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An optimization approach for designing a transit service system is proposed. Its objective would be the maximization of total
social welfare, by providing a profitable fare structure and tailoring operational strategies to passenger demand. These operational
strategies include full route operation (FRO), limited stop, short turn, and a mix of the latter two strategies. The demand function is
formulated to reflect the attributes of these strategies, in-vehicle crowding, and fare effects on demand variation. The fare is either a
flat fare or a differential fare structure; the latter is based on trip distance and achieved service levels. This proposed methodology is
applied to a case study of Dalian, China. The optimal results indicate that an optimal combination of operational strategies integrated
with a differential fare structure results in the highest potential for increasing total social welfare, if the value of parameter ¢ related
to additional service fee is low. When this value increases up to more than a threshold, strategies with a flat fare show greater
benefits. If this value increases beyond yet another threshold, the use of skipped stop strategies is not reccommended.

1. Introduction

There has been a considerable increase in numbers for citizen
travel, travel frequencies, and travel distances in the past
few decades, which arose from the continuous increase in
urban interspace and the development of city economies.
Aside from the fact that the increased number of private cars
could obviously not efficiently cover these increasing trips,
they generate urban concerns such as traffic congestion and
air pollution, as well as health and safety problems, and so
on. Compared with the performances of private cars, public
transit clearly can perform in an environmentally friendly,
efficient, and sustainable manner [1, 2]. However, in practice,
full advantage is not always taken of public transit resources
to meet such increasing and imbalanced travel demand, due
to the fact that a common full route operation strategy is
provided. Such an operation situation could be efficiently

improved by the use of other strategies tailored to the greatest
degree possible to meet observed passenger demand. This
is because the use of strategies opens up an opportunity to
further save on vehicles while ensuring that the passenger
load on each route segment does not exceed the desired
occupancy. Furthermore, by applying strategies, it is expected
that not only will passenger travel times and crowding times
in vehicles be significantly reduced, but bus operational
emissions will even decrease, due to the reduction in the
numbers of “stop” and “go” locations which will significantly
contribute to air quality and environmental improvement.
Fundamentally, transit operational strategies include
short turn, limited stop, deadheading, express, and zonal
service all of which were initially illustrated by Furth and Day
[3]. For instance, short turn strategy is useful when high pas-
senger demand areas require attention; it can perform shorter
round trip time and, thereby, increase service frequencies in
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specific areas along a bus line (e.g., city center or a residential
area). Limited stop serves only a subset of stops on a route;
thus stops with high demand are more frequently served
than those stops with low demand. This strategy has also
demonstrated that it can significantly improve transit system
efficiency and better accommodate capabilities and needs
with respect to supply and demand. Further studies are of
Furth [4] and Ceder [5] who investigated the short turn
strategy based on analyzing operational characteristics of
full and partial route segments. These studies considered a
given timetable and in Ceder [5] also the minimization of
the number of vehicles required. Other studies of Delle Site
and Filippi [6], Tirachini et al. [7], and Cortés et al. [8] dealt
with the minimization of the total social cost for users and
operators.

For limited stop strategy, based on the requirement of
minimum level service, Fu et al. [9] formulated a model to
design a dynamic stop-skipping strategy through minimizing
total costs for users and operators. In their study, the headway
allowed at any stop must not exceed double the dispatch
headway. The study was extended by Liu et al. [10] and
Chen etal. [11], considering random travel time and inserting
deadheading strategy. Based on the same objective, Leiva et
al. [12] allowed for two types of vehicles in the model for
designing high frequency unscheduled limited stop strategy
on a bus corridor. Considering running time variations
resulting from the uncertainty of transit system operation,
Tétreault and El-Geneidy [13] designed a limited stop strategy
using archived automatic passenger counter and automatic
vehicle location data. Meanwhile, based on these two types
of data, El-Geneidy and Surprenant-Legault [14] evaluated
the implementation of the limited stop strategy and demon-
strated a saving in running time. Recently, a mixed integer
nonlinear model, the objective of which was maximization of
consumer surplus, was proposed by Chiraphadhanakul and
Barnhart [15] for determining limited stop strategy on the
basis of given bus trips.

Most of the studies investigated operational strategies
with different objective functions; it shows that constructing
operational strategies is beneficial to improve the efficiency of
the public transit operations system. However, these studies
ignore the possible impact on passenger demand. The change
of the demand is, therefore, important to consider in the
optimization formulation. The use of strategies is linked
to service levels changes for two groups of passengers: (a)
improved service for passengers whose origins and destina-
tions are served though some of their intermediate stops is
skipped and (b) reduced service for those passengers who
want to board or alight at skipped stops. Therefore, naturally,
potential passengers on segments with high service levels are
likely to find use of public transit attractive. Alternatively,
it is likely that passengers who have used public transit will
discontinue this practice due to the low levels of service
offered. As a result, there is a fluctuation in demand and its
distribution induced by the use of strategies. Even though
Ulusoy et al. [16] and Ulusoy and Chien [17] formulated an
estimated demand function to determine the demand share
for each strategy, such as all stop, short turn, and express
strategies, according to their attributes, it was still based
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on the assumption of invariable demand. Thus, this paper
considers variation of demand in the proposed method to
obtain optimal topological characteristics of each strategy.

