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We present a framework for estimation of long term driver behavior for autonomous vehicles and vehicle safety systems. The
Hybrid State System and Hidden Markov Model (HSS+HMM) system discussed in this article is capable of describing the hybrid
characteristics of driver and vehicle coupling. In our model, driving observations follow a continuous trajectory that can be
measured to create continuous state estimates. These continuous state estimates can then be used to estimate the most likely
driver state using decision-behavior coupling inherent to the HSS+HMM system. The HSS+HMM system is encompassed in a
HSS structure and intersystem connectivity is determined by using signal processing and pattern recognition techniques. The
proposed method is suitable for a number of autonomous and vehicle safety scenarios such as estimating intent of other vehicles
near intersections or avoiding hazardous driving events such as unexpected lane changes.The long term driver behavior estimation
system involves an extended HSS+HMM structure that is capable of including external information in the estimation process.
Through the grafting and pruning ofmetastates, theHSS+HMMsystem can be dynamically updated to best represent driver choices
given external information. Three application examples are also provided to elucidate the theoretical system.

1. Introduction

At the Center for Intelligent Transportation (CITR) at The
Ohio State University, we are interested in addressing the
Cyber Physical Systems (CPS) related problemof autonomous
vehicles operating safely in mixed-traffic urban environments.
Cyber Physical Systems refer to the conjoining of a system’s
computational and physical elements [1]. Examples of Cyber
Physical Systems include, but are not limited to, robotic
surgery, automated traffic control, and autonomous vehicles.
CPS has the ability to remove many of the expensive and
dangerous hurdles required in common human tasks. One
application area forCPS is in personal transportation through
the development of autonomous or self-driving vehicles
which have the potential to revolutionize transportation
by removing humans from the driving loop. Autonomous
vehicles have the ability to address some of the largest issues
associated with personal and commercial transportation.
Of course, as with any new technology, if there is to be
widespread adoption of autonomous vehicles, it is important

to look at the possible adoption path and determine chal-
lenges with this adoption path.

The most likely path for widespread autonomous vehicle
adoption is with the gradual inclusion of either fully or
partially autonomous vehicles into the current transportation
system. This is in line with recent developments of car
manufacturers introducing vehicles with partial autonomous
capabilities. Such an environment, in which there are both
autonomous and human-driven vehicles operating together,
is known as a mixed-traffic urban environment (MUE).
In such an environment, autonomous vehicles will interact
with human-driven vehicles in their regular operation. This
interaction will require that autonomous vehicles have the
ability to receive information about human-driven vehicles,
either through vehicle-to-vehicle (V2V) communication or
through onboard sensors.The autonomous vehiclemust then
be able to deduce the behavior of other vehicles based solely
on the information received or measured. This ability is
critical to avoid and/or mitigate the threat of traffic accidents.
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Such requirements are also necessary in the development
of vehicles with advanced safety systems. The ability of
an autonomous vehicle, based on sensor or V2V input,
determining the likely behavior of a human-driven vehicle is
referred to as driver behavior estimation.

In our model, drivers make discrete decisions at a higher
level that are then followed by the lower level vehicle’s
continuous trajectory. Consider the discrete decision a driver
approaching an intersectionmaymake to “Turn right.”While
the reasoning for this decision may be due many reasons, the
vehicle follows a measurable continuous path based on this
decision. In this example, the vehicle may reduce velocity,
have negative acceleration, use a turn signal, and change the
yaw and yaw rate and eventually perform a right turn at the
intersection. Our work is on the estimation of the higher
level driver state made from measurements of continuous
observations made on the vehicle. For the purpose of this
article, the term “driver” is used to describe the combination
of human operator and vehicle, and the behavior exhibited by
this combination is referred to simply as driver behavior. In
order to accurately determine driver behavior, a framework
capable of describing the qualitative and quantitative nature
of driver behavior estimation is needed. Extending upon a
previously designed system for driver behavior estimation is
the main topic for this article.

In our previously developed framework, a Hybrid State
System (HSS) representation is used to provide a quali-
tative view of how driver decision and vehicle dynamics
are related. The HSS representation has been used in a
number of studies [2–5]. In our application, we use the
HSS as a mechanism for the modeling and estimation of
driver behavior for autonomous vehicle applications. The
HSS provides an intuitive architecture where the continuous
state of a vehicle and discrete driver states are represented
as two layers that interact to provide an overall view of
how drivers and vehicles interact. A key element of this
architecture is the ability to leverage the similarity of a
vehicle model that is operating under different situations.
The interrelation between the higher level driver state and
lower level continuous measurements is done through tools
borrowed from the signal processing and pattern recognition
community.

Hidden Markov Models (HMMs) [6] are used to define
how changes in a driver state correspond to changes in the
continuous state of a vehicle.

The quantitative aspects (HSS system interconnections)
of driver behavior estimation are provided byHiddenMarkov
Models (HMMs) [6]. HMMs are stochastic models that can
be used to determine a relationship between relatively easy-
to-measure observations (continuous vehicle trajectory in
our application) and the hidden states that are said to generate
these observations (discrete driver states in our application).
While HMMs have had considerable success in fields such as
speech recognition [7], they have also been used for estimat-
ing human behavior [8] and previously in recognizing driving
events [9]. In order to best model the vehicle’s continuous
state, we employ Gaussian Mixture Models (GMMs) for the
learning of the HMMs. Estimating the driver state given a
set of continuous observations is done through a pattern

recognition technique that finds the most likely driver state
given a set of continuous observations. Overall, the HSS
provides the qualitative architecture of the driver and vehicle
coupling and HMMs define the quantitative relationship
between the two layers of the architecture. We refer to this
HSS and HMM combination as HSS+HMM.

