we draw implications for policy makers and charging point operators who aim to optimize
the use of electric vehicle charging stations.

1. Introduction

The transport sector in Europe, which accounts for a quarter
of greenhouse gas emissions, is the only main sector that
has not been able to reduce emissions over the past 25 years
[1]. Electric vehicles (EVs) show great promise to meet CO

2

reduction targets in the transport domain and to reduce local
air pollution [2]. Adoption of these vehicles is starting to take
off [3] as the main barriers, being the purchase price and the
limited range due to high battery costs [4], are overcome by
the introduction of more affordable, long range EVs into the
market. One of the opportunities EVs offer in comparison to
other Alternative Fuel Vehicles (AFVs) [5] is the possibility
of charging the car while being parked.This reduces the need
for fast refuelling stations. Cars are parked 90-95%of the time
[6], which provides the opportunity to overcome problems of
limited range and long recharging times even with currently
available short range vehicles. This requires instalment of

(public) charging infrastructure at places where users park
their cars such as at home, at work, or at public facilities such
as shopping centres [7].

Investments in the necessary charging infrastructure have
been trailing due to chicken-and-egg related problems. In
order to solve this, governments stepped in to facilitate basic
public charging infrastructure. Efficient use of the limited
available charging stations is important in early adoption
phases to ensure a positive experience for early adopters and
to reduce resistance among nonadopters [8]. Effective usage
triggers high throughput which in turn creates a positive
business case for charging point operators [9]. Descriptive
statistics in the scientific literature [10, 11] and experiences
in the field [12], however, show that efficiency at both slow
and fast charging stations is not optimal. At slow (level 2)
public charging stations (up to 11 kW) only 20 to 40% of
the time connected to the charging station is actually used
for charging. At fast charging stations these rates are better,
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but idle times are more costly because charging speeds are
higher.

Currently, many charging point operators use a business
model that is based upon the sales of the energy transferred,
not providing an incentive for the driver to move the vehicle
once fully charged. Charging point operators are seeking
ways to improve the efficiency of their operations without
interfering with the user experience. Learning from parking
studies (e.g., [13, 14]), the introduction of time-based fees
could help to increase the efficiency of charging station
capacities. Although it is known that fees influence the
decision to charge [15], there is little knowledge about how
fees influence the decision to move the vehicle once fully
charged. Straightforward implementation of a time-based
fee could prove not to be the optimal solution, because
it could interfere with a ‘parking is charging’ regime; the
advantage EVs have over other AFVs. Moreover there are
large differences in the way EV drivers use public charging
infrastructure. This depends among others on the location
(e.g., homeorwork) and the time of day [16]. Besides such cir-
cumstantial differences, there is a diversity among drivers in
their parking and charging patterns [17, 18]. Such differences
could also influence the way time-based fees are influencing
the behaviour of EV drivers. For a successful implementation
of a time-based pricing structure, heterogeneity among EV
drivers in their parking and charging behaviour is important
to understand and take into account.

This paper aims to add to the understanding of the effect
of time-based fee structures on charging behaviour and the
underlying factors that drive heterogeneity of EV drivers’
responses to a new pricing scheme.The effect of a time-based
fee during different situations is estimated using a stated
choice survey in which respondents are asked whether or
not they would move their EV once fully charged. Hetero-
geneity is addressed using sociodemographic characteristics
of respondents. In addition, since all respondents were actual
EV drivers, their regular charging behaviour and vehicle
characteristics were also used as underlying explanatory
variables. By using a latent class discrete choice model,
different user types are identified across which the effect of
a time-based fee differs.

In Section 2 a literature overview is presented, which
is followed by an outline of the structure of this paper. In
Section 3 the methodology of the stated preference choice
experiment is further explained, followed by the data collec-
tion process in Section 4. Results of the model estimations
are shown in Section 5, followed by an interpretation of
the results and their meaning in the policy context in
Section 6.

2. Literature

This literature review addresses two topics, first the hetero-
geneity in charging behaviour and the factors that drive the
decisions to charge and second literature on the influence of
pricing on charging behaviour. The relevant knowledge gaps
are identified and the last paragraph describes how these gaps
are filled with this contribution.

