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Abstract: Understanding commuting patterns has been a classic research topic in the fields of
geography, transportation and urban planning, and it is significant for handling the increasingly
serious urban traffic congestion and air pollution and their impacts on the quality of life. Traditional
studies have used travel survey data to investigate commuting from the aspects of commuting mode,
efficiency and influence factors. Due to the limited sample size of these data, it is difficult to examine
the large-scale commuting patterns of urban citizens, especially when exploring the spatial structure
of commuting. This study attempts to understand the spatial structure characteristics generated by
human commutes to work by using massive mobile phone datasets. A three-step workflow was
proposed to accomplish this goal, which includes extracting the home and work locations of phone
users, detecting the communities from the commuting network, and identifying the commuting
convergence and divergence areas for each community. A case study of Shenzhen, China was
implemented to determine the commuting structure. We found that there are thirteen communities
detected from the commuting network and that some of the communities are in accordance with
urban planning; moreover, spatial polycentric polygons exist in each community. These findings
can be referenced by urban planners or policy-makers to optimize the spatial layout of the urban
functional zones.

Keywords: commuting; mobile phone data; spatial structure

1. Introduction

Investigating commuting patterns is a long-term and crucial research topic in the fields of
transport, geography and urban studies. Commuting behavior is considered an individual movement
between a residence and a workplace, which is an essential part of urban life [1,2]. Currently, with the
rapid urban expansion and the substantial growth of private cars, people could choose a workplace
and a residence according to their preference and income level, which leads to a spatial mismatch
of commuting flow and has become one of the primary reasons for urban traffic problems and
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unhappiness [3]. Therefore, understanding the characteristics of urban commuting plays an important
role in alleviating urban traffic congestion [4,5], reducing urban air pollution [6,7] and improving
quality of life [2,8].

Traditional techniques for examining the characteristics of commuting depend on the household
travel survey dataset, which includes individual detailed socio-demographic properties. Thus, this
dataset could be utilized for investigating the influence factors of commuting patterns, such as
income level, gender, ethnicity, occupation, and construction environment [9–12], studying the spatial
relationship of workplace–residence location [13,14] or examining the relationship between urban
form, land use and commuting [15,16]. However, the collection of this dataset is costly, strenuous and
not easily updated in a timely manner; moreover, the limitation of sample size makes it difficult to
provide comprehensive evidence of human mobility, especially in understanding the spatial structure
characteristics of large-scale urban commuting [17].

Fortunately, recent information and communication technologies (ICTs) change this situation;
the widespread use of location-aware devices makes it possible to collect large-scale human
spatiotemporal movement trajectory datasets such as mobile phone data, floating car data and smart
card data [18–23]. These datasets have been widely used to understand the law of urban human
mobility and urban structure from the perspective of space and time, such as exploring human
convergence and divergence patterns [24], measuring human activity space [25], identifying human
spatial interaction communities [26], detecting human mobility hotspots [27], inferring urban land
use [28–31], and quantifying urban dynamic accessibility [32]. For commuting, previous studies have
utilized the large geo-tagged datasets to investigate commuting patterns [23,33,34], origin–destination
trips [35], commuting efficiency [36] and workplace–residence location relationships [37–39]. However,
very little work exploits the advantage of the large datasets to understand the urban spatial structure
characteristics projected from the commuting patterns. In fact, the relationship between commuting
patterns and urban structure has been long examined by geographers using traditional data [1,40,41].

In this paper, we aim to reveal the characteristics of urban spatial structure (such as commuting
communities and a polycentric structure) concealed in the massive commuting trips derived from
massive mobile phone location data, mainly referring to commuting communities (tightly commuting
connected areas) and spatially significant areas of commuting activities. To accomplish this, a three-step
workflow was developed by combining complexity network and spatial statistical analysis. First,
home and work locations were extracted from human space-time trajectories; then, commuting
communities were detected from a spatially directed and weighted network that was constructed
based on home-work flows; and finally, we used a spatial statistical method to identify commuting
convergence and divergence areas for each community. The commuting convergence areas represent
areas that the commuting inflow are larger than the outflow, on the contrary, there are commuting
divergence areas. A pilot study of Shenzhen, China has been implemented to disclose the spatial
polycentric structure implied in the commuting network.