In [10], we presented results obtained for driver behav-
ior estimation using the HSS+HMM system. The system
presented in that article performs accurate driver behavior
estimation around intersections. This system was expanded
to include lane change maneuvers and highway events to
better describe the long term behavior of a vehicle. For the
purpose of this article, we define “long term behavior” to
be extended periods of driving that may include a vehicle
operating at a combination of intersections, highways, and
arterial roads. Previous studies such as [11–13] have only
looked at certain aspects of long term driver behavior.

This article begins with an overview of the HSS+HMM
system, in which we discuss the developed system along
with the data collection experiment. Section 3 discusses
the current system implementation along with limitations
that hamper estimating long term driver behavior. Section 4
discusses a proposed theoretical extension to theHSS+HMM
system along with definitions. Finally, we discuss three
example implementations of the proposed system, discuss
avenues for future work, and conclude the article.

2. The HSS+HMM System

TheHSS+HMM system refers to the conjoining of two mod-
els, Hybrid State Systems and Hidden Markov Models. The
HSS is used to describe the interaction between continuous
observations made on a vehicle and the discrete set of driver
decisions that generated these observations.TheHSS consists
of two layers. The higher layer is a discrete state system
(DSS) which encapsulates discrete driver decisions; the lower
layer is a continuous state system (CSS) which encapsulates
continuous observations on a vehicle. This architecture can
be seen in Figure 2. In our model, we assume that a driver
operates within the space of states in the DSS and based on
a decision made at this higher level the vehicle follows some
observable continuous trajectory. Other studies such as [14]
have looked at modeling systems as a HSS for applications
such as autonomous vehicles. States of the DSS are modeled
as a finite statemachine (FSM). In our application, we assume
that continuous state estimates (CSS state estimate) can be
made through vehicle-to-vehicle (v2v) or onboard sensors.

Given a sequence of CSS state estimates taken from
onboard sensors, determination of the higher level DSS state
is done by usingHiddenMarkovModels and pattern recogni-
tion techniques. Using the data collection process described
in Section 2.1, numerous HMMs are trained using the Baum
Welch method. Details of this process are described in
[10]. Essentially, we first train a number of HMM models,
𝜆1, 𝜆2, . . . , 𝜆𝑛, that correspond to 𝑛 different vehicle action.
We then use the forward algorithm to compute the probabili-
ties𝑃(𝑂 | 𝜆𝑖), 𝑖 = 1, 2, . . . , 𝑛, for an observation sequenceO =
{𝑜1, 𝑜2, . . . , 𝑜𝑡, . . . , 𝑜𝑇}. A suitable DSS metastate is estimated
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Figure 1: Graphical representation of possible event metastates and
incoming CSS state estimates. Output estimated state corresponds
to HSS+HMM state estimate.
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Figure 2: Overall HSS+HMM model. The left side of the figure
describes the overall architecture of DSS and CSS. The right side
indicates how each metastate of the DSS is modeled as an HMM.

by determining the probabilities 𝑃(𝑂 | 𝜆𝑖), 𝑖 = 1, 2, . . . , 𝑛,
for each 𝜆𝑖. The model, 𝜆𝑖, that maximizes the likelihood
probability at a given time step is said to be the estimated DSS
state:

State (𝑡) = arg max
𝑖

𝑃 (𝑜1𝜆𝑖𝑜2 ⋅ ⋅ ⋅ 𝑜𝑡) 𝑖 = 1, . . . , 𝑛. (1)

This process is summarized in Figure 1. Incoming obser-
vations are measured by onboard sensors and the metastate
estimate corresponds to different vehicle actions. Equation (1)
is used for the final compare step.

S1 S2

S3S4

S11 S21 S31 S41 S12 S22 S32 S42

S13 S23 S33 S43S14 S24 S34 S44

Figure 3: A simple 4-metastate DSS transition. In this example, the
green lines correspond to metastate transitions and the red lines
correspond to potential underlying state transitions.

In our model, the DSS of the HSS contains states that
represent driver decisions. Metastates of the DSS are related
to continuous observations via a number of HMMs. Deter-
mining which HMM most closely relates the CSS estimates
with DSS estimate is done through (1). We refer to states of
the DSS as metastates. Each metastate is itself an HMM that
corresponds to a driver decision of interest. The right side of
Figure 2 describes a situation where the 𝑆3 metastate is an
HMM with 4 hidden states ({𝑆1

3
, 𝑆2
3
, 𝑆3
3
, 𝑆4
3
}).

