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As more and more cities in worldwide are facing the problems of traffic jam, governments have been concerned about how to
design transportation networks with adequate capacity to accommodate travel demands. To evaluate the capacity of a transportation
system, the prescribed origin and destination (O-D) matrix for existing travel demand has been noticed to have a significant effect
on the results of network capacity models. However, the exact data of the existing O-D demand are usually hard to be obtained in
practice. Considering the fluctuation of the real travel demand in transportation networks, the existing travel demand is represented
as uncertain parameters which are defined within a bounded set. Thus, a robust reserve network capacity (RRNC) model using
min-max optimization is formulated based on the demand uncertainty. An effective heuristic approach utilizing cutting plane
method and sensitivity analysis is proposed for the solution of the RRNC problem. Computational experiments and simulations
are implemented to demonstrate the validity and performance of the proposed robust model. According to simulation experiments,
it is showed that the link flow pattern from the robust solutions to network capacity problems can reveal the probability of high

congestion for each link.

1. Introduction

The capacity of transportation network reflects the supply
ability of its infrastructure and service to the travel demand
which is generated from the zones covered by the transporta-
tion system in a specific period. For many years, transporta-
tion planners and managers wanted to understand how many
trips can be accommodated at the most by the current or
designed network in a certain period of time. This need is
more necessary in those developing regions which are con-
fronted with rapid growth of private vehicles and increased
urban congestion. Meanwhile, the researchers made a long-
term effort to model and estimate the maximum throughput
of transportation networks. The achievements include max-
flow min-cut theorem [1], incremental assignment approach
[2], and later bilevel programming models [3-5].

For the network capacity model, the most popular formu-
lation in passenger transportation system is the bilevel model,
which maximizes the traffic flows under the equilibrium
constraints. Wong and Yang [3] first incorporated the reserve

capacity concept into a traffic signal control network. The
reserve capacity is defined as the largest multiplier applied
to a given O-D demand matrix without violating capacity
constraints, so the solution is significantly affected by the
predetermined O-D matrix. Ziyou and Yifan [6] extended
the reserve capacity model by considering O-D specific
demand multipliers, and all demand multipliers should be
ensured not lower than a predetermined minimum value.
In order to avoid assuming that all O-D flows increase
in a same rate, another concept of ultimate capacity was
proposed [5]. But it assumes that the O-D distribution is
totally variable, which may produce unrealistic results that
cause the trip productions at some origins below their current
levels. Furthermore, Yang et al. [4] suggested that the new
increased O-D demand pattern should be variable in both
level and distribution, while the current travel demand is
fixed. Later, Yang’s model was also referred to as the practical
capacity by Kasikitwiwat and Chen [5]. In summary, although
unrealistic, the reserve capacity model is more easy-to-use
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and has been adopted widely in many researches [7-10].
The ultimate capacity and practical capacity model are more
practical but have more parameters to be calibrated when
applied, and the formulated models are still difficult to solve
(11].

While the deterministic network capacity problem has
been explored extensively, few studies have investigated the
issue of uncertainties in demand data associated with this
problem. The ultimate capacity and practical capacity model
are only concerned with the uncertainties related to the new
increased travel demand by using combined models [5], while
the uncertainties in the current (or existing) demand are
not considered. In reality, travel demands in transportation
system are always fluctuant day by day, even hour by hour.
Besides, errors of survey data also affect the accuracy of the
existing O-D matrix. As a consequence, the existing travel
demands are usually difficult to be obtained in actual trans-
portation projects and then are not easy to be represented
using fixed values. As the existing O-D matrix is usually
used as the reference matrix in reserve capacity or practical
capacity model and its pattern significantly influences the
result of the models, we first consider it as an uncertain
variable in this study. And thus the network capacity model is
extended to be an optimization with parameter uncertainty.

Researches on other areas of transportation network
optimization typically adopted two methods to address the
uncertain O-D demand [12]: (i) stochastic optimization aims
at maximizing the expected profit by assuming that the
demand follows a known probability distribution; (ii) robust
optimization aims at maximizing the profit with the worst-
case scenario of the demand pattern. Considering the exact
probability distribution of the O-D demand is still hard to be
obtained, the robust optimization is more effective in dealing
with this problem. If a limited number of discrete scenarios of
O-D demand patterns are detected, the scenario-based robust
optimization [13] is conducted, which is a practical approach
usually implemented in transportation projects. It is more
general to assume the possibility of the travel demand to be a
continuous variable within a bounded set, and the set-based
robust optimization can be used for decision-making [14].
The uncertainty set is constructed to include most of possible
values of the travel demand. The decision-makers’ attitudes to
risk should be considered as well when deciding the shapes
and size of the uncertainty sets. It is important to make a
trade-off between the system performance and the level of
robustness achieved [13].

In this study, we propose a robust optimization model
for the network capacity problem by using the existing O-
D travel demands as uncertain parameters. The existing
demand between each O-D pair is assumed to be variable
between its upper and lower limits. Besides, three typical
uncertainty regions are introduced to provide a bounded set
for the uncertain demand. A heuristic solution is developed
for the solution to the robust network capacity model. In the
next section, the concept of network spare capacity is revisited
based on the reserve capacity model. Then, the robust
model for network capacity estimation is presented, and
the three typical uncertainty sets of existing travel demand
are defined. After that, the solution algorithm is described.
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Computational experiments show the validation and justifi-
cation of the robust model. Conclusions and perspectives for
further research are provided in the last section.