There are two common function forms used to describe
variation of demand in the previous studies. The first form
is exponential, presented in such studies as Evans [18], Yang
and Huang [19], Lam and Zhou [20], Yang and Kin [21],
and Bellei et al. [22], Yao et al. [23], Jorgensen et al. [24],
and Klier and Haase [25]. Works on the other form, the
linear function, have been done by Chang and Schonfeld [26],
Chien and Spasovic [27], Tsai et al. [28], Savage [29], Li et al.
[30], Chen et al. [11], and Kim and Schonfeld [31]. In these
studies, two function forms have been proved to significantly
reflect fluctuation of demand by changes in generalized costs
of trips, though they are formulated in different expressions.
Elements of generalized cost for a trip have been explored
in modal choice [32-34], normally consisting of in-vehicle
time, waiting time, access time, fare, comfort, and so on.,
but much work in public transport operations planning
considered travel time and fare elements, ignoring crowding
in vehicles. With improved level of life passengers are prone
to increase the value of comfort items. For example, crowding
in vehicles increases the value of time of passengers and
hence their generalized travel cost [35]. In this paper, a
linear demand function is developed to reflect the combined
effects of attributes of strategies, crowding, and bus fare on
demand.

Fare is found to be a key factor to capture in operational
strategies planning context. There are four main elements
related to fare: fare policy, strategies, structures, and enforce-
ment technologies. An interaction among these four elements
was illustrated in a report by Fleishman et al. [36]. The fare
structure is the combination of one or more fare strategies
with specific fare levels [36-39]. The different types of fare
strategies are grouped into two basic categories: flat and
differentiation. The flat one requires all passengers to pay the
same fare, as studied by Evans [18], Chien and Spasovic [27],
and Kim and Schonfeld [31]. When differential fare strategy
is applied, passengers pay fare dependent on one or more
factors, including length of trip, time of day, quality of service.
Most studies on differential fare strategy, such as, Yang and
Kin [21], Tsai et al. [28, 40], and Yook and Heaslip [41],
concentrated on distance based factors.

The differences between flat fare and differential fare were
discussed in detail by Fleishman et al. [36]. The flat fare
was recognized as the simplest and most convenient, though
it ignored equity. In contrast, the differentiated fare could
display social equity while its implementation required the
use of hi-tech collection systems, for example, smart bus or
strip card, because an efficient way was needed to reduce
the times by which passengers pay differently, often by a
small amount. There is no doubt that adopting a differential
fare in implementing public transit services presents a huge
obstacle. However, as new technologies become less and less
costly, they have gained applicability for use in collecting bus
fare onboard. The problem has become how to develop an
attractive and profitable fare structure.

These previous studies mainly focused on the optimiza-
tion of FRO strategy with a flat or a differential fare structure
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using distance based methods. This paper, as indicated above,
aims to examine effects of both fare types on operational
strategy optimization, for three basic strategies, FRO, limited
stop, and short turn, and a mix of limited stop and short
turn strategies. A fare table is constructed which can serve
to present either a flat fare or a differential fare structure,
in accordance with fare policy objectives. Considering the
attributes of operational strategies, the differential fare struc-
ture is constructed based on travel distance and obtained
service levels. Finally, an optimal combination of fares and
strategies is determined by optimizing total benefits consist-
ing of consumer surplus and operator profit, considering the
variation of demand.

Following this introductory section, Section 2 systemati-
cally describes system characteristics, constructs a fare table,
and formulates optimization models. Section 3 presents an
in-depth analysis of the results generated by applying the
proposed models to a real life example of a single bus line.
Conclusions and directions for future research are presented
in Section 4.

2. System Characteristics and
Problem Formulation

Considering a single and bidirectional bus line, stop loca-
tions, route zones, and greatest potential passenger demand
along this bus line are given. The passenger demand is
assumed to be sensitive to fare, waiting time, crowding
time, and in-vehicle time. It is also assumed that passenger
boarding and alighting have a significant effect on bus dwell
times at stops. Thus, in-vehicle time depends on buses passing
through the number of bus stops and passenger demand at
these bus stops, as well as bus speed. Users are assumed to
arrive randomly at stops. The distribution of bus arrivals
at each stop presents Poisson distribution. We assume that
passengers would not transfer between vehicles operated by
different strategies on the single bus line because of high
transferring cost considered. This study period is assumed to
be a single period of one hour, such as the morning peak hour.

2.1. A Fare Structure Table. Fare is of considerable importance
to bus operation and management. A low fare may attract
more passengers but reduce operator revenue. Alternatively,
a high fare may increase the revenue but reduce demand.
Therefore, it is necessary to determine an attractive and
profitable fare that benefits both users and operators. This
paper defines a fare structure for a bus line, as shown in
Table 1. This fare table consists of fares between each pair of all
stops along a bus line, whether these two stops are successive
or not. Suppose that there is a bus line with n stops in each
direction. A value of fare, FA”, is defined for each pair (i, j)
of all stops along this bus line.

A Flat Fare Structure Table. In Table 1, values of a fare table
for all i # j, are the same. This means that the bus operator
charges all travelers a flat fare, regardless of travel distance,
time of day, service quality, or trip route.

A Differential Fare Structure Table. In Table 1, the value of FA”
completely or partly differs for each pair of stops (i # j) along
the bus line. If the value of FAY equals the value of FA’, the
resulting fare table is symmetrical.