Transitions between metastates of the DSS are deter-
mined by applying (1) to a given observation sequence.
For the exemplary case in the introduction of a vehicle
turning right at an intersection, the observation sequence
may consist of multidimensional measurements of velocity,
acceleration, yaw, yaw rate, and so forth. As an observation
sequence is measured, we can determine the most likely DSS
metastate (corresponding HMM states). As a very simple
example, consider the DSS of Figure 3 that consists of four
states {𝑆1, 𝑆2, 𝑆3, 𝑆4}. The green lines of the figure correspond
to metastate transitions and the red lines indicate possible
transitions of the underlyingHMMdescribing that particular
metastate. In this example, traversing metastates in the order
𝑆1 → 𝑆2 → 𝑆3 → 𝑆4 actually results in the transition of
underlying states:
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, 𝑆4
3
, 𝑆1
4
, 𝑆2
4
, 𝑆4
4
. (2)

Using the HSS+HMM system for real driving scenarios
requires that there are a large number of trained DSS
metastates. Further, we can use this training to determine the
relationship between metastates. Learning the transition
probabilities between metastates can then be used to predict
future driver state using algorithms such as the Viterbi
algorithm [17]. In the following section, we provide a brief
overview of the data collection process.



4 Journal of Advanced Transportation

Figure 4: OSU CITR vehicles in a convoy. The vehicle on the right
was instrumented with a number of sensors and driven by study
participants.

2.1. Data Collection. Training the metastates of the
HSS+HMM model requires access to data of drivers operat-
ing vehicles under normal driving conditions. For the
purpose of this study, we assume that any data we are leverag-
ing for generating the CSS estimate could be measured using
v2v or other onboard sensors a vehicle may have. Recruited
drivers were asked to drive a 2012 Honda Accord (Figure 4)
along two predetermined paths in Columbus, OH. Each path
was approximately 25miles in length and took approximately
40 minutes to complete. Minor adjustments to the route were
made with each participant to allow for breaks or traffic or
construction.

Our sensor fitted vehicle had a number of sensors:

(i) Novatel GPS Unit. This sensor provides GPS lati-
tude, GPS longitude, timestamp of reading, altitude,
latitude and longitude estimated standard deviation,
horizontal speed, and track over ground (yaw).

(ii) Honda Accord CAN Bus. This sensor provides times-
tamp of reading, yaw rate, lateral acceleration, throttle
pedal position, brake pressure, steering wheel angle,
speed, engine RPM, torque converter RPM, odome-
ter, headlights, brake lights, throttle peddle, gear,
wiper, turn signals.

(iii) Three HD cameras. They provide views of the front,
left side, and right side of the vehicle.

Data collected from these sensors are fused into relevant
feature vectors which are then used for model training. We
concentrate on events of interest that occur near intersec-
tions, roads, and highways. For this purpose, we have limited
the models to the following events:

(1) Left Turn
(2) Right Turn
(3) Straight/Continue
(4) Stop
(5) Left Lane Change
(6) Right Lane Change
(7) Enter Highway
(8) Exit Highway

a01

a02a11

a14

a22

a24

S1: decision 1

S0: continue

S2: decision 2

S4: end

Figure 5: Simple DSS model with two possible metastates. “Con-
tinue” metastate refers to vehicle proceeding with no change. 𝑆1 and𝑆2 could correspond to driver decisions such as stop and turning
right. Notional metastate transition probabilities are denoted.

Additional experimental data was collected that validated
the HSS+HMM system with respect to naturalistic driver
behavior estimation. Details of the experiment and results are
available in [10].

3. Long Term Driver Behavior

Consider the HSS+HMM metastate estimation stage for
driver behavior estimation described in the previous section.
Previous work on driver behavior estimation has concen-
trated on estimating the short term behavior (i.e., during a
particular event or at a particular location). In many cases,
there is a need to estimate or track a full vehicle driving
sequence. In a full driving sequence, a driver goes through a
series of events to accomplish a goal often through changing
scenarios. For example, to drive to work from home, a typical
sequence of driving events may be as follows: move back out
of the garage, drive through city streets for a few miles, take
a limited access highway for several miles, take an exit, drive
through city streets, turn into a parking garage, and finally
park.

3.1. Long Term Behavior Estimation Limitations. HSS+HMM
system provides very good driver behavior results when
compared to other possible systems. One of the limitations
of the HSS+HMM system is in describing the long term
behavior of a vehicle. This limitation is largely due to two
reasons: (1) metastate likelihood probabilities reduce for
long observation sequences and (2) the HSS+HMM system
does not include external information into the estimation
process.

3.1.1. Diminishing Likelihood Probabilities. Thefirst limitation
can be understood through a simple example. Consider the
hypothetical DSS FSM shown in Figure 5. In this example,
the DSS contains four possible metastates. The transition
probabilities between metastates are given by the indicated
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values. These metastates can refer to any vehicular event of
interest such as turning, going straight, and changing lanes.
Themetastate transitionmatrix,𝐴, can be expressed inmatrix
form as

𝐴 =
[[[[[
[

0 𝑎01 𝑎02 0
0 𝑎11 0 𝑎14
0 0 𝑎22 𝑎24
0 0 0 1

]]]]]
]
. (3)

Now consider a long observation sequence in which the
system enters state 𝑆1 or 𝑆2 for an extended period of time. In
such a case, the transition probabilities (after 𝑛 observations)
become

𝐴𝑛 =
[[[[[
[

0 𝑎01 𝑎02 0
0 𝑎11 0 𝑎14
0 0 𝑎22 𝑎24
0 0 0 1

]]]]]
]