2.1. Heterogeneity in Charging Behaviour. The field of charg-
ing behaviour has been found to be under increasing interest
of scholars. The number of studies that model charging
behaviour based upon assumptions or criteria (e.g., [19–21])
or driving data from conventional cars (e.g., [22–24]) for
infrastructure planning is increasing.More recently, attention
has shifted towards analysing differences in charging patterns
from actual EV drivers. Studies that discuss heterogeneity in
charging behaviour fall into two categories, those that discuss
heterogeneity in charging patterns (e.g., home,workplace and
public charging) and those that study heterogeneity in the
factors that drive charging decisions (e.g., pricing and routine
behaviour).

The number of studies that investigate heterogeneity in
charging patterns using actual driving- or charging data from
EVs is small due to the limited number of vehicles on the road.
However, with the growing number of EVs on the road, it can
be observed that the number of such studies also begins to
increase. A number of studies such as by Azadfar, Sreeram,
and Harries [25], Robinson, Blythe, Bell, Hübner, and Hill
[26], andMorrissey et al. [7] describe charging behaviour and
try to derive general conclusions from this.They identify pat-
terns often corresponding to home and workplace charging,
the two most dominant modes currently used. Heterogeneity
among charging profiles was more systematically addressed
by several studies such as Robinson et al. [26] and Desai et
al. [10] which both used cluster analysis to identify several
charging profiles. Helmus and Van den Hoed [16] identified
6 different user types based on charging data in the city
of Amsterdam. Franke and Krems [17, 18] identified two
different user battery interaction styles among EV drivers
in a trail in Germany; some users preferred to interact with
the battery level of the vehicle, while others displayed more
opportunity driven recharge styles. Sadeghianpourhamami,
Refa, Strobbe, and Develder [27] make use of charging data
to determine different user types to assess their flexibility in
charging behaviour and therefore their suitability for load
shifting purposes. They identify three different user groups
using k-means clustering: home, workplace, and park-to-
charge charging. The results are largely in line with Robinson
et al. [26].

In studies that investigate the factors that drive charging
decisions, heterogeneity among EV drivers is often modelled
by using random parameter logit models [28–32]. These
studies find differences in how EV drivers interpret, e.g.,
distances to charging stations and different charging speeds.
Latent class analysis is used to investigate heterogeneity
among the determining factors of charging decisions by
Wen, Mackenzie, and Keith [15]. Although they identified
three different user groups, these were not linked to actual
recharge patterns found in studies based on actual charging
behaviour such as in Robinson et al. [26], Van den Hoed and
Helmus [16], and Sadeghianpourhamami et al. [27] but on
sociodemographic and vehicle characteristics. The only study
that does make such a link is by Kim, Yang, Rasouli, and
Timmermans [33] who used a latent class hazard duration
model to identify differences in user groups in intercharging
session duration. The predefined two groups were based
upon charging (ir)regularity. Latent class analysis showed that
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charging behaviour and vehicle characteristics can predict
whether users are (ir)regular chargers.

The overview shows that random parameter models
are mostly used to capture heterogeneity in decision rules
in charging decisions. Descriptive studies, however, more
focus on clustering users based on their behaviour. Linkage
between these methodologies is mostly missing with the
exception of Kim et al. [33].

2.2. Price Incentives for Charging Behaviour. The effect of
pricing strategies to steer charging behaviour hasmainly been
studied in the context of so-called smart charging [34]. Smart
charging is the concept in which pricing is used to prevent
peaks in grid loads, to let charging coincide with renewable
energy production or to feed back into the grid during high
energy demand. An overview of the various modes of smart
charging is given by Garcı́a-villalobos et al. [35] and Tamis,
van den Hoed, and Thorsdottir [36]. Price setting usually
happens in a centralized manner by so-called aggregators
as individual users do not have enough volume to trade
on energy markets. Setting the price is done dynamically
based on current energy prices or using more static time-
of-use prices in which differences are made between, e.g.,
day and night [34]. Generally in studies based on stated
choice experiments, a significant positive effect of price on
the decision to postpone or to leave control to an aggregator
is found [37]. There are, however, studies indicating that too
complex pricing strategies have a negative effect on reaching
set goals [38].