2. Study Area and Dataset

The study area of this research is Shenzhen, which is located in southern China and neighbors
Hong Kong. Since implementing the policy of reform and opening up, Shenzhen was set as the first
special economic zone and has undergone rapid economic development over the past three decades.
Currently, it has become a famous metropolis around the world and has a population of more than
15 million, which is the highest population density among Chinese cities [42].

The mobile phone location data used in this study were collected by a major mobile phone
company, which accounts for approximately 75% of the entire mobile phone market in Shenzhen.
It covers one workday’s traces of 16 million mobile phone users. Different from call detail records
(CDRs), which record individual location only when communication activities (such as phone calls or
text messages) occur, this dataset was originally generated for troubleshooting by mobile operators,
and the operator actively recorded the mobile phone location with a regular interval approaching one
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hour. Each record contains the user ID, recording time, and longitude and latitude of the cell phone
tower used (Table 1). Note that the dataset has been processed for privacy protection before it was
usable for research. In total, more than 5900 cell phone towers are extracted from the dataset, Figure 1
shows the spatial kernel density of the cell phone towers. This study used the voronoi polygons
produced based on the locations of the cell phone towers to denote the service areas. For each voronoi
polygon, the points in the polygon are closer to the corresponding cell phone tower than any other [43].
Note that the islands in the left bottom are not considered in the following analysis.

Table 1. Instance of an individual’s cell phone records during a day.

User ID Record Time Time Window Longitude Latitude

3c5d2b7 ****** 00:25:36 00:00–01:00 113 *** 22 ***
3c5d2b7 ****** 01:26:40 01:00–02:00 113 *** 22 ***
3c5d2b7 ****** 02:20:53 02:00–03:00 113 *** 22 ***
3c5d2b7 ****** . . . . . . . . .
3c5d2b7 ****** 23:33:50 23:00–24:00 113 *** 22 ***

In this study, we selected these mobile subscribers that keep recording in every time window
from the original dataset (Table 1). There are some subscribers missing records in some time windows
due to the power off of phones or leaving the city, so it is difficult to identify meaningful places such as
home and work locations for these users. Finally, there are approximately 6.5 million subscribers who
have location records in every time window, and we denoted this selected dataset as D1, which is used
for this study.
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3. Methodology

In this section, a three-step workflow was implemented to uncover the spatial structure of
commuting, which includes the estimation of home and work locations, the identification of commuting
communities and the detection of the spatially significant commuting convergent and divergent areas
for each community.
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3.1. Extracting the Home and Work Location

For a single cellphone user in dataset D1, the space-time trajectory can be generated by linking
the location records according to the order of the updated time, which can be represented as follows:

Tr = {p1(x1, y1, t1), · · · , pi(xi, yi, ti), · · · , pn(xn, yn, tn)}, (1)

where xi, yi represent the location coordinate of the corresponding cellphone tower (signal tower for
connecting with mobile phones) and ti represents the updated time of the point pi.

There are some studies that have developed methods modeling home and work locations using
mobile phone data or smart card data [25,37,44]. One of the main procedures is extracting stop locations
from the trajectory and analyzing the duration of the stop location during the daytime and nighttime.
In this study, the method proposed by Xu et al. (2014) is employed to infer individual home and work
locations [45]. Let Tk denote the duration of stay for the user at cellphone tower k; if the duration of
stay is more than four hours (Tk ≥ 4) between 00:00 and 06:00, then the cellphone tower k is considered
the user’s home location Lh; if the duration of stay is more than six hours (Tk ≥ 6) between 09:00 and
18:00, then the cellphone tower k is considered as the user’s work location Lw. Based on this rule,
the corresponding cellphone towers of home and work locations can be extracted from individual
space-time trajectories.