𝑛

= 𝑃𝐷𝑛𝑃−1, (4)

where 𝑃 is a 4 × 4 matrix whose columns contain the
eigenvectors of A and 𝐷 is a diagonal matrix with the
corresponding eigenvalues of 𝐴. For the above exemplary
values, the eigenvalues of 𝐴 are 𝑎00, 𝑎11, 𝑎22, 1. With these
eigenvalues𝐷𝑛 becomes

𝐷 =
[[[[[
[

𝑎𝑛
00

0 0 0
0 𝑎𝑛
11

0 0
0 0 𝑎𝑛

22
0

0 0 0 1

]]]]]
]
. (5)

Since 𝑎00, 𝑎11, 𝑎22 are all transition probabilities that are
less than 1, for a large 𝑛, 𝑎𝑛

11
, 𝑎𝑛
22

→ 0 and the system will
eventually transition from state 𝑆1 or 𝑆2 to state 𝑆4 regardless
of the observed CSS estimate. Given driving patterns which
often consist of driving straight for a long period of time
(think of highway driving), the unintended transition out of
a metastate may occur for one in the straight metastate.

3.1.2. Including External Information. To understand the sec-
ond limitation, consider the HSS+HMM metastate estima-
tion stage. In this stage, continuous observations of a vehicle
are compared with number of competing models (HMM
metastates) to determine the most likely driver behavior
metastate in the DSS that caused the continuous observed
vehicle trajectory. Without additional information, the
metastates used for estimating driver behavior are the same
as those used for highway driving which are the same as
those used for nonintersection road driving, as shown in
Figure 1. As one may readily understand, the driver intention
metastates used for an intersection may not be appropriate
when driving on a road far away from any intersections.
Fundamentally, an ideal driver behavior estimation system
should be able to make use of external information in order
to describe a full driving sequence. At any given time, only a
limited set of actions, and thus driver behaviors, are valid. For

example, when driving on a limited access highway, making
a left turn may not be possible, and when driving on a city
street, exiting a highway may not be possible. Including
higher level information about the surroundings in the
decision making process may be able to provide insight into
what is possible at a given time.

3.2. OvercomingThese Limitations. The limitations discussed
in the previous section can be overcome by intelligently
limiting the length of sequences and including information
from external sources in the driver behavior estimation
process. There are a number of methods one can use.

One possible method to describe such a full driving
sequence is to build some sort of all-encompassing metastate
that contains all possible driver states under all scenarios and
let a system similar to Figure 1 estimate driver behavior. Such
a method will likely struggle with the drawbacks discussed
with learning based classifiers in which training data needs to
be carefully selected and long sequences need to be manually
truncated. While such a technique may provide a solution
to the first problem, it does not allow us to include external
information in the driver behavior estimation process.

Anothermethod to describe a full driving sequence could
be to dynamically modify the metastates that make up the
DSS. The system can also be designed to intelligently modify
the observation likelihood probabilities based on external
information.

Dynamically modifying the metastates of the DSS
requires the ability to add or remove metastates. The aim of
adding or removing metastates from the DSS is to define a
DSS that better defines the metastates required to represent
vehicle events given current conditions. For example, a DSS
corresponding to highway driving should include metastates
ExitHighway andEnterHighway,whereas aDSS correspond-
ing to near-intersection driving will not require these metas-
tates but instead require metastates corresponding to Left
and Right Turns. At any time where the DSS changes, we can
modify the likelihood probabilities.

There are numerous scenarios in which DSSmodification
is necessary and the driver behavior estimation system should
be capable of dynamically changing the metastates that
comprise the DSS.

4. Dynamically Modifying the DSS

Dynamic discrete state system (DSS) modification provides
theHSS+HMMsystemwith the ability to dynamically change
the metastates that comprise the DSS. Recall that possible
driver decisions are encapsulated bymetastates in the DSS. In
order to dynamicallymodify theDSS, the operations required
for such modifications are adding and removing metastates.
Adding ametastate to theDSS is known asMetastate Grafting.
Conversely, removing a metastate from the DSS is known as
Metastate Pruning. The ability to graft or prune a metastate
from the DSS provides the HSS+HMM system with the
ability to overcome the limitationsmentioned in the previous
section.
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Figure 6: Extended HSS+HMM architecture. Observations mea-
sured on a vehicle are the result of driver decisions, road conditions,
environmental conditions, and traffic conditions.

At each graft or pruning, the FSM that represents DSS
metastate interconnections is changed to account for the
additional or lesser metastates. Grafting and pruning of a
metastate can occur at any given time but for the purposes
of this study it is limited to instances when there is a change
in external factors.

As a driver readily understands, different inputs can imply
very different actions under different situations. For example,
at an intersection, a right turn signal indicator (in addition to
other observations), may lead to a Right Turn state estimate.
On the other hand, a right turn signal indicator (in addition
to other observations) on a highway may lead to a Right Lane
Change estimate or, if one is near an exit, perhaps an Exit
Highway estimate. This estimation may further change with
differing traffic and environmental conditions, even when
given similar observation sequences. This requires that the
HSS+HMM framework be expanded to make use of such
information such as the modified architecture in Figure 6.