Besides the influence of price incentives for “smart charg-
ing” a few studies have looked into the influence of pricing on
more general charging behaviour. Latinopoulos, Sivakumar,
andPolak [39] looked into price setting in relation to charging
decisions combined with parking reservations. They find that
EV drivers are willing to pay more to ensure charging station
availability. Wen,MacKenzie, and Keith [15]model the choice
to start charging withmixed and latent classmodels, in which
they include the price of the charging session based upon
a stated preference survey among EV drivers. In the latent
classes they do find differences on price sensitivity between
respondents.

In studies that make use of charging data Sun, Yamamoto,
and Morikawa [40] find that EV drivers in Japan are willing
to make longer detours for free charging stations from their
route than for paid chargers. Motoaki and Shirk [41] find
that installing a flat fee at fast charging stations resulted in
longer charging sessions and less energy transfer per minute
connected. Users wanted to get the most out of the money
they paid. Consequently, users also fill their car beyond 80%
after which charging becomes less efficient. Such inefficient
use of the time connected to a charging station with flat
fees or other nontime based fees was found to be even
worse at slower (level 2) charging stations in Netherlands.
Wolbertus and van den Hoed [11] found that only 20% of
the time connected to a charging station was actually used
for charging. Charging behaviour at “lower” power outlets
is more related to parking behaviour in which vehicles stay
in the same place for much longer times than is needed to
recharge the car. Also on level 2 charging stations in the

United States, Francfort [42] found that installing time-based
fees reduced charging times. The report however does not
quantify the precise reduction the fee caused after charging
was first free.

To summarize, there are various indications that pricing
strategies can have an influence on charging behaviour.
The studies indicate the location, timing, duration, and the
willingness to give up control over the charging process can
be influenced. The charging station choice could also be
influenced if prices vary enough. However, a quantification of
the effect of pricing strategies is missing, especially for time-
based strategies.

2.3. Knowledge Gaps and Contributions. In sum, this over-
view has shown that a growing body of literature is investigat-
ing charging behaviour of EV drivers using revealed prefer-
ence data. Descriptive studies and random parameter models
show that heterogeneity is present in charging patterns and in
the determining factors which drive the decisions regarding
where, how long, and how much to charge. Understanding
this heterogeneity is crucial to correctly predict charging
demand. Links between descriptive studies which often show
clear habitual patterns and studies that model heterogeneity
in charging decision rules are sparse. Furthermore, the
literature on determining factors focusses on the decision
to charge (or not) and not on the duration of the charging
session.

The effect of price on the charging sessions is mainly
studied in the context of “smart charging” in which the user
is asked to hand over a certain amount of control over the
charging process for a lower price. Information about price
sensitivity mostly comes from stated preference studies or
studies that investigate the difference between paid- and free
chargers. These studies often find significant effects of such
price changes. Literature fromother domains, such as parking
[43, 44], suggests that behaviour could be well steered by
setting the price level and pricing mechanism.

This study contributes by shedding more light on the
effect of pricing mechanisms on charging behaviour while
taking the heterogeneity of EV drivers in their charging
behaviour into account. It does so by looking more at current
charging patterns described in the literature. Using a stated
preference study on the decision to end a charging session
once completely charged, given a certain price per hour, it
is investigated how such a pricing strategy can lead to more
efficient charging station use. Actual charging patterns are
used to simulate scenarios about the timing, location, and
parking pressure of charging sessions under which the effect
of a time-based fee is tested. Moreover, the participants, all
EV owners, are asked about their recharging patterns. This
information is used in a discrete choice latent class model
to determine if these charging patterns lead to a different
evaluation of the proposed pricing mechanism.

3. Methodology

A stated choice study was performed among EV drivers, in
which they were asked to imagine that they were charging
their electric vehicle at a level 2 public charging station. They
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Table 1: Overview of variables used in stated choice experiment.

Variable Levels

Fee (€)
€0,25/hour
€1/hour

€1,75/hour

Time to move car
5min
10min
15min

Time until next drive
2 hours
5 hours
8 hours

Time of day and location
9:00 at work
14:00 at home
17:00 at home

were presented with the scenario in which the EV was fully
charged two hours after having started the charging session.
The two hours is the average time needed to recharge [11].The
driver is asked to make the choice to move his vehicle away
from the charging station within the next hour. If the driver
does not comply, he will be faced with an additional time-
based fee. Such a fee was not applicable between 23:00 and
8:00 hours as this would hamper overnight charging sessions
and would only create empty charging spots due to the fact
that during these hours demand for charging is generally very
low.