3.2. Detecting the Commuting Communities

In this section, a directed and weighted commuting network was constructed based on identified
home and work locations, and communities were detected based on the constructed network.

For each cellphone user whose home and work locations have both been identified, if the home
and work locations are not identical (Lh 6= Lw), then a commuting flow can be generated from the
home location to the work location. Then, we calculated the total commuting flows for each pair of
cellphone towers, and a directed and weighted commuting network G = (V, E) can be established
among the cellphone towers (Figure 2a). The node Vi of the network corresponds to the cellphone
tower i, the edge Eij of the network represents the commute from cellphone tower i to cellphone
tower j, and the weight of wij is the number of people commuting from cellphone tower i to cellphone
tower j.
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Based the constructed directed and weighted commuting network G, we can calculate the sum of
the inflow, outflow and net flow for each node Vi as follows:

Ini =
n

∑
j=1

wji, (2)
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Outi =
n

∑
j=1

wij, (3)

Neti = Ini −Outi, (4)

where wij represents the weight of edge Eij and n indicates the number of total nodes. As described
in [24,46], the net flow could represent the difference between the commuting inflow and outflow
of a place, and it can be used to indicate the state of human convergence or divergence of a place.
Thus, the net flow is employed to identify the commuting convergence and divergence areas in
the next section.

In the field of complex networks, a community is constituted by some tightly connected nodes,
so the objective of community detection is partitioning the whole network into several densely
connected sub networks (Figure 2b). Therefore, the commuting communities would include the
tightly connected residential and industrial areas. Recently, the community detection algorithms
have been introduced into human mobility studies to determine the spatial interaction of cohesive
communities [26,47,48]. There are many community detection algorithms such as Walktrap [49],
modularity maximization [50], Infomap [51], etc. Fortunato (2010) compared the performance of
12 different community detection algorithms and found that Infomap shows better performance in
detecting weighted and directed networks [52]. This algorithm employs a two-level coding mechanism
and finds the optimal community partition by minimizing the expected length of a random walk.
A detailed description of the method can be found in [51]. In this study, we executed Infomap by using
the igraph package of R [53].

3.3. Identifying Commuting Convergence and Divergence Areas for Each Community

In spatial statistics, the Getis–Ord Gi* index has been frequently used to identify statistically
significant spatial clusters of hot spots and cold spots, which has been widely used in geographical
analysis [54–56]. By calculating the Getis–Ord Gi* index, the method generates a z-score and a p-value
for each feature and then finds these features with high (low) values that are also surrounded by other
features with high (low) values. In this study, we utilized the net flow Neti of cellphone tower i as
the attribute value to input the method. Therefore, the identified hot spots are these areas where the
commuting inflow is larger than the outflow and are denoted as commuting convergence areas in this
study. Inversely, cold spots are the areas where the commuting outflow is larger than the inflow and
are denoted as commuting divergence areas. It is apparent that these commuting convergence and
divergence areas are urban workplace and residence-concentrated areas, respectively.

The hot spot analysis (Getis–Ord Gi*) was executed by using the spatial statistic toolbox embedded
in ESRI ArcGIS 10.2 Desktop. We applied this tool to identify commuting convergence or divergence
areas for each detected community. The distance band is based on the average neighbor distance among
the cellphone towers in the community. The tool creates a new field Gi_Bin for each feature to reflect the
statistical significance with a 99%, 95% and 90% confidence level (Figure 3b). We labeled the identified
hot and cold polygons at or above a 90% confidence level as “Convergence” and “Divergence”. Based
on this label, we combine these adjacent features with the same label into a single polygon (Figure 3c).
Hence, we can identify commuting convergence and divergence areas for the detected communities.
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4. Results and Discussion