2. Network Spare Capacity and Its Flexibility

The reserve capacity was proposed as the largest multiplier
p applied to a given existing O-D demand matrix that can
be allocated to a transportation network without violating
any individual link capacity [3]. The product of the largest
multiplier and the existing O-D demand (represented by
vector q) gives the maximum travel demand which can
be loaded to the network. For clarity sake we refer to the
maximum travel demand as the value of network capacity in
rest of this paper. For passenger network, it is well known that
multiple O-D pairs exist and demands between different O-
D pairs are not exchangeable or substitutable. Thus, the travel
demand pattern or matrix reflects both its quantity and spatial
distribution. The method of reserve capacity assumes that the
existing O-D demand is scaled with a uniform O-D growth.
The largest value of y indicates whether the current network
has spare capacity or not. So the network spare capacity is
generally explained as follows: if ¢ > 1, then the network can
be loaded more travel demand and the additional demand
can be accommodated by the network which is (¢ — 1)q;
otherwise, that is, 4 < 1, the network is overloaded and the
existing O-D demand should decrease by (1 — p)q to satisfy
the capacity constraints [10]. In some researches, the demand
multiplier y is regarded as the uncertainties in the future O-D
demand [9, 15].

The classical model of reserve network capacity (RNC) is
defined as follows:

RNC: max g, (1)
st. v, (uq) <C,, VaeA, (2)

where v, (uq) is obtained by solving the following user
equilibrium problem:

min Z J ’ t, (x)dx, (3)
f = Jo
st. Y f) =gy Viel, je], @)
reRi]-
V, = ZZZfr’J . (S;j)r, Ya € A, (5)
ijor
fl=20, Viel, qe], reRy, (6)

where y is the O-D demand multiplier to all O-D demands;
R is the set of all routes in the network; i is the origin index,
i € I, and I is the set of all origin nodes; j is the destination
index, j € J, and J is the set of all destination nodes; C, is
the capacity of link a; v, is the flow on link a, a € A; v is the
vector of all link flows; g;; is the existing trip demand between

O-D pair ij; q is the vector of all O-D demand; f¥ is the flow
on route 7, ¥ € R, between O-D pair ij associated with g;;;

f is the vector of flows of all route in R; 8Zr is the link-route
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FIGURE 1: Robust solution of network capacities with different demand pattern.

incidence indicator: 1 if link a is on route r between O-D pair
ij and 0 otherwise; t,(v,) is the travel cost function for link a.

In the above model, the upper-level model maximizes the
O-D matrix multiplier without violating the capacity con-
straints (2) for every individual link. The parameter q gives
the prescribed O-D travel demand in the network, which
can be obtained according to the current trip demand or a
predicted demand pattern accordingly. Route choice behavior
and congestion effect are considered in the user equilibrium
(UE) model as the lower-level model in (3)-(6). Generally,
other traffic assignment methods, such as stochastic user
equilibrium (SUE) model, can be used in place of the above
deterministic UE model as required [10].

The result of the reserve capacity model which is con-
sidered may underestimate the capacity of the passenger
network, because only the existing O-D demand pattern that
is more congruous with the network topology would achieve
a higher value of network capacity [16]. Basically, the reserve
capacity depends on the initial O-D demand patterns and
route choice behavior of the users. Given the lower-level
traffic assignment method, the existing O-D demand should
be the only determinant to the result of the above model. It
means that if the given O-D matrix is not consistent with
the network, the reserve capacity model will produce a result
having a low level of maximum demand. Otherwise, if the
O-D pattern is determined according to the network spatial
structure, the travel demand can grow to a very high amount.

Directly applying the result of the reserve capacity may
have the following problems. (i) It is hard to decide an
exact existing (or predetermined) O-D matrix, because the
real travel demand pattern is changing at different hours
every day and different days every week. Also, it is still
very difficult to obtain the full data of the O-D demands
covering many different hours. (ii) In real-world applications,
decision-makers tend to be risk averse and may be more
concerned with the worst cases. Using only a few situations
of the O-D demand pattern may not provide a robust answer

to the network capacity estimation. Conversely, as long as the
system performance reaches an acceptable level, it does not
matter how much it changes above that level. Thus, it may be
more desirable to have an optimization result that performs
better in the worst case.

When estimating the capacity of transportation systems,
decision-makers are not only concerned with the extreme
results that the total trips can be allocated to a transportation
network but also need to evaluate the unknown situations
resulted from the fluctuation of the travel demand. Thus, to
measure the ability of transportation networks that can deal
with the variation of travel demand, Chen and Kasikitwiwat
[16] discussed the concept of the network capacity flexibility
using three typical network capacity models. The network
capacity flexibility is defined as the ability of a transport
system to accommodate changes in traffic demand while
maintaining a satisfactory level of performance [16, 17]. In
this study, integrated with the uncertainties from the existing
demand in transportation networks, the network capacity
flexibility is further illustrated in Figure 1. On the basis of this,
the robust estimation of network capacity is defined as the
maximum travel demand can be allocated to a transportation
network when satisfying all the possibilities of the uncertain
changes in the quantitative and spatial demand pattern. The
robust value of the network capacity is also illustrated in
Figure 1.