Different charging scenarios were constructed including
themost important factors.These factors were determined by
a literature review and interviews with policy makers and EV
drivers. Three factors were identified as most relevant in the
decision to move the vehicle once the charging session was
finished: first, the timing of the charging session in the day,
which often coincides with location due to habitual patterns
of drivers such as charging at home or work; second, the
time until the next drive was relevant; drivers indicated that
they would not likely move their car if the parking period
after a finished charging session was very short. Last, drivers
also indicated that parking pressure or the ability to park
somewhere close without too much hassle was relevant. An
overview of the variables and their levels is shown in Table 1.

As input to establish the right levels to represent the tim-
ing of the charging session, evidence from charging patterns
in literature was taken. Jabeen et al. [29] and Hoed, Helmus,
Vries, and Bardok [45] showed that significant differences
exist between home and workplace charging, the two most
dominant modes of charging. These are represented in the
survey as 9:00 at work and 17:00 at home. During weekends
different patterns arise, in which charging peaks are observed
during the afternoon, represented by the 14:00 at home level
in the experiment.

The times until the next drive variable levels are based
upon typical charging patterns observed in Netherlands [46].
Three levels are chosen based upon a review of the data:
removal of the vehicle within 2 hours, 5 hours, and 8 hours
after a finished charging session. The two-hour level resem-
bles short sessions mainly observed during the morning and

Table 2: Exemplary choice set.

Situation 2
Location Home
Time of arrival 17:00
Time finished charging 19:00
Expected departure 9:00 next morning
Time required to move car into
different parking sport 10 minutes

Fee if car Is not moved 1 hour after
charging €1,00/hour

If you do not move your car between 19:00 and 20:00 you will pay an
additional fee of €4,00.
2. Would you move your car between 19:00 and 20:00
◻ Yes
◻No

afternoon, the five-hour level resembles morning sessions
ending in the afternoon, and the 8-hour level represents
sessions of more than 10 hours, often overnight.

During interviews with policy makers and EV drivers
about a potential fee, an often mentioned comment was
that EV drivers were willing to move the vehicle once fully
charged, but they did not have the opportunity to park else-
where without cruising for a parking spot for a considerable
amount of time. Parking pressure in the surroundings of
the charging station is resembled by the time to move the
car variable. The variable represents the time cruising for
a parking spot and the additional walking time to reach
the destination. The variable is set with a 5 minute interval
with a maximum of 15 minutes as it was expected that
drivers would not remove their car if cruising time would be
longer.

Finally we resemble an hourly fee for using the charging
station without actually charging with a variable that was set
on three levels from low (€0.25/hour) tomedium (€1.00/hour;
similar as the regular charging costs) and high (€1.75/hour).
Levels are still below average parking costs. Total fee costs,
based upon the fee level multiplied with the remaining
number of hours of parking and with exceptions between
23:00 and 8:00, are precalculated. An exemplary choice set
(translated from Dutch) is showed in Table 2.

The experimental design was based upon Taguchi’s [47]
orthogonal arrays. The design uses 34 dimensions, result-
ing into nine different choice sets. Each respondent was
faced with each of these nine choices. In the second part
of the survey respondents were asked about their social
demographic characteristics. Additional information about
their electric vehicle (type), reason of purchase, and their
recharging behaviour on public charging stations was asked
at the end of the survey.

To analyse the data both a binary logit and a latent class
discrete choice model were estimated. The time and location,
time until next drive, and the time to move the car variables
were effect coded. For each of the categorical variables the first
value was chosen as a reference point. This reference level is
indicated in the results. In effect coding the sum of all the
coefficients equals zero. This implies that the coefficient for
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the reference category can be calculated as the negative sum
of the coefficients [48]. Z-values and p-values are not derived
for these reference levels. The continuous fee variable was
calculated with the shown fee multiplied with the time until
the next drive variable in order to capture the total cost of not
moving the car. Nonlinear versions of the fee variable were
tested but did not provide a better model fit. The logit model
was estimated using BIOGEME [49].