4.1. Extraction of Home and Work Locations

Based on the rule, we extracted home and work locations for every cellphone user in the dataset
D1. There are more than 5.2 million cellphone users (81.5%) with home locations extracted and more
than 2.4 million users (37.6%) with work locations extracted. Figure 4 shows the spatial distribution
of the extracted home and work locations for each Voronoi polygon. By comparing these with the
travel survey data, Xu et al. (2014) have verified that it is feasible to estimate the workplace–residence
distribution using the dataset of this study, based on the urban street blocks, they found that the
Spearman’s correlation coefficient for home and work are 0.946 and 0.902 respectively between this
mobile phone data and national census data, in addition, by using the shortest path between extracted
workplace and residence as commuting distance, the average commuting distance is 5.53 km, which is
in line with the traffic survey data (5.40 km) [45].

In dataset D1, there are more than 2.1 million cellphone users (32.5%) with both home and work
locations extracted; we denoted these users as D2, and these users are used to construct the commuting
network in the following section. To analyze the representativeness of these users, we compared the
spatial distribution of home and work extracted from dataset D2 with that extracted from dataset
D1 based on cellphone towers. As shown in Figure 5, it can be seen that there is a remarkably linear
relationship between D1 and D2 for both home and work locations. We calculated the Spearman’s
correlation coefficient for the two datasets, and the coefficients of home and work are 0.96 and 0.99,
respectively, which demonstrated that dataset D2 with both home and work locations extracted could
be used to explore the spatial characteristic of urban commuting.

Figure 6a shows the distribution of the commuting distance in Shenzhen; note that the distance is
calculated by the Euclidean distance based on the corresponding cellphone tower of the home and
work location. It is obvious that the number of commuters decreases with the increase in distance,
which exhibits a heavy tail distribution. In other words, the majority of people have a short commuting
distance (more than 82% of people commute less than five kilometers), while only a few people chose
a workplace that has a long commuting distance. Previous studies have found that human mobility
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follows scaling laws [57], so we utilized a power law p ∝ dβ to fit this distance decay effect, where
p represents the probability of people at commuting distance d and β is the distance decay friction
coefficient. Figure 6b plots the log–log distribution of the commuting distance. The distribution can
be fitted by a power law function and the friction coefficient β is 1.602, which is consistent with the
distance decay law of intra-urban human mobility studied by [58].
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Figure 6. The distribution of the commuting distance.

4.2. The Communities Detected Based on Commuting Flows

Based on the constructed directed and weighted commuting network, we first calculated the
inflow and outflow of each cellphone tower according to Equations (2) and (3). Figure 7 shows the
statistical distribution of inflow and outflow. It is apparent that both inflow and outflow represent
a long tail distribution, where 93.8% and 93.6% of cellphone towers are less than 500, and only a few
towers have extremely large inflow or outflow values, which indicates that only a few areas in the city
might be highly concentrated workplace or residential areas in the city.
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Figure 8 illustrates thirteen communities detected from the commuting network. We can see that
the spatially adjacent Voronoi polygons were identified as a community, which indicates that the closer
the polygons are, the higher the commuting flow is. That is, commuting follows a distance decay law.
The number of people commuting among the communities accounts for only approximately six percent
of dataset D2. For each community, we calculated the total number of people (N) who are living in
the community, and the percentage of people who work in this community (P1) and work in other
communities (P2). As shown in Table 2, for each community, there are approximately 90% residents
commuting within the community, and only a few residents need to leave the community for work.
In other words, the workplace–residence location relationship in these detected communities show
an extremely high balance, which indicates that there is a polycentric spatial structure in Shenzhen.
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Figure 8. The communities detected from the commuting network, where each color represents one
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Table 2. The total number (N) of people who are living in each community, and the percentage of
people who work in the community (P1) and work in other communities (P2).

