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With the constantly increasing pressure of the competitive environment, supply chain (SC) decision makers are forced to consider
several aspects of business climate.More specifically, they should take into account the endogenous features (e.g., availablemeans of
transportation, and the variety of products) and exogenous criteria (e.g., the environmental uncertainty, and transportation system
conditions). In this paper, amixed integer nonlinear programming (MINLP)model for dynamic design of a supply chain network is
proposed. In thismodel,multiple products andmultiple transportationmodes, the time value ofmoney, traffic congestion, and both
supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods
are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA) are designed and discussed for tackling the
problem.The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the
MINLP problem.

1. Introduction

Since its introduction by [1], Supply Chain Management
(SCM) has been a point of interest to both researchers and
practitioners. The reason might be the fact that a significant
portion of budget and time in companies is spent on supply
chain activities [2]. Obviously, the business units involved in
these activities operate efficiently if only the whole supply
chain network (SCN) is well structured [3].Therefore, supply
chain network design (SCND), as one of the most important
strategic decisions, is known to be vital to survival of com-
panies in today’s highly competitive business environment.
Generally, SCND includes the determination of the location,
capacity, number and the technology of the facilities, and
the quantities of products transported from one element to
another in order to fulfill the demand in each node of SCN
[4]. However, several other factors may affect the decisions
regarding the design of the SC. In this paper, the multiperiod
design of a SC with multiple transportation modes and
multiple products considering the time value ofmoney, traffic

congestion, and uncertainty in both demand and supply
sides is investigated. In what follows the significance of these
features in SCND problem is discussed.

In today’s business environment, SCs are urged to be
more responsible for their business activities regarding the
environment and the society.The concern about these aspects
of SC activities has led to the introduction of the “Sustainable
Supply Chain Management (SSCM)” concepts. Despite the
importance of sustainability in SCM, the relevant literature
is still rare [5]. SSCM is defined as the integration of the
SC’s objective considering economic, social, and environ-
mental aspects of decisions in order to enable the long-term
operation of the SC [6]. The research on sustainable supply
chain network design (SSCND) under uncertainty is gaining
ground in recent years. Considering traffic congestion, Jouz-
dani et al. [7] proposed a model for SCND under demand
uncertainty and presented a dairy industry case study. Pish-
vaee et al. [5] proposed an accelerated Benders decomposi-
tion algorithm for sustainable supply chain network design
under uncertainty and addressed a case of medical needle
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and syringe supply chain. They consider economic, environ-
mental, and social objectives. Subulan et al. [8] presented a
closed-loop supply chain network design for lead/acid batter-
ies.They considered the risk of end-of-life product collection
besides other aspects of SCND decision making. Sadjadi et
al. [9] proposed a capacitated multiechelon, multiproduct
reverse logistic network design with fuzzy demand for end-
of-life products. Osmani and Zhang [10] presented a sustain-
able dual feedstock lignocellulosic-based bioethanol SCND
model considering uncertainty in demand, supply, and prices
of products. A robust closed-loop SCND (CLSCND) model
under uncertainty for a case of medical device industry was
investigated by [11]. Dubey and Gunasekaran [12] proposed a
SSCNDmodel and addressed a case of an IndianCompany. In
a recent research, Boukherroub et al. [13] proposed and inte-
grated approach to sustainable supply chain planning. A goal
programming approach was proposed by [14] for low carbon
supply chain configuration for a new product. Environmental
impact of supply chain and its total variable and fixed costs
are considered as two objectives by Govindan et al. [15] for
integrating sustainable order allocation and sustainable sup-
ply chain network strategic design with stochastic demand.
They proposed a robust hybrid multiobjective metaheuristic
comprised of Electromagnetism-Like Algorithm (EMA) and
Variable Neighborhood Search (VNS) as a solution approach
to their model. For a review of recent studies in the opti-
mization approaches in SSCND, one may refer to a review
by Eskandarpour et al. [16]. The subject of traffic congestion
in SCND problem has already attracted researchers in the
past few years [7, 17]. Specifically, since roads are of the most
widely used transportation systems in many SCs especially
for distribution of good in urban areas, the mutual effect
between the transportation activities of a SC and the traffic
congestion is a significant issue in SSCND. More specifically,
in a SC, different vehicles have different effects on traffic
congestion and, therefore, traffic congestion should also be
considered in decision regarding the amounts of different
products transported by different vehicles. As an example,
heavy duty vehicles (e.g., trucks) are capable of transporting
higher volumes of goods compared to light vehicles (e.g.,
pickups); however, the impact of heavy duty vehicles on
traffic congestion is larger than that of light types. Therefore,
considering different transportation modes, their capacities,
and their impact on traffic congestion are significant issues in
SCND.