The elements of a differential fare structure table vary
in accord with differential fare strategies, such as distance
based, time based, quality based, cost based, route based, and
patron based strategies, as well as market based fare strategies.
They depend on fare policy objectives. For instance, in order
to attract more passengers to use public transit in off-peak
periods, the transit service planner may consider varied
discounts to lower fares during oft-peaks, which could cause
some users to shift their traveling times from peak to off-
peak times. If the objectives of a fare policy are to increase
the operator’s revenue and achieve social equity, other dif-
ferential fare strategies such as cost based, quality based,
and distance based strategies are considered when setting
bus fares. Accordingly, a differential fare structure table will
display hundreds of thousands of possible bus fares for varied
purposes of public transit service optimization. However, in
consideration of transit system operation characteristics, this
work constructs a differential fare structure based on travel
distance and obtained service levels.

2.2. Notation. In order to formulate the methodology as
a programming model, the parameters and variables are
defined in Notation.

2.3. Demand Formulation. In this study, operational strate-
gies are constructed based on passenger demand. Mean-
while, strategy application generates fluctuations in passenger
demand because of the beneficial attributes of these strategies,
like high speed between successive stops, greater comfort,
and so on. Passenger demand on a single bus line is consid-
ered variations with respect to waiting time, in-vehicle time,
fare, and in-vehicle crowding time, when designing strategies
to further improve transit system efficiency.

(a) Waiting Time. The waiting time for an O-D pair depends
on obtained operational strategies and their associated fre-
quencies. The waiting time TWY for pair (i,j) can be
expressed as follows:

3 2
TWY = ——————, 1
T1er 0L, @

The product term between two binary variables, 8565, in
(1) equals 1 only if strategy I serves stops i and j, otherwise 0.

(b) In-Vehicle Time. The in-vehicle time that a user experi-
ences on a bus consists of running time and all dwell times at
each intermediate stop visited by the bus. The total dwell time
of strategy I between stop i and stop j depends on passenger
boarding and alighting times at each stop and a constant
0 consisting of deceleration/acceleration as well as doors
opening and closing at each stop. Passenger boarding and
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TABLE 1: A fare structure table for a bus line.
o D
1 2 E i j n-1 n
1 0 FA"? . FA" FAY . FA!™! FA'™
2 FA?! 0 e FA% FA% e FA?! FA™"
0
i FA™ FA™ : 0 FAY e FA™ FA™
0
j FA/! FA” : FAY 0 . FA/™! FAJ"
0
n-1 FA" ! FA" 12 : FA™ Y FA™ Y : 0 FA™ 1"
n FA™ FA™ : FA™ FA™ : FA™ 0

Note. O, D represent passenger origin and destination, respectively.

alighting times of strategy [ at stop p, respectively, denoted
as BTi7 and AT;, are expressed as follows:

V.8'8"
Bﬁ — 4,
1;\:1 ];\Irlp ZkeL (8k8k) f
V.8'8 ©
ATI _ ij ot ta
P (556%) £,

In addition, it is also assumed in this paper that the pro-
cesses of boarding and alighting are simultaneous (different
doors for boarding and alighting) and that boarding and
alighting flows are independent of each other. Therefore, the
larger one between passenger boarding and alighting times at
a stop is dwell time of strategy serving this stop. Accordingly,

dwell time of strategy [ between stop i and stop j, DT/, is
expressed as follows:

DTU Z ¢l] (maX {BT;, AT;} + élpe) . (3)
PeEN;

Thus, the average in-vehicle time TV? for pair (i, j) which
also equals the average travel time of a bus from stop i to stop
j is formulated as follows:

Dler 5552 (RT? + DT?) fi
ZkeL 811'€6?f k .

(c) Flat Fare and Differential Fare

TVY = (4)

Flat Fare. Clearly, using a flat fare table indicates that all values
of pairs are the same U, which is expressed as follows:

FAY = U. (5)

Differential Fare. In this study, a differential fare structure
table is determined based on trip distance and obtained
service levels, though additional approaches are mentioned
in Section 2.1. A pair (i, j) with a long travel distance might

consume more transit operation resources than a pair with
a short travel distance. Subsequently, it is reasonable that a
pair with a long distance trip should pay more for additional
consumption of resources. In addition, feasible operational
strategies are applied in this study, such as FRO, limited
stop, short turn, and mixed strategies. Apparently, one of
the important attributes characteristic of these strategies is
that they provide different service levels for passengers. The
greater the obtained service levels by pair (i, j), the more
it should pay. Therefore, passengers with the same travel
distance may need to pay different fares due to their obtained
different service levels. Weight factor of fare per unit distance
for each pair is used to show this pair obtained service levels.
In this study, service level or quality-of-service is measured
by travel time savings, especially because of skipped stop
strategies used. The number of skipped stops between stops
i and j by strategy [ is calculated as follows:

N L

l]Sklp - Nl] Z 61 ( Z + ’7;5 + Yg) : (6)

PEN,

The weight factor of fare per unit distance for pair (i, ) on
strategy [, 71}, is expressed as follows:
ij
Nl,skip (7)
Nij -
Thus, an integrated differential fare for pair (i, j) based on
trip distance and obtained service levels is the product of trip

distance, unit fare, and the average associated weight factor.
It is formulated as follows:

Y11 818} fim)
ZkeL 811‘( S;Cf k
(d) Crowding Time. The number of onboard passengers using

strategy | departing from stop p, VS > Which consists of

passengers boarding at stop p and those passengers passing
through stop p, is expressed as follows:

V,.88%
p= 2 D e

z] i
i€eN jeN

FAY = dY pr (8)

Yrer (856%) fi
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When the number of onboard passengers VSZP isbeyond a
threshold A ., it leads to crowding discomfort. The greater
the rate between the number of onboard passengers and
this threshold is, the more the crowding time for onboard
passengers is [42]. Thus, the crowding time for pair (i, j) using

strategy [, Y7, is formulated as follows:

IR Y
ij ij P )
i + rt, VS >A
Yll] = PEZI;TI( P ’717) Amax ’ p e (10)
1
0 VS, < Anax

Consequently, average crowding time for pair (i, j), CRY,
is formulated as follows:

Dier (5151f1 v/ )
Yier O i jfk

CRY = (1)

(e) Demand Function. The resulting number of passengers for
pair (i, j) along the bus line, Vj;, is formulated as

Vi = gij (1 - erw TWY — e TVY — e, FAY
) (12)
- eCRCR']) ,

where eryy, ery, epa» and ecy are the sensitivity parameters for
the waiting time, in-vehicle time, fare, and in-vehicle crowd-
ing time, respectively. It is noteworthy that these parameters
are not the actual elasticities in this linear function. The
ratios, ery/epa> erv/epa> and ecg/epa, determine the value
of waiting time, the value of in-vehicle time, and the value of
crowding time, respectively [11, 26, 30].

2.4. Fare and Operational Strategies Model with Elastic
Demand. An efficient transit system matches the complex
relationship between supply and demand from the users’
and operators’ perspectives [1, 2]. Users pursue better service
while the operator attempts to maximize operating profit.
An attractive and efficient transit system will approach
optimization of service from both perspectives.

(a) Consumer Surplus. Consumer surplus, CS,.,,, is the
economic benefit to users. It is the price that users are willing
to pay minus the price that they actually have to pay. Let
Vl]_.1 (q) be the inverse function of elastic demand function for

Maximize Z

an O-D pair (i, j) as follows. g is a demand variable with the
upper boundary Vi

)
= — <]. - eTwTWIJ - eTvTVU - eCRCRl] - _) .
€pA ij
Consumer surplus can be defined as follows [26, 43]:

=YY [0

i€eN jeN

(g)dq - ZZijAif. (14)

ieN jeN

Substituting (13) into (14), the final consumer surplus is
formulated as follows:

(1 ey TWY — e7 TV

®M=ZZXL

iEN jENzeFA (15)
. L2
—epaFA” — eCRCR’J) .

(b) Operator Profit. Operator profit consists of operator
revenue minus operator cost. The operator cost, Copmtor,
equals the fleet size (bus round trip time multiplied by the
frequency) multiplied by the hourly operating cost per bus. It
is expressed as follows:

Coperator = Z <RTZ + KTZ

leL
(16)

+ Z (max {BTIP, AT;]’ + 8;9)> flcooperator'

peN,

Operator revenue is considered only from passenger fares:

Goperator = Z Z\/ijFAij' 17)

ieN jeN

Thus, operator profit function is formulated as

OPoperator = Z Z VUFAU - Z <RTZ + KTI

ieN jeN leL
(18)

+ Z (max {BTlp, AT;} + 6;9)> flCOoperator

PpEN

(c) Model Formulation. The objective function considered
is to maximize the sum of consumer surplus and operator
profit. Thus, the operational strategies problem using elastic
demand is formulated as follows:

= Z Z i (1—eT TWY —e VTVJ—eFAFA]—eCRCR']) + Z ZVl.jFAij

ieN jek 2era

ieN jeN
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-y (RTI +KT;+ ) (max {BT), AT, } + 529)) FiICOqperator-

leL pEN,

(19)

Subjectto 0< f, Viel (20)
VS,<Q VpeN, Viel (21)

8, €{0,1} VpeN, Vel (22)

8, =1 ifl=FRO,ST, Vp € N, (23)

& =1 ifVpeSorVpeE Vel (24)

8+ 8, +8,,>1 ifl=LS,MLS, Vpe{l,...,n-2} (25)
1-eryTWY — ey TV — e, FAY —eqCRY >0 i,je N (26)

In this formulation, Constraint (20) guarantees that fre-
quencies of strategies are nonnegative. Constraint (21) main-
tains that the number of onboard passengers departing from
each stop is less than vehicle capacity. Constraint (22) shows
whether or not strategies serve stops; it equals 1 if strategies
serve stops and 0 otherwise. Constraint (23) ensures that
all stops, including start and end stops of strategies and
intermediate stops, can be visited by FRO and ST strategies.
Constraint (24) makes sure that all strategies must visit their
start and end stops. Constraint (25) guarantees that strategies
involved with skipping stops do not skip more than three
successive stops. Constraint (26) ensures that the expected
demand for each pair is nonnegative and less than given
potential demand.