In this study, we extended the reserve capacity model by
considering the existing O-D demands as uncertain param-
eters within a certain bounded region. Robust solutions to
the network capacity can be conducted using the robust
optimization. We utilize the classical reserve capacity model
to conduct the robust network capacity for two reasons: (i) the
reserve capacity is easy to solve, and the O-D travel demand
is allowed either increasing or decreasing by applying an O-D
matrix multiplier greater than one or less than one; (ii) as the
existing O-D matrix is extended to be an uncertain parameter
in the reserve capacity model, the O-D distribution is no



longer fixed but a variable pattern within some range given
by the uncertainty set.

3. Robust Network Capacity Estimation
under Demand Uncertainty

In this section, we assume that the prescribed O-D trip
demand is unknown but bounded within an uncertainty set
Q. Mathematically, the uncertainty set should be closed and
convex. In practice, the set of uncertain demand should be
derived based on the transportation planners’ knowledge
on the uncertainty associated with both the current and
future O-D travel demand. Nevertheless, it is very difficult to
obtain the exact probability distribution of the trip demand
between all O-D pairs. If the random demand follows a
continuous distribution defined from zero to infinity, for
example, normal distribution [12], this would require an
infinity capacity to meet all possible demand realizations.
Thus, the uncertainty set of travel demand is defined as a
bounded region, typically utilizing the highest travel demand,
qg, and the lowest demand, qé, for each O-D pair. Using the
bounded uncertainty region, the events with low probabilities
can be excluded, and then the robust optimization would not
provide overly conservative results.

In this study, three typical uncertainty sets were con-
structed for the existing travel demands.

(1) Interval Constraint [13]. The travel demand between each
O-D pair which is assumed varies independently within a
given interval of Q;; = [qiLj,qg]. The interval could be the
confidence interval of an estimated demand obtained from
a survey or by using an O-D estimation model. Without
additional restraints, the whole uncertainty set will be a box
centered at the average travel demand. In this case, it is simple
tosetg;; = qg for all O-D pairs and solve the resulting reserve
capacity problem. The capacity value would be estimated in
the worst case, which is too conservative. In reality, it is
never possible that the demand for all O-D pairs reaches
their estimated upper bound at the same time. The travel
demand pattern is always fluctuant among the O-D pairs in
different directions. Therefore, it is more reasonable to set an
upper limit to the summation of the existing travel demand
in network, that s, ', ; g;; < D. The upper limits D could be
estimated by using the maximum trip volume investigated for
the existing travel demand.

(2) Ellipsoid [18]. An ellipsoidal set is generally defined as
follows:

_ 2
qij — 49; 2
Q= q | - <0 s (7)
;1-((1/2) (44 —qf;))

- U L . .

where q;; = (q;; + g;;)/2, the average O-D demand; 6 is a
parameter that reflects decision-makers’ attitudes to risk; and
larger 6 indicates that it is more adverse to risk. The value of

0 is from zero to +/|W|, where |W| denotes the number of
O-D pairs. When 0 = 1, the uncertainty region is the largest
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ellipsoid contained in the box region Q = {q | qiLj < gjj <
U ..

qij» Vi, j}-

(3) Polyhedron. The polyhedron is a set of a finite number

of linear equalities and inequalities that restrains the travel

demand. It is a generalized form of the box uncertainty

set. For example, Sun et al. [19] constructed the following
polyhedron region for uncertain O-D demand:

Q

4y~ vdiy < i < diy +vdip ¥ € 10,11, Vi, j
Z‘L‘j = qu'» vj (8)
295 = Y Vi
j j

where q?j is the nominal value of the travel demand for O-

:q|

D pair ij. It may choose the mean value of the interval con-
straints or an observed result from a survey. This uncertainty
set allows the demand pattern varying entirely around its
nominal value and involves the implicit possible interactions
among O-D demands. Therefore, the overly conservative
results may be avoided. The last two sets of constraints require
that the uncertain travel demands meet the conservation
condition with the nominal demand matrix at the zonal
production and attraction.

Note that the shape of uncertainty set affects the efficiency
and robustness of network capacity value. Ben-Tal and
Nemirovski [14] suggested applying the min-max optimiza-
tion model. Once the uncertainty set of the travel demand,
Q, is determined, the min—-max model will find a robust
solution that tolerates changes in travel demand up to the
given bound. Using any type of the uncertainty sets, Q, the
robust reserve network capacity (RRNC) problem can be
formulated as follows:

RRNC: maxmin g,
uoq

st v, (puq) <C, €
Va € A, such that q € Q,

where v,(uq) solves

mfln Z Jo t, (x)dx,

s.t. Zf;l =uq;, Viel, jeJ, q;€Q,

reR;;
— ij . §i
Va = Zzz.fr ! 6a,r’
i jr

fl=z0, Viel, je], reR,

(10)
Va € A,

The above model is referred to as the robust counterpart
of the original reserve network capacity problem. The solu-
tion of the robust counterpart results in a maximum total
travel demand scheme under the corresponding worst-case
demand pattern.
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4. Solution Algorithm

A heuristic algorithm is proposed to solve the above robust
optimization model. It takes a similar framework as the
procedure presented in [18], which is referred to as the cut-
ting plane algorithm to robust optimization. The algorithm
involves an iterative procedure to solve two inner optimiza-
tion problems alternately until the convergence criterion is
satisfied. The algorithm is presented as follows.