ID N P1 (%) P2 (%) ID N P1 (%) P2 (%)

1 221,636 98.6 1.4 8 80,468 97.4 2.6
2 119,527 98.6 1.4 9 242,961 98.9 1.1
3 100,415 98.6 1.4 10 221,898 91.1 8.9
4 239,809 92.2 7.8 11 402,198 94.8 5.2
5 87,966 95.1 4.9 12 47,030 93.3 6.7
6 213,470 94.9 5.1 13 25,335 98.9 1.1
7 106,746 89.7 10.3

To promote Shenzhen’s industrial intensive development and improve the efficiency of land use,
the urban government proposed the planning policy of functional group partitioning. According to
the comprehensive urban planning of Shenzhen, the whole city is partitioned into eleven functional
groups, which are delineated by the black line in Figure 8. We can see that there are similar partitions
between the detected communities and the functional groups of the planning process in the southern
part of Shenzhen, while large inconsistencies occur in the northern part of the city (such as communities
4, 10, 11, 12, and 13). One possible explanation is attributed to the economic development disparity of
the southern and northern parts. In Shenzhen, the southern part has experienced rapid development
in the past few decades, especially for communities 10 and 11, which have become the center of the
city, forming mature land use structures in these areas. The main purpose of planning functional
groups is to drive the development of the north by adjusting the spatial structure to strengthen the
connection between the south and the north such as in functional groups A and B (Figure 8). However,
the detected spatial interaction structure reveals that the east–west connection is stronger than the
south–north connection in the northern part of the city, which can be demonstrated by communities 3,
6 and 7. In the planning process, the western part of community 3 should show a strong connection
with community 6 to form functional group A, while the eastern part should tightly interact with
community 7 to generate functional group B, yet the two parts show stronger commuting flow to
form community 3. These results can be referenced by urban administrators to optimize the previous
planning or to reasonably adjust the spatial structure of the urban industry, especially in the northern
part of the city.
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4.3. The Commuting Convergent and Divergent Areas for Each Community

The method described in Section 3.3 was utilized to identify the commuting convergence and
divergence areas; note that we applied the method to each community. On the one hand, the population
density of the southern part is larger than that of the northern part of Shenzhen; the hot and cold
areas might only be detected in the southern part if we applied the Getis–Ord Gi index to the whole
city, so we applied the method to each community to relieve the influence of the imbalanced spatial
distribution of the population. On the other hand, it allowed us to observe the spatial structure of the
workplace–residence locations within each community. We identify a total of 90 significant areas of
commuting activity, including 44 commuting convergence areas and 46 commuting divergence areas
(Figure 9). By overlapping these areas on the urban functional zones, it can be seen that the commuting
convergence areas mainly cover the urban industrial zones and central commercial zones, while the
commuting divergence areas are mainly located in the urban residential zones. Therefore, it is known
that these areas are the concentrated workplace and residential areas in each community.
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To further examine the spatial interaction between commuting divergence areas and commuting
convergence areas in each community, we utilized the Bezier curve to visualize the spatial flow from
commuting divergence areas to convergence areas for each community (Figure 10). Overall, it can
be seen that the commuting flow of the southern part (especially in communities 10 and 11) is larger
than that of the northern part, which is due to the spatial distribution of the population in Shenzhen.
In addition, we can also see the spatial interaction strength among these commuting areas in Figure 10;
we found that most of the commuting divergence areas in the northern part provide workers primarily
for one adjacent commuting convergence area. Therefore, this indicates that if two residents live in
the same commuting divergence area, they are more likely to work in the same nearby commuting
convergence area, which may be caused by two main factors: commuting distance and the number of
jobs in the commuting convergence area.