To capture the heterogeneity among the EV drivers a
latent class discrete choice model was estimated. Latent class
choice models are particularly useful in this case, since they
divide behaviour into groups of different EV drivers. As seen
in the analyses by Jabeen et al. [29] and Helmus and Van den
Hoed [16] based upon real charging data, defining different
user types is very well possible. Other models, such as mixed
logit models, assume a continuous distribution of the taste
parameters, making it impossible to link the heterogeneity
to the discretely defined user groups. Latent class models are
therefore the most suited in this case and can provide the
most insight for policy makers as such a discrete distribu-
tion into classes provides a richer and often more under-
standable interpretation of the heterogeneity among EV
drivers.

For the latent class model, predictor variables for class
membership were entered as covariates in the model. The
model is estimated using Latent GOLD 4.0 [50].The number
of classes was determined using 𝜌2 and Bayesian Information
Criterion (BIC) values.

4. Data Collection

Respondents were recruited via email using the database
from the Dutch association for electric drivers (Vereniging
Elektrische Rijders). In total 559 people were contacted of
whom 128 (23%) responded. Additional EV drivers were
recruited via an online EV driver platform and through a
message by Dutch charging station organisation “ELaadNL”
on social medium platform Twitter. In total 168 respondents
completed the online survey. After filtering out incomplete
surveys and unrealistic responses, 119 responses were useful.
Each respondent was asked to fill in 9 different choice sets,
resulting in 1058 choices in total which were used for the
model estimation.

The respondents were mainly male (92%) and the income
level was distributed upwards in comparison the Dutch
average (CBS, 2015).This profile is consistent with the average
Dutch EV owner [51]. Table 3 presents the sample distribu-
tions of sociodemographic and background characteristics.
In contrast to the average Dutch EV owner, the respondents
mostly consisted of Full Electric Vehicle (FEV) owners [52].
Nearly 90% of Dutch EV owners have a plug-in hybrid
electric vehicle (PHEV), while in the sample this is only
32.2%. Moreover they were more likely to own the car
instead of leasing it, which is also inconsistent with the
current population of EV owners.Themajority of the respon-
dents indicated to have a private charging point at home
instead of relying on on-street parking and public charging
overnight.

Table 3: Sociodemographic figures of respondents to the survey.

Gender
Male 92.2%
Female 7.8%
Age
0-30 2.1%
30-60 79.2%
60+ 16.6%
Unknown 2.1%
Annual income
<€50.000 18.7%
€50.000 - €75.000 23.3%
€75.000 - €100.000 14.5%
€100.000 - €125.000 24.9%
>€125.000 18.5%
Type of EV
FEV 67.8%
PHEV 32.2%
Car ownership
Privately owned 67.3%
(Company) Leased 32.7%
Private charging point
Private at home 77.2%
Public at home 22.8%

5. Results

5.1.TheLogitModel. First, a standard logitmodel is estimated
to assess the overall effects of the attributes on the choice to
move the EV from the charging station to another parking
spot (once fully charged). Table 4 shows the results of
this analysis and the estimated coefficients for the standard
model.

The results show that, as expected, a fee increases respon-
dents’ utility and thus increases the probability to move the
car. For the time of day variable we find that users are more
willing to move their vehicle during the evening hours than
at the middle of the day. An explanation might be that drivers
are not going elsewhere after 19:00 hours and are willing
to move their car for neighbours. The interpretation of the
time to move variable is not straightforward as only the “10
minutes” value has a positive and significant effect. It is
unclearwhy the “15minute” value is not significantly different
from zero. A similar effect can be seen in the time until the
next drive variable, where a longer parking time gives a higher
utility for the “5 hour” value, but no significant effect is found
for the “8 hour” value. A possible explanation is that the fee
is relatively high when there are 8 hours until the next drive
regardless of the hourly based fee. The effect of the 8 hour
variable would then be partially captured by the fee variable.

In general, the model yields plausible results, but nonlin-
ear effects in the time to move the car and time until next
drive variables are hard to interpret. The effect of implement-
ing a fee is significant and has the highest relative contribution
of the variables in themodel.Themodel provides a reasonable
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Table 4: Results of binary logit model estimation.