Step 0 (initialization). Give the initial values of the O-D
demand q'© € Q (usually qg.)) = qiLj, Vi, j) and solve the fol-
lowing reserve network capacity (RNC) problem to produce
an initial demand multiplier M(O):

RNC: max -,

(11)
subject to v, (yq(")) <C,, VacA, (3)-(6).

Set the iteration counter #n = 0.
Step I (direction finding).

Step 1.1. Solve the following inner (worst-case scenario

(WCS)) problem with the determined [4(") to obtain the
worst-case demand scenario:

WCS: max Z (max (0> Va (M(n)q) - Ca))
TG (12)

subject to q € Q, (10).

Step 1.2. Formulate a RNC problem with the scheme of
existing demand qg‘) produced from the WCS problem in
Step L1. Solve this inner problem to find a search direction
of the maximum demand multiplier i,

Step 2 (move). Compute u™ = u®™™ 1+ a®(@E" — 1),
where a™ is the step length. In this study, the step length
is chosen as «™ = 1/n, which is used in the method of
successive averages.

Step 3 (convergence check). If the objective value of the WCS
problem y > & or n reaches the maximum iterations, then
stop, where there is a predetermined convergence criterion.

Otherwise, denote the solution of the WCS problem as qg”l),
and go to Step 1; setn = n + 1.

Remark 1. In the above steps, the WCS problem is formulated
to find a solution of q € Q, in which case the traffic flows
on all links which exceed their capacities the most. If q is
an optimal solution to the RRNC, the corresponding optimal
objective value of the WCS problem must be zero. Otherwise,
an improved solution may be obtained by solving the RNC
problems in Step 1.2 which is a relaxation of the RRNC
problems with a specific demand pattern. In the process of
the algorithm, each of these relaxed RRNC problems can
approximate the original RRNC better than its predecessors.
Although it is still difficult in practice to find a global

optimum of the relaxed RRNC and WSC, Yin et al. showed
that the cutting plane algorithm is effective in providing a
good solution to the robust optimization problem [18]. The
relaxed RRNC problems and the WSC problems are solved
by the sensitivity analysis based (SAB) algorithm [20].

Remark 2. The second inner problem is a standard RNC
model when the existing O-D demand is determined. The
RNC can be solved efficiently by applying the SAB algorithm
[3]. The SAB algorithm locally approximates the original
bilevel problem as a single-level optimization by using first-
order Taylor expansion. The derivatives of lower-level deci-
sion variables with respect to upper-level ones are utilized for
the linear approximation. The derivatives can be conducted
from the sensitivity analysis of the lower-level model.

In this study, we used the restriction approach for the sen-
sitivity analysis of the lower-level UE model. The restriction
approach was proposed by Tobin and Friesz [21] and then
corrected by Yang and Bell [22] for its flaws on selecting the
nondegenerate extreme point. One can also refer to Du et
al. [23] for the details of this approach. In this section, some
necessary results are present without proof.

For the reserve capacity model, the link flows in upper-
level, v,(uq), are represented as an implicit function of the
O-D matrix multiplier ¢ as constraint (2) shows. Using the
first-order Taylor expansion, it can be approximated as

]W—M%
p=p (13)

Va e A,

v, (uq) = v, (u"q) + [ —aV”aifq)

where y* is the given solution of the O-D demand multiplier
at the current iteration of SAB algorithm.

From the results in Tobin and Friesz [21], the derivatives
of the route flows, f, with respect to the O-D demand
multiplier y, are derived as follows:

WOZM%mwMWwT
~A° O

-1
(14)

[%W@}

where the superscript “0” denotes that the variables or
matrices are only associated with the restricting subproblem
derived by the restriction approach (applying the correction
in Yang and Bell [22]) and the superscript “T” represents the
transposed matrix. Other notations are defined as follows:

VMTE

A= [8Zr] is the link-route incidence matrix;

A = [/\irj] is the O-D-route incidence matrix, where
AJ equals 1if O-D pair ij is connected by route r, and
0 otherwise;

7 is the Lagrangian multiplier associated with con-
straint (4);

t(v*,0) is the vector of the travel cost function of
all links with the equilibrium link flow v* for the
perturbation parameters at 0.

Thus, the derivatives of the link flows to the multiplier are
obtained by VHV = A".V £°. Based on the above derivations,
the SAB algorithm can be used for solving the RNC problem.



Remark 3. The WCS problem is also formulated as a bilevel
programming using equilibrium constraints, so the SAB
method can also be modified for its solution. The implicit
relationship v,(uq) is first-order approximated as

v, (4q) = v, (uq")

1y 3| 2l

iel jeJ aqi]'

*

:| (qij - qij*)> (15)

q=q
Va € A,

where q” is the solution of the existing O-D demand at the
current iteration of SAB algorithm.

The derivatives of the route flows, f, with respect to
the existing O-D demand q, are derived from the following
equation:

0
V,f ] i
an'

ATVt (v*,0)A° —AT]

A0 o (16)

A (P“l)] '

Because in this inner problem the value of 4 is fixed, the
derivative V,(uq) will be a diagonal matrix with the value of
p on its diagonal. Then, the derivatives of v to y are calculated
by Vv = A°- quo. Thus, at each iteration of the SAB method,
the approximating WCS problem is

max Z (max (0, VoVad + v, = Vgvaq" - Ca))
1 acA (17)
subject to q € Q.