The above problem is formulated as a mixed integer
nonlinear programming (MINLP) problem. It can be handled
by the outer approximation with both equality relaxation and
augmented penalty (OA/ER/AP) algorithm of Viswanathan
and Grossmann [44]. This algorithm starts by relaxing the
integer requirement of decision variables and solving the
relaxed nonlinear programming (NLP) problem. If an integer
solution is not found, a sequence of iterations is solved
consisting of NLP subproblems through fixing the integer
variables and mixed integer linear program (MIP) master
problems generated by augmented penalty function. This
algorithm is readily available in the DICOPT solver of GAMS
[45, 46]. Conopt and Cplex are adopted to solve the DICOPT
subproblems of NLP and MIP.

3. Case Study

In this section, a real bus line in the city of Dalian, China, Line
26, is taken as a numerical example for applying the proposed
models. Line 26, as shown in Figure 1 runs from Lingshui
Passenger Transport Station to Wuyi Square, visiting 19 stops
with 10.9km in each direction, passing through a school
zone (Dalian University of Technology, and the primary and
high schools attached to Dalian University of Technology),

a shopping center (Xian Road), and a business office zone
(Software Park Service Center).

3.1. Data and Parameter Settings. In this case, a survey was
conducted to collect route and travel demand data of Line
26 in the morning peak hour. The running time and distance
between successive stops are shown in Table 2. Based on these
collected demand data, the potential passenger demand O-
D matrix, for Line 26 in Table 3, was estimated. Accordingly,
load profiles are also constructed, as shown in Figure 2.

Boarding time and alighting time per passenger are,
respectively, , = 2sand t, = 1s. The value of a param-
eter consisting of acceleration/deceleration as well as door
opening and closing times at each stop is 6 = 1min. The
layover time of a strategy at turning point is KT; = 2 min.
The demand elasticity parameters for wait time, in-vehicle
time, and fare are ey = 0.98, epy = 0.49, epy = 0.098, and
ecr = 0.049, respectively [11, 30]. The vehicle operating cost is
COgperator = $80/vehicle-hour. Capacity of a vehicle with 40
seats is Q = 85 passengers. The maximum acceptable number
of passengers inside vehicle is A ,, = 60 passengers which
generally is 125 to 150% of a bus’s seating capacity. Typically
loads above 150% of a bus’s seating capacity subject standees
and other passengers to unreasonable discomfort [47].

Figure 2 presents passenger load profiles for bus Line
26 in Dalian. The max-load segment of Line 26 is between
stops 14 and 15 of direction 1 and between stops 15 and 16
the other direction; it is because both route segments are
located in a building material market and the second biggest
central business district (Xian Road), respectively. Based on
the characteristics shown in Figure 2 it is possible to establish
the sets of start and end stops of feasible operational strategies
as is shown in Table 4.

3.2. Results. The optimal results obtained by the proposed
methodology are shown in Table 5, taking a differential
fare structure into account. It is evident that the optimal
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FIGURE 1: A real life transit route, Line 26, in Dalian.
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FIGURE 2: Passenger load profiles on bus Line 26.
TABLE 2: Running time and distance between successive stops.
Segment 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Running time (min) 2 1.5 0.5 1.5 0.5 1.5 2.5 2 2
Distance (km) 0.7 0.4 0.5 0.5 0.5 0.6 0.7 0.4 0.5
Segment 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19
Running time (min) 5.5 1.5 1.5 3.0 5.5 3.0 3.0 3.0 3.0
Distance (km) 0.5 0.6 0.5 0.6 0.7 1.1 0.6 0.72 0.78
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FIGURE 3: Resulting strategies’ topologies under scenario using optimal strategies.
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(b) Optimal fare for each pair with FRO strategy and no other strategies
added

FIGURE 4: Optimal fares for each pair along a bidirectional bus line with and without use of strategies.

result is to operate a combination of all two strategies, FRO,
limited stop, simultaneously with frequencies of 13.0 buses/h
and 14.8 bus/h, respectively. Topological characteristics of
these two resulting strategies are shown in Figure 3. The
value of between two successive stops is in Figure 3. This
optimal result is compared with the FRO strategy, without
adding other strategies, to illustrate gains of $648.2/h for
objective function value and consumer surplus of $771.8/h
and attracting more than 124 passengers, despite a small
decrease in operator profit of $123.6/h. However, increased
objective function value indicates that a gain in consumer
surplus compensates for this decreased operator profit. This
promising result indicates that optimal strategies for single
line bus operation can be applied to real life public transit

systems, to attract more passengers, and to increase consumer
surplus and total gains.

In Section 2, a fare structure table is defined. In order
to clearly illustrate optimal fare changes along a bus line,
this fare table is converted to a visual figure, as shown in
Figure 4. The area in the upper triangle represents optimal
fare for each pair in direction 1 of bus Line 26. Accordingly,
the area in the lower triangle relates to optimal fares in
the other direction. The pairs close to the diagonal have
short travel distances, while those pairs far from the diagonal
represent long distances. The optimal differential fare for
each pair, with and without consideration for strategies, is
presented in Figures 4(a) and 4(b), respectively. The optimal
differential fare structure shown in Figure 4(b) is symmetrical
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TABLE 3: Potential passenger O-D matrix for Line 26 (passengers/h).