The effectiveness of the SCs is significantly affected
by the uncertainty rooted in their complex and dynamic
nature [18]. Specifically, the fluctuations and uncertain-
ties in demand-side and supply-side in a SC are results
of its inherent complex and variable characteristics. In
order to capture the uncertainty in the SCs, some authors
have proposed Stochastic Programming (SP) models [19–
21]. However, it is not always possible to precisely deter-
mine the distribution parameters [22]. In addition, the
unavailability of historical data is a major drawback of
SP methods [5]. Therefore, many authors have utilized
Possibilistic Programming (PP) [5, 7, 23] and Scenario-
based/Robust Optimization (RO) [24–28] for modeling the
epistemic uncertainty in SCND. The reader is referred to the

reviews in SCND modeling uncertainty for further reading
[18, 29].

SCND has its roots in Facility Location Problem (FLP)
and inherits its complexity [30].Therefore, especially in large-
scale instances of the problem, conventional solution meth-
ods fail to provide a solution in a reasonable amount of time.
The problem becomes evenmore complex when several deci-
sion factors are involved. The complexity of the large-scale
SCND problem has inspired researchers to propose heuristic
andmetaheuristic solutionmethods [22]. A hybrid of Particle
Swarm Optimization (PSO) and Genetic Algorithm (GA)
was proposed by Soleimani and Kannan [31] for tackling a
CLSCND problem. Mousavi et al. [32] proposed a modi-
fied PSO algorithm for solving an integrated location and
inventory control model of a two-echelon supply chain net-
work. Roghanian and Pazhoheshfar [33] utilized a priority-
based GA to solve a reverse logistics network design under
uncertainty. A hybrid of Multiobjective Adaptive Memory
Programming (MOAMP) and Tabu Search (TS) algorithms
was proposed by Cardona-Valdés et al. [34] for a biobjective
SCND stochastic problem. The authors [11] applied a hybrid
of Memetic Algorithm (MA) and Variable Neighborhood
Search (VNS) to solve their robust model for a closed-loop
global SCND under uncertainty. A nondominated sorting
genetic algorithm (NSGA-II) was utilized by Pasandideh et
al. [35] to optimize amultiproductmultiperiod three-echelon
supply chain problem under uncertainty. Govindan et al.
[15] proposed a robust hybrid multiobjective metaheuristic
comprised of Electromagnetism-Like Algorithm (EMA) and
VNS as a solution approach to their SCND model.

Among the metaheuristics, EMA is a relatively new
population-based algorithm proposed by Birbil and Fang
[36] that has been applied to many optimization problems
(such as set covering [37], machine scheduling [38], flow-
shop scheduling [39, 40], project scheduling [41], periodic
job-shop scheduling [42] SCND [15], and travelling salesman
problem [43, 44]) and has outperformed many other similar
algorithms [37, 38, 41, 42, 45–47]. In addition, EMA can be
easily augmented in order to further improve its performance
[15, 40, 48].

Simulated Annealing (SA) and Variable Neighborhood
Search (VNS) are well-known, efficient, and widely used
metaheuristic methods. SA was originally proposed by Kirk-
patrick et al. [49] andwas inspired by the annealing process of
materials. SA has already been successfully applied to many
problems; however, as a parameter-sensitive algorithm, itmay
fail to fully explore the search space; therefore, hybridization
of SA is proposed to resolve this drawback [48, 50–55]. VNS,
originally proposed by Mladenović and Hansen [56], utilizes
more than a single neighborhood structure and switches
between them in a local search process. VNS is a simple
and effective algorithm; however, it may get trapped in local
minima due to limited exploration; therefore, hybridization
of VNS is proposed to overcome this weakness [15, 57–62].