Note that the above localized approximation problem is a
nonlinear problem and a number of optimization tools in
commercial software packages could be used for its solution.
In this study the approximate WCS problem is solved using
MATLAB built-in functions which were converted toa .NET
component and used in our solution program in C# language.
Similar to [18], we randomly generate 100 vectors of q from
the uncertainty region Q. For each q, the user equilibrium
problem with u™ is solved. Let q be the random q with
the maximum objective value of the WCS problem, and
denote the objective value as 7. If 7 > &, then set ¢ =
q. Otherwise, use the MATLAB functions to solve the
approximate WCS problem with q as an initial solution. If it
gives a solution with an objective larger than ¢, the solution is
used as q""*? for the next iteration; otherwise, the algorithm
is terminated with an optimal solution q.

5. Computational Experiments

5.1. Experiment 1: Nguyen-Dupuis Network. Computational
experiments are presented in this section to illustrate the
results of the robust network capacity model. The example is
based on a road network which is adopted from Nguyen and
Dupuis [24] as Figure 2 shows. It consists of 13 nodes, 19 links,
and 4 O-D pairs. The nominal value of the existing travel
demand is given by the O-D matrix in Figure 2 (denoted by
q°). The characteristics of the links are listed in Table 1. The
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TABLE 1: Link characteristics of the example network.

Link number a Free-flow time ¢ Capacity C,
1 7.0 800
2 9.0 400
3 9.0 200
4 12.0 800
5 3.0 350
6 9.0 400
7 5.0 800
8 13.0 250
9 5.0 250
10 9.0 300
11 9.0 550
12 10.0 550
13 9.0 600
14 6.0 700
15 9.0 500
16 8.0 300
17 7.0 200
18 14.0 400
19 11.0 600

Existing
O-D demand
5 Link number
0 2 3
5
1 [400(800
4 600|200 Node number

FIGURE 2: An example network.

Bureau of Public Road link performance function was used
in the experiments:

4
ta(va)=t2[1+0.15-<é—“) ] (18)

a

where tg is the free-flow travel time for link a.

We applied the proposed approach for robust network
spare capacity estimation with the three typical uncertainty
sets which are described in this paper. Assume that the inter-
vals for the O-D travel demands are [300, 600], [600, 1050],
[400, 950], and [100, 375] for O-D pairs 1-2, 1-3, 4-2, and 4-3,
respectively.
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TABLE 2: Robust reserve capacities with ellipsoidal region and polyhedral region.
Ellipsoid Polyhedron
Parameter Max p Robust capacity Parameter y Max p Robust capacity
0.0 0.1795 392.63 0.0 0.1944 388.89
0.2 0.1727 391.03 0.25 0.1892 378.38
0.5 0.1633 388.71 0.5 0.1843 368.54
1.0 0.1498 385.46 0.75 0.1795 359.01
2.0 0.1286 376.68 1.0 0.1753 350.54
TABLE 3: Robust reserve capacity estimations and the performances.
Network: Nguyen-Dupuis Nominal Conservative Robust-e Robust-p
Reserve capacity estimation 388.89 363.42 385.46 368.54
Travel demand multiplier 0.1944 0.1346 0.1498 0.1843
Percentage of meeting capacity constraints (%) 17.2 100.0 98.4 72.4
Percentage of above-robust-estimation (%) 51.8 100.0 54.6 98.8
450.00 0.3 2700, the value of y* cannot get worse. At this value
430,001 5 p* = 0.1346, the corresponding existing travel demand is
= = q" = (600, 1050, 950, 100), which produces a smallest reserve
§ 410.00 é capacity value 363.42 (referred to as the conservative solution
3 5 in the rest part of this section). Furthermore, for the robust
T 390.00 g solutions when D > 2700, the change of q,; will have no effect
= 370.00" A on the value of *. Here, we use the lower bound of g3 to con-
© duct the worst-case results of the reserve capacity. According
1 to the properties of the robust optimization, the solutions of

0.00 . 0.
1400 1600 1800 2000 2200 2400 2600 2800 3000
Maximal total existing demand

—e— Network capacity
—&— Maximum multiplier

FIGURE 3: Robust reserve capacities with interval constraints under
different maximal total existing demand.

(1) Interval Region. Theoretically, under the interval con-
strains for each O-D pair, the total of the existing O-D
demand can vary from 1400 to 2975, which covers a wide
range. However, according to our practical experience, the
travel demands between the O-D pairs may not reach their
maximum simultaneously. Thus, an additional constraint
2i;9; < D was introduced to give an upper bound of
the total existing demand. To be consistent with the interval
constraints, D was set to change from 1400 to 3000. Figure 3
illustrates how uncertainty of the existing travel demand
affects the reserve capacity results of the example network.
The reserve capacity value is calculated by " ¥, ; q;"j, where
u" is the robust solution of the RRNC problem and g; is the
corresponding travel demand pattern. Note that the reserve
capacity value and the y* decrease synchronously along with
the growth of D. Because when D is increased, the vector
of travel demand pattern, q, will have more space to change
its spatial distribution, and this makes the existing demand
easier to archive a demand pattern whose corresponding
multiplier can reach a smaller value. Besides, when D exceeds

the existing O-D demand may not be unique, so no specific
solution of the existing demand is presented in this paper.