Attribute Coefficient z-value
Constant -0.413∗∗ -3.172
Fee 0.297∗∗ 8.521
Time to move car
5 min (ref. cat.) -0.208
10 min 0.299∗∗ 2.266
15 min -0.090 -0.868
Time until next drive
2 hours (ref. cat.) -0.521
5 hours 0.500∗∗ 3.950
8 hours 0.021 0.135
Time of day and location
9:00 at work (ref. cat.) 0.080
14:00 at home -0.479∗∗ -3.900
17:00 at home 0.399∗∗ 3.054
Model fit
Null log likelihood - 699.033
Final log likelihood - 547.409
𝜌
2 0.217
∗∗Significant at the 0.05 level.
∗Significant at the 0.10 level.

fit to the data; the 𝜌2 value of 0.217 indicates a substantial
reduction of the Final LL compared to the Null LL.

5.2.The Latent Class Discrete Choice Model. To assess hetero-
geneity in the responses of respondents to the pricing scheme,
a latent class choice model was estimated. In this model
it is assumed that there exist latent (unobserved) segments
in the population, which have different sets of parameters
alongwhich the population in these segments asses the choice
attributes. For example, there may be a group which is very
price-sensitive (high parameter value for the “fee” variable),
while another group is very sensitive to parking pressure
(high parameter value for the “time to move” variable). The
latent classes are inferred from the distributions of the choice
parameters emerging from the observed choices using the
maximum likelihood principle.

A benefit of using a latent class choice model to reveal
heterogeneity in the parameters is that additional explanatory
variables can be included in the model to explain latent class
membership. For example, it may be plausible to assume that
a lease driver who does not have to pay the price of charging
(or staying connected) himself is less likely to belong to a
“price-sensitive” class/segment. A systematic overview of the
model is shown in Figure 1.

In the present application, the following four variables
are entered into the model as predictors of class member-
ship: having a full electric (FEV) or plug-in hybrid electric
vehicle (PHEV), whether the car was owned or leased, if the
participant already moved their car away from the charging
station once fully charged, and if the participant experienced
high parking pressure in the neighbourhood near their home.

Sociodemographic variables were also included as predictors
of class membership, but these turned out to be insignificant.
In line with Kim et al. [33] we therefore focused on the vehicle
and charging characteristics. Overall, predictors were found
to vary across the different classes in a meaningful way.

To estimate the optimal number of classes, consecutive
Latent class models (LCMs) were estimated with the number
of classes ranging from 1 to 5. Table 5 shows the various
model fit indicators for each of the estimated models. The
Bayesian Information Criterion (BIC) indicator points to a 3
or 4 class model. To determine the optimal number of classes
the predictors in the 3 and 4 class models were assessed.
The parameter estimates in the 4 class model could not be
meaningfully interpreted, especially as the class sizes became
too small. Therefore the 3-class model was chosen as the best
fit.

The results of the latent class model estimation are
shown in Table 6. In general the LCM provides a substantial
improvement in model fit (𝜌2 =0.483 versus 0.217). The
classes have clear different meanings when we look at how
they interpret the coefficients.

Class 1: members of class 1 do seem sensitive to all four
variables. A time-based fee increases the chance of moving
the car for respondents in the first class. For the members
of the first class the time to move the car variable only has
a significant negative parameter for the 15-minute level. This
shows that severe parking pressure can be of influence on the
decision to move the car. This effect was already captured in
the membership model for class 3. The time until the next
drive variable has an expected effect for the 2 and 5 hour levels
but surprisingly has no significant effect for the 8 hour level in
class 1. As predicted, the longer the duration of the remaining
parking time is, the more likely drivers are willing to move
their car. The insignificance of the 8 hour parameter could be
explained by the effect of the duration and could be partly
captured by the fee. The time of day and location variables
are in line with the binary logit model, in which we see that
drivers are more likely to move their car in the evening at
home than during the afternoon.

Classes 2 and 3: they are relatively insensitive to most of
the variables as we see that none of the variables is significant.
This is especially relevant for the time-based fee and can be
explained by the fact they either nearly always move (class
2) or nearly always stay (class 3). The intercepts (although
not significant for classes 2 and 3) play a dominant role in
the observed probabilities for members in these two latter
classes. Implementing a time-based fee for the latter groups
would thus not be as effective. The latter can be related back
to the membershipmodel where the same respondents stated
that they experienced high parking pressure near their homes
and therefore might not see opportunities to park their car
elsewhere once fully charged.