o D

1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0 20 7 3 11 15 23 2 7 0 6 12 7 5 9 5 5 37
2 8 0 13 12 25 30 45 3 14 0 13 24 13 10 19 9 9 474
3 3 4 0 10 18 39 48 272 5 22 0 20 37 21 15 29 14 14 616
4 222 233 5 0 4 9 10 15 1 5 0 8 4 3 6 3 3 25
5 16 25 5 34 0 16 19 28 2 9 0 8 50 6 12 6 5 46
6 6 1 12 13 0 18 29 2 9 0 14 8 6 11 5 5 45
7 2 0 4 5 26 0 28 2 8 0 14 8 6 11 5 5 45
8 10 15 2 21 24 325 43 0 3 15 0 214 126 14 11 20 10 9 78
9 1 1 0 1 1 9 2 5 0 1 0 10 17 10 8 14 7 7 56
10 0 0 0 0 0 1 1 1 2 0 0 5 8 5 4 7 3 3 25
11 0 1 0 1 1 4 1 4 8 0 0 4 6 2 4 2 17
12 0 0 0 0 0 3 1 2 4 0 0 0 39 22 17 31 15 15 721
13 0 1 0 1 1 3 1 4 8 0 0 1 0 17 12 22 11 11 187
14 1 3 0 4 4 21 7 18 37 1 1 2 1 0 15 28 13 13 611
15 1 2 0 2 2 12 4 11 21 1 1 1 1 1 0 50 8 8 67
16 3 5 1 7 8 38 13 33 167 2 2 4 2 2 13 0 4 4 32
17 2 2 0 3 4 19 7 17 33 1 1 2 1 1 6 0 2 18
18 6 9 1 12 13 168 23 59 317 3 3 7 3 4 23 4 4 0 20
9 19 28 5 38 44 421 177 296 383 12 12 23 12 12 178 15 15 10 0

TABLE 4: Start stops and end stops of feasible strategies.

Direction 1 Direction 2

Strategies

Start stop  Endstop  Startstop  End stop
FRO Stop 1 Stop 19 Stop 19 Stop 1
Limited stop Stop 1 Stop 19 Stop 19 Stop 1
Short turn Stop 3 Stop 19 Stop 19 Stop 9
Mixed strategy ~ Stop 3 Stop 19 Stop 19 Stop 9

and represents increasing values of fares from the diagonal
toward two sides, while, in Figure 4(a), it is nonsymmetric
and not always increasing. This results from the fact that the
optimal fare for each pair is determined on the basis of bus
service levels provided for this pair and its travel distance,
in this study. In Figure 4(b), only FRO strategy is provided
along a bus line. This implies that the same bus service level is
offered for all pairs in both directions. Therefore, the optimal
fares in this transit operation system are attained based on
trip distances. That is, pairs (i, j) and (j,i) present the same
fare due to the same trip distance, and the longer the travel
distance for a pair, the higher the fare should be. However,
in Figure 4(a), optimal strategies are applied in the transit
operation system, which provide different service levels for
pairs. According to Figure 4(a), some of the pairs which have
achieved high service levels can be identified. For instance,
the fare for pair (2, 16) is higher than that for pair (2, 17) in
Figure 4(a), though its travel distance is shorter than for pair
(2, 17). This is adequate explanation that pair (2, 16) needs to
be offered a high service level.

Interestingly, Figure 5 indicates that O-D pairs located
in those areas with difference values between their two fares

Stop number
S

=N W U1\ N 00 O

5 7 9 11 13 15 17
Stop number

FIGURE 5: Optimal fares using strategies minus optimal fares without
strategies.

beyond $0 must be offered high quality service in the transit
system which considers the use of strategies. Since compared
with the unit fare from the model without consideration for
strategies, the unit fare from the model considering these
strategies is lower, as shown in Table 4. When pairs from the
latter pay more than that from the former, it indicates that
these pairs must gain better service than from the former.
Figure 6 compares the optimal results from two models
with a flat fare and a differential fare structure, respec-
tively. It is found that using a differential fare structure
produces greater benefits for passengers and society, though
there is a slight decrease in the profit for operators (see
Figure 6(e)). These benefits are performed in terms of gains
of about $326.9/h for objective function value, an increase
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FIGURE 6: Optimal results of two models using flat and differential fare structures.

of consumer surplus of about $1626.0/h, increased attraction
of passengers by approximately 208 passengers, and, in
particular, saving of an average fare per passenger by about
$0.287, as shown in Figures 6(a)-6(d). It illustrates that
using a differential fare structure in optimizing operational

strategies shows more profitable, to a degree of considerable
significance compared to using a flat fare.

3.3. Sensitivity Analysis for a Differential Fare Structure. In
this study, a differential fare function is developed based on
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TABLE 5: Results of two objectives with and without optimal strategies based on a differential fare table.
Round tri Operator Consumer Objective
Type Frequency time P Demand Unit fare  Fleet size II)Jro fit surplus function
(buses/h) . (passengers/h) ($/km) (buses) value
(min) ($/h) ($/h) ($/h)
Optimal FRO 130 174 6439 0.50 60 -31345 239576 20823.1
strategies [ imited stop 14.8 122.8
Without
. FRO 241 137.4 6315 0.51 55 -3010.9 23185.8 20174.9
strategies
124 -0.01 5 -123.6 771.8 648.2

trip distance and obtained service levels. This section will
discuss the degree of how much passengers are willing to
pay for service levels provided. Weight factor of fare per unit
distance for each pair calculated by (7) is used to show their
obtained service levels. A parameter ¢ is added in (7) as
follows:

if

L,skip

The second part on the right hand side of (27) represents
the proportion of additional service fee in fare per unit
distance that passengers from pair (i, j) on strategy [ are
willing to pay for gaining high service levels. Passengers do
not need to pay an additional fee for high quality of service,
it & equals zero. The greater the value of ¢ is, the greater the
proportion of additional service fee in fare per unit distance
is. Note that the differential fare structure based on trip
distance and obtained service levels will be based on travel
distances if the value of the second part equals zero.