(2) Ellipsoidal Region. For the ellipsoidal uncertainty set, the
parameter 0 is set to be 0, 0.2, 0.5, 1.0, and 2.0. The center
of the ellipsoid is decided by the boundary for each O-
D demand (not the nominal value for this example). The
computational results in Table 2 show that the robust solution
to p changes between 0.1795 and 0.1286 with a descending
trend, as well as the corresponding network capacity value.

(3) Polyhedral Region. For the robust network capacity esti-
mation with the polyhedral set described in previous section,
the robust results at y = 0, 0.25, 0.5, 0.75, and 1.0 are computed
and presented in Table 2. The nominal demand (given in
Figure 2) is used in this type of uncertainty. The value of
p declines from 0.1944 to 0.1753. The same trend has been
observed on the robust values of network capacity, which
varies from 388.89 to 350.54.

Table 3 reports the solutions of the reserve capacity value
from two RNC problems with qO = (400, 800, 600, 200) and
q = (600, 1050, 950, 100) separately and two RRNC problems
with Q defined in the ellipsoid region (0 = 1.0) and the
polyhedral region (y = 0.5). We refer to the first two solutions
as “nominal” and “conservative” estimation, respectively, and
the latter two as “robust-e” and “robust-p” separately. For the
results, the robust solution for the O-D demand multiplier
indicates that all the values of the existing demand within
the uncertainty set can be applied by a multiplier larger than
this robust value without violating the capacity constraints. A
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TABLE 4: Network capacity estimations on Sioux-Falls.

Network: Sioux-Falls Nominal Conservative Robust-e Robust-p
Reserve capacity estimation 209,029.1 195,065.8 201,366.7 176,850.3
Travel demand multiplier 0.5797 0.4291 0.5588 0.4904

corresponding maximum travel demand is produced as the
robust network capacity solution for the same uncertainty
set. Since the same maximum travel demand may produce by
different combinations of the multiplier and feasible existing
demand, the proposed algorithm only finds the smallest
value of the maximum multiplier. Besides, if the shape of
the uncertainty set changes, different solutions for the robust
multiplier and maximum demand will be produced. Table 3
shows these features.

To evaluate the four estimations of the network capacity,
we randomly generate 500 samples of O-D demand as the
possible realizations of the existing travel demand pattern.
The samples are from the normal distribution, N(g;;, 0.25@1.2].),
within its interval [qiLj, qg] for all O-D pairs. Then, for each
sample, one has the following.

Firstly, the user equilibrium assignment associated with
each reserve network capacity estimation (i.e., the largest p)
is computed. The number of failures is counted whenever
the link flow exceeds its capacity at each sample. In the end
of the simulation, the successful rates are computed as [1 —
total number of failures/(number of samples x number of
links)]. The results are referred to as “percentage of meeting
capacity constraints” in Table 3. Obviously, the conservative
estimation gives the worst value of the network capacity; the
nominal estimation produces a medium level of result. By
comparison, the robust results from the ellipsoid and polyhe-
dron are more reasonable. Note that all samples generated in
the above simulations belong to a box region comprised of the
intervals for O-D demands. The aforementioned uncertainty
sets are used as replacements of the box regions, so as to
prevent overly conservative robust resolutions. The results in
Table 3 indicate that the ellipsoid approximate the box region
better than the polyhedron, because more random samples
will not exceed the network capacity after they are scaled by
the robust multiplier ¢ = 0.1498. On the other hand, although
p = 0.1843 is the worst case in the polyhedral set, when the
boundary is extended to the box region, only 72.4% of the
random samples can be covered.

Furthermore, considering that the demand multiplier
in essence is a relative value, the reserve capacity results
are derived. Therefore, the reserve capacity problem with
the every random existing O-D demand is solved in our
test. For each estimation value of the reserve capacity: the
number of successes is counted whenever the reserve capacity
value of the sample exceeds the robust capacity estimation.
Consequently, the successful rates are computed as [total
number of successes/number of samples]. These results are
also presented in Table 3 as “percentage of above-robust-
estimation.” From this aspect, the polyhedron provides a
more robust estimation of the network capacity, which can be

met by most realizations of the existing travel demand pattern
(98.8% versus 54.6% compared with the ellipsoid). We may
suppose that the worst cases of network capacity values exist
in the corner area of the box-shaped uncertain region, where
it is not easy to be covered by the corresponding ellipsoidal
set. Consequently, the choice of the robust results depends
on the decision-makers™ attitude to risk and the usage of
the robust results. From the computational perspective, the
robust optimizations with polyhedral uncertainty sets have
more advantages. More effective solution methods could be
developed in future studies.

5.2. Experiment 2: Sioux-Falls Network. Experiments are fur-
ther presented on the Sioux-Falls network [25]. The network
contains 24 nodes, 76 links, and 528 O-D pairs. The charac-
teristics of the links and travel demands are also provided in
Bar-Gera [25]. In this experiment, we used the default values
of the travel demand in as the nominal value of the existing
demand in the network. If g;; >1000, then the demand for O-
D pair ij is uncertain and its upper limit and lower limit are
set to qiLj = 0.5¢;; and qu] = 1.5q;;, separately. Hence, there are
104 O-D pairs with uncertain existing demands. According to
the previous section, four estimation methods are employed
to evaluate the network capacity of the Sioux-Falls.