The original formulation of the HSS, the property that
discrete driver states of the DSS generate a continuous tra-
jectory which can be observed through easy-to-measure CSS
state estimates, is still maintained. As previously described,
the discrete state system consists of metastates which encom-
pass HMMs that represent driver events of interest. The
CSS represents the vehicle dynamics that, given the input of
the DSS, generates the observations that decisions are based
on. Previously, the discrete driver decision was based entirely
on the actions or behavior of a human driver. As depicted
in Figure 6, in order to represent a driver’s use of external

information in the decision making process, new system
interconnections to the HSS depict external factors that
may play into a drivers decision. Specifically, the three state
systems have been added:

(i) Roadway Type Condition State System (RCS): high
level information that describes the road. Roadway
type statesmay include “highway,” “intersection,” and
“nonintersection.”

(ii) Environmental Condition State System (ECS): high
level environmental information. Environmental
condition states may include “icy roads,” “mountain-
ous roads,” and “wet roads.”

(iii) Traffic Condition State System (TCS): information
about current or future traffic patterns, congestion,
and so forth.

Each of these state systems is represented by a FSM
such as that in Figure 5. State transitions within these FSMs
are governed largely by external information such as GPS
coordinates, traffic information, and/or weather information.
While there are many other possible sources for external
information, we believe that a majority of the information we
process can be contained within these systems.

With the extended architecture, observations of the CSS
state are still related to the DSS estimate through the
HSS+HMM system. The new state system additions reflect
that driver behavior metastates of the DSS can be affected by
these state systems. Further, changes in the states of any
of these external state systems allow DSS metastates to be
change dynamically with changing external conditions. With
this extended system, the estimated driver behavior is deter-
mined by observations from the CSS, and in determining
likely driver decision information is included from the RCS,
ECS, and TCS.

4.1. Definitions. With access to high level information (e.g.,
RCS states can be determined using GPS position), one can
dynamically determine a relevant DSS configuration. Given
a particular set of states in the RCS, ECS, and TCS a suitable
DSS configuration can be used. A DSS configuration is
defined to include the following:

(1) Metastate list
(2) Metastate FSM (i.e., transition probabilities and

metastate interconnections)
(3) External information FSM

With this definition, for changes in external conditions,
the DSS dynamically changes to model a driver’s decision
making process. The metastate list represents possible driver
behavior events of interest. Consider the DSS, S, which
contains metastates 𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛. For an instance of the
DSS S and metastates 𝑆𝑖, we have the following definitions:

S ∋ {𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛}
|S| = 󵄨󵄨󵄨󵄨{𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛}󵄨󵄨󵄨󵄨 = 𝑛, (6)

where |S| is defined size of S (number of metastates in S).
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The task of modifying DSS metastates is referred to as
metastate modification. Situation in which a metastate is
added to the DSS is referred to as a Metastate Grafting.
Situation where a metastate is removed from the DSS is
referred to asMetastate Pruning.

In this context, we can nowmathematically define the two
types of metastate modifications: Metastate Grafting and
Metastate Pruning.

4.1.1. Metastate Grafting. In a metastate graft, a metastate is
added on to the DSS. Let the DSS, 𝑆, at time 𝑡 be defined as
𝑆(𝑡) ∋ {𝑆1, 𝑆2, . . . , 𝑆𝑛}, where 𝑛 is the number of metastates
in the DSS at time 𝑡. At time 𝑡, the size of the DSS |𝑆| = 𝑛.
Now, after 𝜏 time, suppose that the road, environment, and/or
traffic conditions change such that a newmetastate 𝑆𝑛+1 needs
to be grafted into theDSS.Now, 𝑆(𝑡+𝜏) ∋ {𝑆1, 𝑆2, . . . , 𝑆𝑛, 𝑆𝑛+1}.

Formally, the DSS 𝑆, is said to have been grafted on, if, for
𝑆󸀠 defined as 𝑆→graft

𝑆𝑛+1
𝑆󸀠, |𝑆󸀠| = |𝑆| + 1. Also, since a state has

been grafted onto 𝑆, 𝑆󸀠 ⊃ 𝑆.
Additionally, if it is necessary to graft more than one

state simultaneously, that is the same as serially grafting each
individual state. For example,

𝑆󳨀→graft
𝑆𝑗 ,𝑆𝑘

𝑆󸀠 ≡ 𝑆󳨀→graft
𝑆𝑗

󳨀→graft
𝑆𝑘

𝑆󸀠. (7)

Consider a simple case where a vehicle is driving on a
straight one-lane road. In this case, the DSS may contain
only one metastate, “Continue.” Now, if based on a change
in the Road Condition State such as a change from a one-lane
road to a two-lane road, two new metastates will be grafted
onto the DSS, “Left Lane Change” and “Right Lane Change.”
Similarly, if the road condition changes to an intersection, two
additional metastates, “Left Turn” and “Right Turn,” can be
grafted.

4.1.2. Metastate Pruning. In Metastate Pruning, a metas-
tate is removed from the DSS based on changes in road,
environment, and/or traffic conditions. Let the DSS 𝑆 at
time 𝑡 be defined as 𝑆(𝑡) ∋ {𝑆1, 𝑆2, . . . , 𝑆𝑛} where 𝑛 is the
number of metastates in the DSS at time 𝑡. At time 𝑡, the size
of the DSS |𝑆| = 𝑛. Now, after 𝜏 time, suppose that the
road, environment, and/or traffic conditions change such that
metastate 𝑆𝑛 needs to be pruned from theDSS. Now, 𝑆(𝑡+𝜏) ∋
{𝑆1, 𝑆2, . . . , 𝑆𝑛−1}.