In this paper, a hybrid of EMA and SA and a combination
of EMA and VNS are studied for solving the MINLP model
of SCND problem under uncertainty and traffic congestion.
In these hybrid algorithms the simple local search procedure
in EMA is replaced by SA and VNS. The results show that
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the replacement leads to promising improvements. The main
contributions of this research are as follows:

(1) concurrent consideration of multiple products, mul-
tiple transportation vehicles, multiple periods, time
value of money, traffic congestion, and demand-side
and supply-side uncertainties along with the time
varying interest rate (time value of money) in SCND,

(2) proposing and studying two hybrid population-based
metaheuristics (EMA-VNS and EMA-SA) for solving
MINLP model of the SCND problem.

In order to clarify the characteristics of our model, Table 1
provides a comparison between the present study and the
recent related works. The abbreviations used in this table are
defined below the table. From the literature review point of
view, it can be concluded that the literature on supply-side
uncertainty, traffic congestion, and multiple transportation
modes in SCND is scares compared to other features. In
addition, to the best of the authors knowledge, concurrent
consideration of all the features mentioned in Table 1 has
not been studied. Furthermore, in the majority of the pre-
viously published researches, exact algorithms (e.g., CPLEX
or LINGO solvers) are utilized. These methods may fail
to efficiently solve complex problems. Therefore, a lack of
study on metaheuristic methods for SCND problem with the
aforementioned feature may be concluded from Table 1. The
literature on general SCND problem is immense; therefore,
in this table, an effort is made to consider the most applicable
features of SCND and most related works from the research
background.

The rest of this paper is organized as follows. The
next section provides a brief discussion on the concept of
superiority and inferiority for fuzzy triangular numbers. In
Section 3, the problem is presented and Section 4 discusses
the solution methods. The results of numerical experiments
are provided in Section 5 and, finally, Section 6 concludes the
paper and presents guidelines for future research.

2. Inferiority and Superiority of
Fuzzy Triangular Numbers

Fuzzy numbers may be utilized for modeling the uncertainty
when the data is imprecise. The ease of application and the
wide range of real problems in which they can be expressed
through fuzzy triangular numbers are a good reason for their
popularity among both researchers and practitioners.

In 2007, van Hop proposed an approach for comparing
the fuzzy triangular numbers [63]. According to this theorem,
if ̃𝑃 ≤

̃

𝑄, then the superiority of a fuzzy triangular number
̃

𝑃 = (𝑢, 𝑎, 𝑏) over a fuzzy triangular number ̃𝑄 = (V, 𝑐, 𝑑) is
defined by the following equation:

𝑆 (

̃

𝑄,

̃

𝑃) = V − 𝑢 +
𝑑 − 𝑏

2

.
(1)

In the above equation, 𝑢 is the center and 𝑎 and 𝑏 are the
left and right spreads of ̃𝑃 = (𝑢, 𝑎, 𝑏), respectively, and V
is the center and 𝑐 and 𝑑 are the left and right spreads of

̃

𝑄 = (V, 𝑐, 𝑑), respectively. Similarly, the inferiority of ̃𝑃 to ̃

𝑄

is calculated by the following equation:

𝐼 (

̃

𝑃,

̃

𝑄) = V − 𝑢 +
𝑎 − 𝑐

2

. (2)

The concepts of superiority and inferiority can be suitably
utilized for modeling the constraints of an optimization
problem where a fuzzy triangular number is involved [64].

In this paper, the products demand and supply capacities
are considered as triangular fuzzy numbers and the superi-
ority and inferiority concepts are utilized for modeling “the
inferiority of the demand for a product in a demand node in
a time period to the amount of that product transported to
that node” and “the superiority of the capacity for a product
in a supply node in a time period over the amount of that
product transported from that node.” These are discussed in
more details in Sections 3.3 and 3.4.

3. The Problem

In this section, a definition of the problem is presented, the
assumptions based on which the mathematical model is built
are provided, and the mathematical model is studied.