Figure 7 shows that optimal results change as the value
of parameter ¢ related to additional service fee increases, in
terms of objective function value, operator profit, consumer
surplus, demand, and fare per unit distance. As shown in
Figure 7(a), it is found that the greatest objective function
value is about $20949.0/h when the value of ¢ equals 0. It
gradually decreases with the value of ¢ increasing from 0 to
250. It is invariant when the value of ¢ is greater than 250.
That is, as is shown by (27), the weight factor of fare per
unit distance for each pair must increase with the increase
of the value of parameter ¢, thus reducing passenger demand
and the objective function value; this is given the use of the
limited stop strategy to serve the same set of stops using the
service frequency. According to Figure 7(f), it is found that
the frequency of the limited stop strategy decreases gradually
while the frequency of the FRO strategy increases with the
increase of the value of parameter ¢ from 0 to 250. This aims
to reduce the adverse effects on the objective function value
generated by increased weight factor of fare per unit distance.
When the value of parameter ¢ increases to be greater than
250, the limited stop strategy makes a maximum adverse
contribution to the objective function value which is less
than that from the model using the FRO strategy. Therefore,
the skipped strategy is abandoned, except the FRO strategy.
By using only the FRO strategy, the value of weight factor
of fare per unit distance equals 1 regardless of the increase
of parameter ¢, because of the second term of (27) being

n;j =1+¢ (27)

zero. That is, the differential fare is constructed only based
on trip distances. The objective function value becomes a
fixed constant in a FRO strategy problem. Accordingly, this
also explains why other components of optimal results, as
shown in Figures 7(b)-7(e), are constant when the value
of ¢ is greater than 250. In addition, the value of objective
function using this differential fare structure is less than that
by about $20496.3/h using a flat fare, when the value of ¢ is
greater than 10. This indicates a flat fare is more profitable
than a differential fare for the application of strategies, if the
additional service fee is high and more than a threshold.

It is obvious that the effect of an additional service fee
on a trip fare will become greater, as the value of & rises
from 0 to 250, according to (27). In order to lower the
increasing adverse effects, of an additional service fee on
the value of the objective function, the optimization model
also attempts to reduce the optimal fare per unit distance
to the extent possible in Figure 7(e); this is except for the
method, mentioned above, that reduces frequency of the
limited stop strategy and increases frequency of the FRO
strategy in Figure 7(f). In Figure 7(b) the operator profit
increases to a fixed constant as the value of ¢ increases. The
demand and consumer surplus present an opposite trend
(see Figures 7(c) and 7(d)) to that of operator profit. It is
found that there is a drastic change of the operator profit,
consumer surplus, demand, and fare per unit distance once
the value of ¢ increases from 200 to 250. This is directly
related to the use of operational strategies. For ¢ close to 250,
the use of the combined limited stop and FRO strategies is
transformed into only using the FRO strategy in Figure 7(f).
In the former case, the value of € has a great adverse effect
on the objective function value, while there is no effect
in the latter. Additionally, consumer surplus achieves the
maximum value when the value of € equals zero, while the
operator profit is at its minimum level. This offers transport
planners and decision makers a way to make a beneficial
service from the perspectives of the society, passengers, and
operators. Multiple operational strategies integrated with a
distance based fare structure can bring the maximum benefits
for the society and passengers, with a minimum profit for
operators. The multiple operational strategies integrated with
adistance based and service based fare structure can presenta
better tradeoff between passengers and operators. If decision
makers want to obtain the maximum profit for operators,
FRO strategies with a distance based fare structure ought to
be used.
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4. Conclusion

This work focuses on operational strategies and fare problems
on a bus line. These operational strategies consist of FRO,
limited stop, short turn, and mixed strategies, constructed on
the basis of passenger demand. According to characteristics
of this transit operation system, a fare table is proposed. This
fare table can be presented for a flat fare and a differential fare
structure, depending on fare policy objectives. Both types of
fare structure are considered in this study, in order to seek
a more suitable, profitable fare structure for the application
of strategies. The differential fare structure proposed is
constructed on the basis of trip distance and obtained service
levels. Moreover, passenger demand is sensitive with respect
to waiting time, in-vehicle time, fare, and crowding time
in vehicles. This allows for investigating the effects of using
operational strategies and two types of fare structures on
passengers and the operators, as well as the transit system
as a whole. The strategies and fare problems, therefore, are
formulated as optimization models, with the objective of
maximizing a sum of benefits of users and operators.

This model has been applied to a real life example in
Dalian, China. It shows that using strategies can improve
results by gains of $648.2/h for objective function value and
consumer surplus gains of $771.8/h and attracting more than
124 passengers, despite a small loss in operating profit of
$123.6/h, compared with applying FRO strategy exclusively,
when a differential fare structure is applied for both optimiza-
tion models. Clearly, passenger gains can compensate for this
loss of operator profit.