Table 4 reports the solutions of the reserve capacity from
the four estimation methods. Note that the robust-e solution
gives a moderate robust result compared to the others. The
robust-p solution provides the lowest estimation of network
capacity. One may use this lowest value as the worst-case
performance that the network can serve the travel demand.
Besides, note that the lowest estimation of the network
capacity was not derived from the conservative solutions,
in which the uncertain O-D demands are set to its upper
limits. Although the conservative solution is corresponding
to the lowest demand multiplier, it may not reflect the most
unfavorable situation which is possible to be resulted from the
changes of the network demands.

We selected the conservative, robust-e, and robust-p
solutions to further inspect the link flow patterns at the
maximum travel demand situations (i.e., the reserve capac-
ity). The link flow patterns are shown in Figures 4(a), 4(b),
and 4(c). The width of the line indicates the traffic volume
through the link. The red lines show the links whose V/C
(volume/capacity) ratio is greater than 0.9, and the black
lines denote the links with zero flow. As a reference, we
also randomly generate 500 samples of O-D demand which
are from the normal distribution, N(q;, 0.25@;), within its
interval [qu}, qg], Vi, j. For each sample, the reserve capacity

problem is solved. Then, at each link, the highly saturated
number is counted whenever its V/C ratio is greater than
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(a) Conservative solution

(c) Robust solution with polyhedron (y = 0.5)

(b) Robust solution with ellipsoid (6 = 1.0)

(d) Simulation results

FIGURE 4: Link flow pattern associated with different maximum travel demands (a, b, and c) and probabilities that links are congested (d).

0.9. In consequence, the link saturation rates are computed as
[total the saturated number/number of samples]. The results
are also shown in Figure 4(d). The width of the line indicates
the saturation rate of the link. The red lines indicate links with
saturation rates greater than 50%. The orange lines denote
links with saturation rates lower than 50% but greater than
zero. The black lines mean the links have no chance to be
blocked. From Figure 4, we conclude that the solution of the
robust-e will produce a link flow pattern most likely to be
realized when the network reaches its capacity (compared
to the simulation results). The robust-p solution provides an
extreme result that the network is congested only because of
a very few links. These links could be considered as the most
critical links which restrict the capacity of the entire road
network. By contrast, the conservative solution seems not to
fit the simulation results very well. In conclusion, the robust
estimation to the network capacity problem could be much
more practical than the results from any specific scenario.

6. Conclusions and Perspectives

In this study, a robust network capacity model with uncer-
tain demand has been proposed. The robust optimization
is formulated using the min-max model with a bounded
uncertainty set of the existing O-D travel demands. With
the uncertainty set, the low-probability realizations of the
travel demand pattern are excluded, and thus the robust
model can produce a proper estimation of network capacity
which can be achieved with a large probability. Then, a
heuristic algorithm has been proposed for the proposed
robust model. It solves two inner problems iteratively: one is
the worst-case scenario problem; and the other is the relaxed
robust optimization, namely, the standard reserve capacity
model. At each iteration, the cutting plane method has been
adopted to generate the worst-case demand scenario, and the
sensitivity analysis based approach has been developed for
the solution of the worst-case model and the reserve capac-
ity model. The validity and performance of the proposed
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robust model have been demonstrated in the computational
experiments. Different results under three typical uncertainty
sets, say interval, ellipsoidal, and polyhedral region, have
been conducted and compared. The interval set is simple
but easy to produce too conservative results; the ellipsoidal
set is a good approximation to the uncertain region and
produces results with moderate robustness, but its solution
is more complicated due to the nonlinear constraints; the
polyhedral set is considered if a high level of robustness is
required, and its linear formulation makes the robust model
easier to solve. Furthermore, by conducting computational
experiments on the Sioux-Falls network, robust solutions
shown can provide more practical results of the link flow
patterns. In applications, these uncertainty sets and their
parameters should be selected according to the desired level
of robustness.

The robust model based on the reserve capacity model has
been proposed and explored in this study. Future researches
should focus on more efficient solution approaches for the
robust problem with the min-max model. The experiments
on large-scale networks are also needed. Besides, the demand
uncertainties existing in other network capacity models are
also expected to be detected and discussed. Alterative traffic
assignment model, such as the stochastic user equilibrium,
could also be discussed for the network capacity problems.
The robust solution of network capacity gives a lower bound
to the possible schemes of the maximum demand in a
transportation network. These possibilities constitute a range
where the robust solution can be most likely to be reached
in reality. Therefore, the robust solution to network capacity
problems needs to receive more attentions in transportation
planning applications.

Disclosure

An initial version of this paper was presented at the Trans-
portation Research Board (TRB) 96th Annual Meeting. It
therefore also appears in the proceedings of the TRB 96th
Annual Meeting Compendium of Papers.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is supported by “the National Natural Science
Foundation of China (no. 51508161),” “the Natural Science
Foundation of Jiangsu Province (no. BK20150817),” and “the
Fundamental Research Funds for the Central Universities
(no. 2017B12414).”

References

[1] R.K.Ahuja, T. L. Magnanti, and J. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice-Hall, New Jersey, NJ,
USA, 1993.

[2] Y. Asakura, “Maximum capacity of road network constrained by
user equilibrium conditions,” in Proceedings of the 24th Annual
Conference of the UTSG, 1992.

Journal of Advanced Transportation

[3] S.C.Wongand H. Yang, “Reserve capacity of a signal-controlled
road network,” Transportation Research Part B: Methodological,
vol. 31, no. 5, pp. 397-402, 1997.