3.1. Problem Definition. In this paper, our focus is on facility
location and transportation planning in SCND. Specifically,
we assume a two-echelon supply chainwhich utilizesmultiple
vehicle types to transport multiple products to its customers
in multiple planning periods. Here, for the sake of simplic-
ity, two echelons are considered; however, the number of
echelons may be extended to create a more realistic and
complexmodel with someminormodifications.The problem
is the location and relocation of facilities and determining the
amounts of products transported from each facility to each
customer in each planning period such that the total cost is
minimized. The total cost consists of the facility location and
relocation cost, the transportation cost, the traffic congestion
cost, and the uncertainty cost.Here, the traffic congestion cost
is calculated through the formula provided by the US Bureau
of Public Roads (BPR) (formulated in (16)) and is expressed
through the monetary value of time and the uncertainty cost
is determined through the concepts of inferiority/superiority
of the amounts of products transported from the facilities to
the demand nodes to/over the uncertain demand and supply
amounts as triangular fuzzy numbers. The formulations of
these concepts are provided later in this section.

3.2. Assumptions. Assumptions determine the scope of the
problem and define its capabilities and limitations. Current
research is based on the following assumptions.

(1) The total number of nodes in the supply network, the
total number of transportation vehicle types, the total
number of products, the total number of periods in
the planning horizon are known and fixed.

(2) Theproducts are produced and shipped in continuous
quantities.
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Table 1: A comparison of the recent related literature and our research (chronologically sorted).