Formally, the DSS 𝑆 is said to have been pruned, if, for 𝑆󸀠󸀠
defined as 𝑆→prune

𝑆𝑛
𝑆󸀠󸀠, |𝑆󸀠󸀠| = |𝑆| − 1. Also, since a state has

been pruned from 𝑆, 𝑆󸀠󸀠 ⊂ 𝑆.
Additionally, if it is necessary to prune more than one

state simultaneously, that is the same as serially pruning each
individual state. For example,

𝑆󳨀→prune
𝑆𝑗 ,𝑆𝑘

𝑆󸀠󸀠 ≡ 𝑆󳨀→prune
𝑆𝑗

󳨀→prune
𝑆𝑘

𝑆󸀠󸀠. (8)

Consider a simple case where a vehicle is approaching an
intersection. At this stage, the DSS metastates may include
“Stop,” “Continue,” “Left Turn,” and “Right Turn.” After
passing the intersection, the vehicle road condition changes
to a single lane road and metastates “Left Turn” and “Right
Turn” are pruned from the DSS.

Metastate
1

Metastate
2

Metastate
3

Metastate
4

Metastate
5

Metastate
1

Metastate
3

Metastate
5

Metastate Grafting

Metastate Pruning

Discrete state systemDiscrete state system

Figure 7: Example of metastate modification: Left → right shows
Metastate Grafting. Right→ left shows Metastate Pruning.

4.2. Procedure forGrafting andPruning. Based on the current
state or change of state of the Roadway Type System (RCS),
Environment Condition System (ECS), and TrafficCondition
System (TCS), a procedure for grafting and pruning the
metastates needs to be defined. For the following examples,
we have assumed that the ECS and TCS states are constant.

Let the state of the RCS at time 𝑡 be RC(𝑡). Now, suppose
that at time 𝑡󸀠 external information (such as change in GPS
position) is received such that the state of the RCS becomes
RC(𝑡󸀠). Additionally, suppose that the DSS at time 𝑡 is 𝑆(𝑡) =
{𝑆1, 𝑆2, . . . , 𝑆𝑛}.

If the change in the RCS requires additional state or states
to be added to 𝑆(𝑡) to determine 𝑆(𝑡󸀠), this is represented as
follows:

𝑆 (𝑡) 󳨀→graft
metastates𝑆 (𝑡󸀠) . (9)

A graft effectively increases the number of possible
vehicle events (represented by metastates). Similarly, if the
changes in RCS require the removal of a state or states from
𝑆(𝑡) to determine 𝑆(𝑡󸀠), this is represented as

𝑆 (𝑡) 󳨀→prune
metastates𝑆 (𝑡󸀠) . (10)

In this case, the pruning effectively decreases the number
of possible vehicle events. There may be many cases in which
𝑆(𝑡) needs more than one graft and/or pruning. Suppose that
it is necessary to graft 𝑆𝑛+1 and prune 𝑆𝑛; this is done through
a graft followed by pruning on 𝑆.

𝑆 (𝑡) 󳨀→graft
𝑆𝑛+1

𝑆󸀠 (𝑡󸀠) 󳨀→prune
𝑆𝑛

𝑆 (𝑡󸀠) , (11)

where 𝑆󸀠(𝑡󸀠) ∋ {𝑆1, 𝑆2, . . . , 𝑆𝑛−1, 𝑆𝑛, 𝑆𝑛+1} and 𝑆(𝑡󸀠) ∋ {𝑆1,𝑆2, . . . , 𝑆𝑛−1, 𝑆𝑛+1}. With these definitions, given suitable
metastates, through the process of grafting and/or pruning
various metastates, one can define a DSS that contains any
combination of metastates.

Using Figure 7 as an example, suppose that the DSS on
the left is called 𝑆left and the DSS on the right is called 𝑆right. If
the current DSS is 𝑆left and changes to external conditions
require modifying the DSS to 𝑆right, the following operations
will need to occur:

𝑆left󳨀→graft
metastate2󳨀→graft

metastate4𝑆right. (12)

Similarly, in the reverse situation,
𝑆right󳨀→prune

metastate2󳨀→prune
metastate4𝑆left. (13)

The grafting and pruning operations defined in this
section have been applied to long term driving examples.
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5. Application Examples

Data collected as described in Section 2.1 was used to test the
extended HSS+HMM system for long term driver behavior
estimation. One of the motivations for introducing high level
information contained in the RCS, ECS, and TCS is to allow
for driver behavior estimation of multiple consecutive driver
events. In this section, we look at the current implementation
of the theoretical system described in Section 4. We then
describe the results obtained of implementing this system on
three example driving sequences. To view the second and
third examples, you will need a browser capable of playing
videos from the online video hosting service YouTube. In
all the videos, the state and RC estimate correspond to the
vehicle the camera is in.

5.1. Current Status and Implementation. A reverse geocoder,
GeoNames (http://www.geonames.org/), is used to offline
process the GPS coordinates. This allows us to automatically
determine the roadway type state for intersections, nonin-
tersections, and highways (reverse geocoding for highway
segments requires significant manual corrections). For the
purpose of these examples, it is assumed that the ECS and
TCS states remain unchanged since this information is neither
available nor used. Further, RCS states are limited to the
following:

(i) Intersection RCint (corresponding to DSS 𝑆Int): this
state describes a location close to an intersection (an
intersection is defined to be the location of two roads
intersecting). 𝑆Int ∋ {𝑆Straight, 𝑆LeftTurn, 𝑆RightTurn, 𝑆Stop}.