Based on the above analysis, it can be summarized that even for a single detected community, it is
also spatially polycentric, which includes several identified commuting convergence and divergence
areas. Moreover, from the perspective of spatial interactions, there are pairing phenomena between
commuting convergence and divergence areas in the northern part of Shenzhen; that is, the people
living in one commuting divergence area mainly flow into one nearby commuting convergence area.
This knowledge not only reveals the spatial structure of areas with high traveling activities during
the commuting time for each community but also gives an insight into the spatial relationship among
these significant commuting activity areas. As a consequence, these findings are helpful for the urban
government to make some reasonable policies to benefit the lives of residents in the city. For example,
urban planners could reallocate the land use to further optimize the workplace–residence location
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balance within each community, traffic managers could make some targeted adjustments to the traffic
facilities between closely connected commuting activity areas to improve the efficiency of commuting.

Sustainability 2018, 10, x FOR PEER REVIEW  10 of 14 

population density of the southern part is larger than that of the northern part of Shenzhen; the hot 

and cold areas might only be detected in the southern part if we applied the Getis–Ord Gi index to 

the whole city, so we applied the method to each community to relieve the influence of the 

imbalanced spatial distribution of the population. On the other hand, it allowed us to observe the 

spatial structure of the workplace–residence locations within each community. We identify a total of 

90 significant areas of commuting activity, including 44 commuting convergence areas and 46 

commuting divergence areas (Figure 9). By overlapping these areas on the urban functional zones, it 

can be seen that the commuting convergence areas mainly cover the urban industrial zones and 

central commercial zones, while the commuting divergence areas are mainly located in the urban 

residential zones. Therefore, it is known that these areas are the concentrated workplace and 

residential areas in each community.  

To further examine the spatial interaction between commuting divergence areas and commuting 

convergence areas in each community, we utilized the Bezier curve to visualize the spatial flow from 

commuting divergence areas to convergence areas for each community (Figure 10). Overall, it can be 

seen that the commuting flow of the southern part (especially in communities 10 and 11) is larger 

than that of the northern part, which is due to the spatial distribution of the population in Shenzhen. 

In addition, we can also see the spatial interaction strength among these commuting areas in Figure 

10; we found that most of the commuting divergence areas in the northern part provide workers 

primarily for one adjacent commuting convergence area. Therefore, this indicates that if two residents 

live in the same commuting divergence area, they are more likely to work in the same nearby 

commuting convergence area, which may be caused by two main factors: commuting distance and 

the number of jobs in the commuting convergence area. 

 

Figure 9. The commuting convergence and divergence areas. 

 

Figure 10. The flow from commuting divergence areas to convergence areas for each community. Figure 10. The flow from commuting divergence areas to convergence areas for each community.

5. Conclusions

The development of information and communication technologies (ICTs) not only changes our
way of life but also introduces massive human tracking geo-tagged datasets, which provide a great
opportunity for studying urban human mobility patterns and spatial structures. This study focused on
understanding the spatial structure of urban commuting trips by using mobile phone location data.
By combining complex network and spatial statistical analysis methods, we proposed a workflow to
identify communities and significant spatial cluster areas formed by commuting flows from home
to work.

A case study of Shenzhen, China was implemented. The results show that there is a polycentric
spatial structure in Shenzhen, and thirteen communities are detected from the directed and weighted
commuting network. We found that there are some inconsistencies between the detected communities
and the urban planning function groups, especially in the northern part of Shenzhen, which may
be caused by the economic development disparity between the southern and northern parts of the
city. For each community, we identified the significant commuting convergence and divergence areas;
it can be seen that a polycentric structure occurred even for a single community, and most of the
commuting divergence areas provide workers primarily for one adjacent commuting convergence
area. These empirical findings give an insight into the spatial structure of urban commuting patterns,
which can be referenced by urban planners or policy-makers to optimize the spatial layout of the urban
functional zones.

One main limitation of this work is that only one workday’s data is accessible. The method could
be improved and the research results could be more reliable if there were weekly data. However, it can
be seen that the proposed workflow could identify spatial structure of urban commuting effectively.
It can be utilized for monitoring dynamic change of urban commuting when the mobile phone data is
potentially widely accessed in the future, which contributes to identifying the change of urban spatial
structure so that the departments could adjust the policies in a timely manner.
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