The class membership model is displayed in Table 7.
For the predictors of class membership the currently moving
and parking pressure at home variables were found to have a
significant effect on class membership.

(i) Class 1: members did not have a specific profile
according to the covariates in the model. Class 1
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Table 5: Model fit estimators for different number of latent classes.

Number of classes Number of parameters Log Likelihood BIC (LL) 𝜌
2

1 11 -547.409 1133.051 0.2169
2 30 -429.102 958.565 0.3861
3 45 -361.750 885.912 0.4825
4 60 -330.085 884.789 0.5277
5 75 -310.849 908.446 0.5553

Choice parameters
Fee

Time of Day
Time to move

Time until next drive

Choice
Move/Do not move

Utilities

Class 
membership 

model

Class specific 
choice model

Latent Classes

Explanatory variables
PHEV/FEV

Current moving behavior
Own/Lease

Parking pressure

Figure 1: Visual representation of the latent class choice model, reproduced from [53].

represents the largest group of respondents (60%)
and they are the most responsive to the hourly
fee.

(ii) Class 2: members nearly always indicated to remove
the car from the charging station during the exper-
iment also indicated that this was their current
behaviour. They also did not perceive parking pres-
sure at home in comparison to members of the other
classes.

(iii) Class 3: members experience more parking pressure
near their homes. This could be one of the main
drivers why they almost never choose tomove the EV
from the charging point.

6. Conclusion

This paper has examined the influence of a time-based fee on
the decision to remove an EV from a charging station once
fully charged. Results from a stated choice survey that have
been analysed in a binary logit model show that such a fee can
be effective and can result in more efficient use of charging
stations. Other factors influencing the choice, such as parking
pressure, time until next drive, and the time of day were also
found to be relevant, although straightforward interpretation
was not always possible.

To assess the heterogeneity among EV drivers regarding
the time-based fee, a discrete choice latent class model
was estimated. Additional variables about the type of EV
and charging behaviour of the respondents were added to
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Table 6: Results of latent class model estimation.

Class 1 Class 2 Class 3
Coefficient z-value Coefficient z-value Coefficient z-value

Intercept -2.333∗∗ -5.836 1.503 1.683 -2.998 -1.294
Predictors
Fee (€) 0.813∗∗ 5.268 0.854 1.128 0.003 0.006
Time to move car
5min (ref. cat.) 1.175 1.774 1.223
10min 0.215 0.796 -0.598 -0.460 0.182 0.161
15min -1.390∗ -1.947 -1.177 -0.152 -1.406 -0.931
Time until next drive
2 hours (ref. cat.) -1.244 0.590 1.767
5 hours 1.860∗∗ 3.280 0.383 0.050 -1.704 -0.880
8 hours -0.617 -0.898 -0.973 -0.124 -0.063 -0.110
Time of day and location
9:00 at work (ref. cat.) 0.456 -1.688 -0.398
14:00 at home -1.779∗∗ -3.400 0.756 0.098 -1.320 -0.947
17:00 at home 1.323∗∗ 1.989 0.932 0.120 1.718 1.261
Model fit
Log Likelihood -361.751
𝜌
2 0.483
∗Significant at the 0.10 level.
∗∗Significant at the 0.05 level.

Table 7: Class membership model for 3-class model.

Class membership model Class 1 Class 2 Class 3
Class size 60.0% 30.9% 9.1%
% Choice to move (observed) 53.8% 93.6% 13.2%

Coefficient z-value Coefficient z-value Coefficient z-value
Intercept 0.981 2.430 0.303 0.683 -1.284 -2.066
Attributes
Full Electric 0.165 0.437 -0.186 -0.431 0.021 0.038
Lease 0.395 0.950 -0.425 -0.886 0.031 0.050
Currently moving -0.397 -1.041 1.232∗∗ 2.937 -0.835 -1.391
Parking pressure at home -0.690 -1.544 -0.978∗ -1.777 1.668∗∗ 2.728
∗∗Significant at the 0.05 level.
∗Significant at the 0.10 level.