(ii) Highway RChighway (corresponding to DSS 𝑆highway):
this state describes a vehicle operating on a
highway or motorway. 𝑆highway ∋ {𝑆Straight, 𝑆LeftChange,𝑆RightChange}.

(iii) Nonintersection RCroad (corresponding toDSS 𝑆road):
this state describes a vehicle not described by RCInt or
RChighway. 𝑆road ∋ {𝑆Straight, 𝑆LeftChange, 𝑆RightChange}.

The grafting and pruning operations are also designed
only to occur in situations in which there is a change in
the external conditions. A change in external conditions may
cause a metastate to be grafted or pruned (or both or any
combination thereof) to (or from) theDSS.Whenever there is
a change in the composition of the DSS, the currentmetastate
is reset to allow the system to go into any of the available
metastates. For example, if the system is in an HMM state
of the “Straight/Continue” metastate and the RCS changes,
this leads to metastates being grafted and pruned from the
current DSS. At this point, regardless of current metastate,
the system will step out of the current metastate and redo the
procedure highlighted in Section 2 to select the most likely
new metastate.

As further examples, consider a couple of special cases
which are mentioned for grafting and pruning operations.
In the first case, suppose that the system is currently in a
metastate that due to external information has been pruned.
In such a case, the system will immediately exit its current
metastate and go to a default Continue metastate (which

is present in every possible DSS configuration) after which
the procedure outlined before is followed. For the second
case, suppose that our system is currently in a metastate
when a new metastate is grafted. In this case, the system
will essentially reset to allow the ongoing observation to be
tested against other metastates including the newly grafted
metastate(s).

A limitation of the current implementation of the system
is that a change in the composition of the DSS that is, a
metastate grafted or pruned causes the history of the system
until that point to be reset as the system jumping out of the
current metastate. In this reset there is useful information
that relates to driving patterns or external conditions that
may be lost. In order to extend the methodology presented,
it will be beneficial to look at statistical information related
to the RCS but not presented in this study. For example,
collecting information on how RCS changes affects metastate
selection.

Even with these limitations to the current implementa-
tion of the extended HSS+HMM system, application exam-
ples show promise for this theoretical framework.

5.2. Example 1. Using the data collected, an example case that
contained multiple consecutive vehicle events was generated.
The test observation sequence contains approximately 1900
individual observations captured at a rate of 10Hz.This 2.75-
minute observation sequence starts with a vehicle approach-
ing an intersection and stopping at a stop light. After the light
turns green, the vehicle proceeds towards the intersection and
turns right. After turning, the vehicle continues straight until
coming to a stop at another next intersection. Figure 8 shows
the estimation results obtained for this observation sequence
as a function of time. The top plot shows the estimated
state at a given time step. The lower plot shows the Road
Condition State at time 𝑡; RC(𝑡) ∈ {RCInt,RChighway,RCroad}.
The lowest part of the figure shows the DSS at time
𝑡.

For RC(𝑡) = RCInt, 𝑆(𝑡) = 𝑆Int ∋ {𝑆Continue, 𝑆LeftTurn,𝑆RightTurn, 𝑆Stop}. For RC(𝑡) = RCroad, RCroad ∋ {𝑆Continue,𝑆LeftChange, 𝑆RightChange}.
In Figure 8, the grafting/pruning operations when the

RCS changes from road to int are

𝑆road = {𝑆Continue, 𝑆LeftChange, 𝑆RightChange, 𝑆Stop}
𝑆Int

= 𝑆road󳨀→prune
LeftChange󳨀→prune

RightChange󳨀→graft
Right󳨀→graft

Left 𝑆Int.
(14)

When the RCS changes from int to road the graft-
ing/pruning operations are

𝑆road = {𝑆Continue, 𝑆LeftTurn, 𝑆RightTurn, 𝑆Stop}
𝑆road
= 𝑆int󳨀→prune

LeftTurn󳨀→prune
RightTurn󳨀→graft

RightChange󳨀→graft
LeftChange𝑆road.

(15)

5.3. Example 2. Figure 9 gives the results for another example
of metastate modification being used in conjunction with the

http://www.geonames.org/
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Figure 8: Metastate modification in conjunction used for observa-
tion sequence of length of 2.75minutes. For varying road conditions
(middle plot) metastates contained in DSS are shown in lowest part
of figure.

HSS+HMM to estimate driver behavior. This observation
sequence corresponds to approximately 6.5 minutes of city
driving. In this time, the driver approaches approximately
10 intersections, which are highlighted in the lower plot of
vehicle trajectory using Google Earth.The upper plot, similar
to Figure 8, describes the vehicle state at a given time. The
lower plot shows the Road Condition State for the vehicle at
a given time. The lower figure shows the vehicle trajectory
(white line) of the driver performing the 6.5-minute drive
around Columbus, OH. The purple/blue arrows illustrate
coordinates where the RCS is intersection.