[4] H. Yang, M. G. H. Bell, and Q. Meng, “Modeling the capacity
and level of service of urban transportation networks,” Trans-
portation Research Part B: Methodological, vol. 34, no. 4, pp.
255-275, 2000.

[5] P. Kasikitwiwat and A. Chen, “Analysis of transportation net-
work capacity related to different system capacity concepts,”
Journal of the Eastern Asia Society of Transportation Studies, vol.
6, pp. 1439-1454, 2005.

[6] G.Ziyouand S. Yifan, “A reserve capacity model of optimal sig-
nal control with user-equilibrium route choice,” Transportation
Research B: Methodological, vol. 36, no. 4, pp. 313-323, 2002.

[7] H. Ceylan and M. G. H. Bell, “Reserve capacity for a road
network under optimized fixed time traffic signal control,
Journal of Intelligent Transportation Systems, vol. 8, no. 2, pp.
87-99, 2004.

[8] S.-W. Chiou, “Reserve capacity of signal-controlled road net-
work,” Applied Mathematics and Computation, vol. 190, no. 2,
pp. 1602-1611, 2007,

[9] A. Chen, P. Kasikitwiwat, and C. Yang, “Alternate capacity
reliability measures for transportation networks,” Journal of
Advanced Transportation, vol. 47, no. 1, pp. 79-104, 2013.

[10] X.Xu, A. Chen, S. Jansuwan, K. Heaslip, and C. Yang, “Modeling
transportation network redundancy,” Transportation Research
Procedia, vol. 9, pp. 283-302, 2015.

[11] M. Du, L. Cheng, X. Jiang, and Z. Li, “Sensitivity based
heuristics for network capacity estimation in transportation,” in
Proceedings of the 94th Transportation Research Board Annual
Meeting, Washington, D.C., USA, 2015.

[12] K. An and H. K. Lo, “Two-phase stochastic program for transit
network design under demand uncertainty, Transportation
Research Part B: Methodological, vol. 84, pp. 157-181, 2016.

[13] Y. Yin, S. M. Madanat, and X.-Y. Lu, “Robust improvement
schemes for road networks under demand uncertainty,” Euro-
pean Journal of Operational Research, vol. 198, no. 2, pp. 470-
479, 2009.

[14] A. Ben-Tal and A. Nemirovski, “Robust optimization—
methodology and applications,” Mathematical Programming,
vol. 92, no. 3, pp. 453-480, 2002.

[15] S.-W. Chiou, “Optimization of robust area traffic control with
equilibrium flow under demand uncertainty,” Computers and
Operations Research, vol. 41, no. 1, pp. 399-411, 2014.

[16] A. Chen and P. Kasikitwiwat, “Modeling capacity flexibility of
transportation networks,” Transportation Research A: Policy and
Practice, vol. 45, no. 2, pp. 105-117, 2011.

(17] E.K. Morlok and D. J. Chang, “Measuring capacity flexibility of
a transportation system,” Transportation Research Part A: Policy
and Practice, vol. 38, no. 6, pp. 405-420, 2004.

[18] Y. Yin, S. Lawphongpanich, and Y. Lou, “Estimating investment
requirement for maintaining and improving highway systems,”
Transportation Research Part C: Emerging Technologies, vol. 16,
no. 2, pp. 199-211, 2008.

[19] H. Sun, Z. Gao, and J. Long, “The robust model of contin-
uous transportation network design problem with demand
uncertainty,” Journal of Transportation Systems Engineering and
Information Technology, vol. 11, no. 2, pp. 70-76, 2011.

[20] T. L. Friesz, R. L. Tobin, H.-J. Cho, and N. ]. Mehta, “Sensitivity
analysis based heuristic algorithms for mathematical programs
with variational inequality constraints,” Mathematical Program-
ming, vol. 48, no. 2, Pp- 265-284, 1990.



Journal of Advanced Transportation

[21]

(22]

R. L. Tobin and T. L. Friesz, “Sensitivity analysis for equilibrium
network flow;,” Transportation Science, vol. 22, no. 4, pp. 242—
250, 1988.

H. Yang and M. G. H. Bell, “Sensitivity analysis of network
traffic equilibria revisited: the corrected approach,” in Selected
Proceedings of the 4th IMA International Conference on Mathe-
matics in Transport, pp. 373-395, 2007.

M. Du, L. Cheng, and H. Rakha, “Sensitivity analysis of
combined distribution-assignment model with applications,”
Transportation Research Record, no. 2284, pp. 10-20, 2012.

S. Nguyen and C. Dupuis, “An efficient method for computing
traffic equilibria in networks with asymmetric transportation
costs,” Transportation Science, vol. 18, no. 2, pp. 185-202, 1984.
H. Bar-Gera, Transportation Network Test Problems, 2001, 2017,
http://www.bgu.ac.il/~bargera/tntp.

1


http://www.bgu.ac.il/~bargera/tntp

International Journal of

Rotating
Machinery

The Scientific
quld Journal

Journal of

Sensors

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of
Navigation and
Observation

Aoet®

International Journal of
Anten nas and
Propagation

International Journal of
Chemical Engineering

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Active and Passive
Electronic Components

Modelling &
Simulation
in Engineering

ekt sty St |
e L~

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of

Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

and Vibration