the model as predictor of class membership. Results show
that three types of users could be distinguished: those that
responded to the fee, users that always moved their car once
fully charged, and those that refused to move, regardless of
the set fee level. Membership variables showed that members
of the second class indicated that indeed this behaviour
belonged to their normal charging behaviour.Members of the
third class were more likely to experience parking pressure
when parking at home. Users in the third class might not
see the opportunity to park their car elsewhere once fully
charged. Such distinctions are important for policy makers
because those that experience parking pressure are mostly
drivers who rely on curb side charging and parking because
they make use of public charging infrastructure on a daily
basis. Although in some countries the majority of EV drivers

have charging facilities at home; the needs of future drivers,
which might be more dependent on on-street parking and
charging facilities, have to be taken into account by policy
makers.This is especially relevant in more dense urban areas.
Municipal policy makers can make distinctions between
inhabitants and visitors, possibly relieving the impact of a
time-based fee for those that experience parking pressure in
the city they live in.

The results show that taking into account the hetero-
geneity among respondents can be very relevant. Using
a discrete choice latent class approach has the benefit
that results are easier to interpret for policy makers, as
users are divided into clear groups. This allows for assess-
ing biases among respondents groups. In this case early
adopters can display distinct different charging behaviour
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regarding on- and off-street charging at home, which
resulted in a different acceptance of the proposed pricing
scheme.

7. Discussion

This research is limited by the fact that the respondents are
not completely representative for the population of Dutch
EV drivers. The research was aimed solely at EV drivers as it
was believed that non-EV drivers did not have the experience
to correctly predict what their response would be to the
scenarios in the choice experiment. This limited our search
to members of the Dutch association for EV drivers. The
respondents drovemore full instead of plug-in hybrid electric
vehicles and were less likely to be company lease drivers com-
pared to the population of Dutch EV drivers. From practical
experience it is known that company lease drivers very often
do not have to pay for charging costs themselves. They are
therefore less aware of the costs and they could therefore
be more reluctant moving the vehicle once fully charged
even when presented with a time-based fee. Although no
effect was found for having company lease car in the latent
class membership model, future research could look more
into differences between private owners and company lease
drivers.

For charging point operators the results of this study show
that implementing a time-based fee could result in a higher
efficiency in charging station usage. The results show that
even with a modest fee, to not frustrate EV drivers, a sub-
stantial improvement could be reached. In the final design of
the fee, the charging point operators would have to take into
account the segment of drivers that experience severe parking
pressure and are therefore not willing or able to move their
vehicle away from the charging station once fully charged.
Thedesign of the fee could focus on only preventing very long
charging sessions (e.g., >24 hours) as suggested byWolbertus
and Van den Hoed [46]. This would also prevent misuse by
EV drivers, who could set the charging speed at a very low
rate to prevent them from completing the charging session.
Another important factor that has to be taken into account
when considering an implementation of a time-based fee is
the precondition that the policy is only effective when the
fee is communicated clearly. This requires all costs related to
the time-based fee to be at least specified in the transaction
data and the bill and preferably beforehand at the charging
location.

This study builds on various studies that investigate the
effects of pricing strategies to influence charging behaviour.
The results are in line with previous studies [39–41] which
also find that pricing strategy can be an effective strategy
to steer charging behaviour. This study has been the first to
quantify this effect for a time-based fee.Moreover, in addition
to previous studies, this study added the influence of charging
behaviour (as a variable in the model). Finally, it has provided
a segmentation of EVdrivers using characteristics of their car,
their current behaviour, and the effect of parking pressure.
This segmentation has proved to be useful, as the time-based
fee was assessed differently by the three different segments
found in this study. Doing so this paper has given additional

insight into the motivations of charging behaviour in an
urban context.

As the literature review showed, many applications can
benefit from dynamic price signals in the context of smart
charging, charging station efficiency, or station reservation.
Such price signals make sense from the perspective of the
problem owner, the grid operator, the charging point opera-
tor, or the parking manager, respectively. However as electric
vehicle charging is a combination of these different areas,
it is evident that implementation of each of these pricing
strategies is not in the interest of the EVdriver. Dynamic price
setting should be considered carefully for each application
separately.

Future research could also look at heterogeneity among
more charging decisions such as charging station choice.
Understanding differences in user groups can be important
for policy makers for the spatial planning of a charging
infrastructure. Further understanding of pricing effects can
also be important in being able to steer charging behaviour
to goals of stakeholders. This research and others have shown
that clustering users based upon their charging behaviour and
vehicle characteristics is useful to capture heterogeneity in
charging decision rules.
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