The real-time driver behavior estimation of the sequence
of driver behavior depicted in Figure 9 can be viewed online
by using the link of Figure 10. The online video provides the
front camera output of the vehicle being driven on the path
shown in the lower part of Figure 9.The top part of the video
gives the current driver state (event) and road condition (RC)
as 2-tuple. As the vehicle moves, these values are updated
using procedures previously outlined. At the beginning of the
video (approximately 0:07–0:10 minutes) the driving event is
incorrectly shown to be straight, whereas the vehicle is clearly
turning right. This difference is due to the RC being road in
which there is no Right Turnmetastate.This is one example of
the need to have accurate RC, TC, and EC state information.
The road condition changes from road to int when the
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10 intersections (approximately 6.5 minutes)
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Figure 9: Example of driver behavior estimation using metastate
modification. Blue and purple arrows highlight areas where the road
condition changes.

distance to an intersection is approximately 100 feet. Starting
at 1:56 minutes, a Left Lane Change maneuver is missed.This
is largely due to the difficulties of estimating lane changes
described in section. Apart from these two anomalies, the
driver behavior estimation in the video very accurately
estimates driver behavior for changing road conditions.

5.4. Example 3. The third example, which you can access by
using the link in Figure 11, shows the HSS+HMM behav-
ior estimates for a vehicle operating on the highway over
approximately 3.5minutes. In order to better represent events
of interest, this video has been condensed to approximately
1.5 minutes showing only the noncontinuous events. In this
time, the vehicle performs 4 Left Lane Changes and 3 Right
Lane Changes. Some of the segments are prone to a slight
delay in lane change recognition largely due to the challenges
associated with lane change recognition discussed earlier in
this article. The results are displayed in the video screen
similar to the second example with the metastate estimate on
the right and RC state estimate on the left.



10 Journal of Advanced Transportation

Figure 10: YouTube link [15]: task grafting with changing road
condition information.

Figure 11: YouTube link [16]: highway driving.

6. Discussion

In order to validate the results of the previous section, we
used a mechanism similar to the one described in [10] to
manually verify the results of the estimated state output.
This manual system plays a video of the vehicle in motion
and asks users to identify the start and end of an event of
interest. These events of interest include left turns, right
turns, stopping, and lane changes. These manual markings
are then compared with the output of the HSS+HMM system
described in this article. By viewing the video links provided
in [15, 16], a reader can look at how close these results align
with naturalistic driver estimation. As described in [10], in
many cases, the HSS+HMM system estimates the “correct”
state (as determined by a human observer) quicker than a
human observer.

The three examples presented in this article highlight
a number of challenges. First, state estimation that relies
largely on continuous measurements of yaw and velocity
can confuse lane changes and curves on a road or driver
drifting. Our future work will include video lane markings

and turn signal indicators. Further, the HSS+HMM model
presented in this article largely focuses on “good” drivers and
can only estimate states based on previously observed data.
For problematic drivers or unsafe road conditions, the output
of our system may be incorrect. In-person driver data collec-
tion and associated safety of human subjects may not allow
us to obtain training data for such conditions. We believe an
interesting data collection source may be a driving simulator
in which we can collect data on hazardous driving condi-
tions or problematic driver behavior. Another challenge is
in adding task grafting and pruning probabilities when
transitioning between road and environmental condition
changes. Ideally, each metastate grafted and pruned would
have transition probabilities that vary probabilistically with
combinations of road and environmental conditions.

The majority of the computation effort is taken by the
training step. On a modern computer, the inference portion
of the computation (estimating the state) can be done near
real time. Utilizing hardware accelerators such as Graphical
Processing Units (GPUs) [18] or FPGAs may potentially
speed up both the training and inference computation.
Further, we are looking at improving the computation per-
formance using parallel processing on multicore or many
processors as described in [19, 20]. Ideally, we would like to
have an online training system that is able to take in data
streaming from the sensors along with user feedback to
further improve state estimation.

The results presented in this article can be applied to a
variety of problems.While our discussion has largely focused
on autonomous vehicles operating in amixed urban environ-
ment, other application areas include driver safety systems
and connected vehicles. The quality and speed of our state
estimation techniques rely on accurate streaming sensor
data and better vehicle-to-vehicle (v2v) or infrastructure-to-
vehicle (i2v) communication [21] can improve quality. Future
work may also incorporate more sophisticated models for
traffic flow and road conditions [22].

7. Conclusions

Cyber Physical Systems have the ability to change human
interaction with the world. One particular application area
of Cyber Physical Systems, autonomous vehicles or self-
driving cars, has the ability to revolutionize transportation
and remedy many of the problems associated with the
current state of personal and commercial transportation. In
an expected mixed urban environment, it will be necessary
for autonomous vehicles to be able to estimate the driver
behavior of a human-driven vehicle. A system for estimating
driver behavior has been described in [10] but is unable to
track the long term behavior of a vehicle. The system pro-
posed in this system extends upon the HSS+HMM system by
including external information that shaped driver behavior
by dynamically modifying the DSS. Through grafting or
pruning operations, the extendedHSS+HMMsystem is capa-
ble of emulating driver decisions in changing environments.
An implementation of the system has been developed and
three examples have been provided.
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state driver/vehicle modelling, estimation and prediction,” in
Proceedings of the 13th International IEEE Conference on Intel-
ligent Transportation Systems (ITSC ’10), pp. 806–811, Madeira
Island, Portugal, September 2010.
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