In addition, in comparison with optimizing strategies
considering a flat fare, a differential structure proves more
profitable in terms of objective function value, passenger
surplus, and demand, if the value of parameter ¢ related to
additional service fee is less than 10. This illustrates that using
optimal operational strategies integrated with a differential
fare structure can further improve a transit operation system.

Moreover, sensitivity analysis is conducted to examine
the effect of an additional service fee on optimal results. It
is found that operational strategies using a flat fare provide
greater objective function value than those using a differential
fare, when the value of parameter ¢ related to additional ser-
vice fee is between 10 and 250. Interestingly, when this value
increases to the point of exceeding 250, skipped strategy,
except for FRO, may be abandoned due to a high additional
service fee required for providing high service levels. This
indicates that FRO strategy performs in a more beneficial
manner when the proportion of the additional service fee for
a trip fare is more than a threshold.

Future research could extend the proposed methodology
to include provision of information on bus arrival/departure
and running, passengers transferring between vehicle trips
associated with different operational strategies, and transport
emissions considerations. In the modern, multimodel, urban
transportation system, the application of an optimal combi-
nation of operational strategies integrated into a differential
fare structure, may drive more travelers to leave their cars and
turn to public transit services in deference to resulting high
service levels of the transit service. The online information
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can be provided via smartphone and Internet and thus allows
for reducing waiting time by timing arrival at stops. We
also note that some passengers may transfer between vehicle
trips associated with different operational strategies when
transferring costs are less than their obtained travel savings.
Moreover, operational strategies’ attributes can reduce transit
emissions by reducing the number of “stops and goes,”
though this is not explicitly discussed in this study. This
would be inserted into the objective function.

Notations

A The maximum number of passengers inside a
vehicle with an accepted comfortable level
(passengers/vehicle)

AT s Passenger alighting times for a bus using
strategy [ at stop p (h/vehicle)

BT’ JE Passenger boarding times for a bus using

strategy [ at stop p (h/vehicle)

CO,perator: Operating cost per bus hour ($/vehicle h)

CRY: Average crowding time for pair (7, j) (h)

CSpsert Consumer surplus for trips ($/h)

Coperator:  Operator cost ($/h)

DTY: Dwell time of a bus using strategy I between
stop i and stop j (h/vehicle)

dv. Trip distance for pair (4, j) (km)

E: Set of end stop of strategies

erw: Demand elasticity parameter for waiting time

ery: Demand elasticity parameter for in-vehicle time

e Demand elasticity parameter for fare

ecr: Demand elasticity parameter for crowding time

FAY Bus fare for pair (4, j) ($)

fr: Frequency of strategy [ (vehicles/h)

Goperator:  Operator revenues ($/h)

gij: Potential demand for pair (i, j) along a bus line
(passengers/h)

KTy Layover time of strategy [ on a bus line at the
turning point (h)

L: A set of bus strategies serving a bus line,
including full route operation (FRO), short turn
(ST), limited stop (LS), and a mix of limited
stop and short turn (MLS)

N: Set of stops on a bus line

N;: Set of feasible stops on strategy /

N¥ Lskip?  1he skipped number of stops that a bus using
strategy [ travels from stop i to stop j

N The number of stops from stop i to stop j on a
bus route

OPperator: Operator profit ($/h)

pr: Fare per unit distance ($/km)

Q: Capacity of vehicle (passengers/vehicle)

q: An demand variable of the inverse function of
elastic demand function with the upper
boundary V;;

RTY: Running time of a bus using strategy ! between

stop i and stop j (h/vehicle)
RT;: Running time of strategy / on a bus line (h)
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Running time for a bus from stop p to stop
p + 1 (h/vehicle)
S: Set of start stop of strategies

TV: Average in-vehicle time for pair (i, j) (h)

TWY:  Waiting time for pair (i, j) (h)

ty: Average boarding time per passenger (h/
passenger)

t,: Average alighting time per passenger (h/
passenger)

U: Flat fare for all O-D pairs ($)

it The resulting number of passengers for pair

(i, j) (passengers/h)

VSZP: The number of onboard passengers for a
bus using strategy ! departing from stop p
(passengers/vehicle)

Vflij(q): The inverse function of elastic demand
function for pair (i, j)

YY) lC(r}(l)wding time for pair (i, j) using strategy
)

VA The sum of consumer surplus and operator
) profit ($/h)

n’ Equals 1 if passengers of pair (i, j) are
) boarding at stop p and 0 otherwise

W o Equal§ 1 if passengers of pair' (i, j) are
) alighting at stop p and 0 otherwise

@Y, Equals 1 if passengers of pair (i, ) are

passing through stop p and 0 otherwise
0: A constant consisting of deceleration/

acceleration as well as doors opening and
closing time at each stop (h/vehicle)

A: A parameter depending on the distribution
of bus arrivals at each stop; when bus arrival
is Poisson-distributed, A will be equal to 1

& A parameter used to adjust the proportion
of obtained additional service fee in fare per
unit distance

nl): Weight factor of unit fare for pair (i, ) using
strategy I, depending on pair (i, j) obtained
service levels

8k Binary variable; taking the value of 1 if
strategy [ serves stop p and 0 otherwise.
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