Author(s) MP Uncertainty DY CN MM Network flow Solution approach
DU SU FF RF CL

Liu et al. [65] 2010
✓ ✓

LR
Rentizelas and Tatsiopoulos [66] 2010 ✓ ✓

✓
GA + SQP

Salema et al. [67] 2010 ✓ ✓
✓ ✓

CPLEX
Pishvaee and Torabi [23] 2010

✓
✓

✓
LINGO

Le and Lee [68] 2013 ✓ ✓ ✓
✓

LINGO
Bai et al. [69] 2011 ✓ ✓

✓
LPR + LRB

Mirzapour Al-e-hashem et al. [70] 2011 ✓ ✓
✓

LINGO
Georgiadis et al. [19] 2011 ✓

✓
✓

✓
CPLEX

Pishvaee et al. [71] 2011
✓ ✓

CPLEX
Chen and Fan [72] 2012 ✓

✓ ✓ ✓
DA

Wang et al. [73] 2011 ✓
✓

CPLEX
Kostin et al. [74] 2012 ✓ ✓ ✓

✓
SAA

Almansoori and Shah [75] 2012
✓

✓ ✓
✓

CPLEX
Bashiri et al. [76] 2012 ✓ ✓

✓
CPLEX

Wang and Watada [77] 2012
✓ ✓

PSO
Sadjady and Davoudpour [78] 2012 ✓ ✓

✓
LR

Vahdani et al. [79] 2013 ✓
✓

GAMS
Baghalian et al. [80] 2013 ✓

✓ ✓
LINGO

Cardoso et al. [21] 2013
✓

✓
✓ ✓

CPLEX
Ramezani et al. [25] 2013

✓ ✓
✓

✓
CPLEX

Hatefi and Jolai [81] 2014
✓ ✓ ✓

CPLEX
Jindal and Sangwan [82] 2013 ✓

✓ ✓ ✓
LINGO

Jouzdani et al. [7] 2013
✓

✓ ✓
✓

LINGO
Ramezani et al. [25] 2013 ✓

✓ ✓
SRA

Soleimani et al. [83] 2013 ✓ ✓
✓

GA
Yang and Liu [22] 2015 ✓

✓ ✓
MA

Hasani et al. [11] 2014 ✓
✓ ✓

✓
✓

MA + VNS
Jabbarzadeh et al. [84] 2014

✓ ✓
✓

✓
LINGO

Mousavi et al. [32] 2014 ✓ ✓
✓

Modified PSO
Osmani and Zhang [10] 2014

✓ ✓
✓

✓
SAA

Pishvaee et al. [5] 2014
✓ ✓ ✓

Benders Dec.
Boukherroub et al. [13] 2015 ✓

✓ ✓
GA

Sadjadi et al. [9] 2014 ✓
✓ ✓

MA
Shabani et al. [85] 2014 ✓

✓
✓

✓
CPLEX

Brandenburg [14] 2015 ✓ ✓
✓

GA + PSO
Dubey and Gunasekaran [12] 2014 ✓

✓
CPLEX

Brandenburg [14] 2015 ✓
✓

✓ ✓
✓

CPLEX
Boukherroub et al. [13] 2015 ✓ ✓ ✓

✓
CPLEX

Govindan et al. [15] 2015
✓ ✓

EMA + VNS
Pasandideh et al. [35] 2015 ✓

✓ ✓
✓

✓
NSGA-II

Current Research ✓
✓ ✓

✓ ✓ ✓
✓

Hybrid EMAs
MP:multiple products, DU: demand uncertainty, SU: supply uncertainly, DY: dynamicmodel (multiple periods), CN: congestion,MM:multiple transportation
modes, FF: forward network flow, RF: reverse network flow, and CL: closed-loop network.
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(3) Each facility has a limited capacity for each product in
each period.The capacity is subject to uncertainty and
can be expressed through fuzzy triangular numbers.

(4) Each demand node has a limited demand for each
product in each period. The demand is subject to
uncertainty and can be expressed through fuzzy
triangular numbers.

(5) All parameters except the capacity of vehicles and
their traffic congestion coefficients are time varying.

3.3. Nomenclature. In order to facilitate the understanding
of the mathematical model, the sets, parameters, and the
decision variables are introduced in this section.

3.3.1. Sets

𝑁: the set of network nodes (including candidate
facility locations and demand points),
𝑇: the set of time periods in the planning horizon,
𝑃: the set of products,
𝑀: the set of transportation modes.

3.3.2. Subscripts

𝑖: subscript for candidate facility location (𝑖 ∈ 𝑁),
𝑗: subscript for demand point (𝑗 ∈ 𝑁),
𝑡: subscript for time period (𝑡 ∈ 𝑇),
𝑝: subscript for product (𝑝 ∈ 𝑃),
𝑚: subscript for transportation vehicle (𝑚 ∈ 𝑀).

3.3.3. Parameters

IR
𝑡
: interest rate in time period 𝑡 ∈ 𝑇,

MVT
𝑡
: monetary value of time in time period 𝑡 ∈ 𝑇,

𝛼: parameter in the link performance function,
𝛽: parameter in the link performance function,
CAP
𝑚
: capacity of vehicle𝑚 ∈ 𝑀,

TCC
𝑚
: traffic congestion coefficient of vehicle 𝑚 ∈

𝑀,
MC
𝑖𝑡
: the annual maintenance cost of a facility in

candidate location 𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,
OC
𝑖𝑡
: the opening cost of a facility in candidate

location 𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,
CC
𝑖𝑡
: the closing cost of a facility in candidate location

𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,
𝐷

𝑐

𝑗𝑝𝑡
: the center of the triangular fuzzy demand for

product 𝑝 ∈ 𝑃, in demand node 𝑗 ∈ 𝑁, in time period
𝑡 ∈ 𝑇,
𝐷

ls
𝑗𝑝𝑡
: the left spread of the triangular fuzzy demand

for product 𝑝 ∈ 𝑃, in demand node 𝑗 ∈ 𝑁, in time
period 𝑡 ∈ 𝑇,

𝐷

rs
𝑗𝑝𝑡
: the right spread of the triangular fuzzy demand

for product 𝑝 ∈ 𝑃, in demand node 𝑗 ∈ 𝑁, in time
period 𝑡 ∈ 𝑇,

𝑆

𝑐

𝑖𝑝𝑡
: the center of the triangular fuzzy supply for

product 𝑝 ∈ 𝑃, in facility node 𝑖 ∈ 𝑁, in time period
𝑡 ∈ 𝑇,

𝑆

ls
𝑖𝑝𝑡
: the left spread of the triangular fuzzy supply for

product 𝑝 ∈ 𝑃, in facility node 𝑖 ∈ 𝑁, in time period
𝑡 ∈ 𝑇,

𝑆

rs
𝑖𝑝𝑡
: the right spread of the triangular fuzzy supply for

product 𝑝 ∈ 𝑃, in facility node 𝑖 ∈ 𝑁, in time period
𝑡 ∈ 𝑇,

FFTT
𝑖𝑗𝑡
: free flow travel time fromnode 𝑖 ∈ 𝑁 to node

𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,

TCAP
𝑖𝑗𝑡
: traffic capacity of the link from node 𝑖 ∈ 𝑁

to node 𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,

BF
𝑖𝑗𝑡
: basic traffic flow of the link from node 𝑖 ∈ 𝑁 to

node 𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,

𝐶

𝑖𝑗𝑚𝑡
: the transportation cost for vehicle 𝑚 ∈ 𝑀 for

link from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 in time period
𝑡 ∈ 𝑇,

𝐶

𝐼(𝐷,𝑥
in
𝑗𝑝𝑡
)
: the unit cost of inferiority of the demand in a

demand node 𝑗 ∈ 𝑁 for product 𝑝 ∈ 𝑃 in time period
𝑡 ∈ 𝑇 to the amount of that product transported to
that node,

𝐶

𝑆(𝑆,𝑥
out
𝑖𝑝𝑡
)
: the unit cost of superiority of the capacity in

a supply node 𝑖 ∈ 𝑁 for product 𝑝 ∈ 𝑃 in time period
𝑡 ∈ 𝑇 over the amount of that product transported
from that node.

3.3.4. Decision Variables

𝑦

𝑖𝑡
: a binary variable which is equal to 1 if a facility is

operating in 𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇 and equals 0
otherwise,

𝑥

𝑖𝑗𝑚𝑝𝑡
: the amount of product 𝑝 ∈ 𝑃 transported from

node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 by means of transportation
vehicle𝑚 ∈ 𝑀 in time period 𝑡 ∈ 𝑇.

3.3.5. Auxiliary Variable

𝜆

𝐼(𝐷,𝑥
in
𝑗𝑝𝑡
)
: the inferiority of the demand in a demand

node 𝑗 ∈ 𝑁 for product 𝑝 ∈ 𝑃 in time period 𝑡 ∈ 𝑇 to
the amount of that product transported to that node,

𝜆

𝑆(𝑆,𝑥
out
𝑖𝑝𝑡
)
: the superiority of the capacity in a supply

node 𝑖 ∈ 𝑁 for product 𝑝 ∈ 𝑃 in time period 𝑡 ∈ 𝑇

over the amount of that product transported from that
node,

𝑧

𝑜

𝑖𝑡
: being 1 if a facility is opened in candidate supply

location 𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,



6 Mathematical Problems in Engineering

𝑧

𝑐

𝑖𝑡
: being 1 if a facility is closed in candidate supply

location 𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,
𝑛

𝑖𝑗𝑚𝑝𝑡
: the number of vehicles of type 𝑚 ∈ 𝑀

transporting product 𝑝 ∈ 𝑃 from node 𝑖 ∈ 𝑁 to node
𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇minus 1,
𝑧

𝑖𝑗𝑚𝑡
: the total number of vehicles of type 𝑚 ∈ 𝑀

transporting goods from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁

in time period 𝑡 ∈ 𝑇,
𝑧

𝑙

𝑖𝑗𝑚𝑝𝑡
: the auxiliary variable used form linearization,

determining the amount of product 𝑝 ∈ 𝑃 trans-
ported by vehicle of type 𝑚 ∈ 𝑀 from node 𝑖 ∈ 𝑁

to node 𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇 if a facility is
operating in node 𝑖 ∈ 𝑁,

FLW
𝑖𝑗𝑡
: total traffic flow from node 𝑖 ∈ 𝑁 to node 𝑗 ∈

𝑁,

𝑥

in
𝑗𝑝𝑡
: the total amount of product 𝑝 ∈ 𝑃 transported

to a node 𝑗 ∈ 𝑁 in time period 𝑡 ∈ 𝑇,

𝑥

out
𝑖𝑝𝑡
: the total amount of product 𝑝 ∈ 𝑃 transported

from a node 𝑖 ∈ 𝑁 in time period 𝑡 ∈ 𝑇.

3.4. Mathematical Model. In what follows, the dynamic mul-
tiproduct multimode SCND problem under transportation
cost uncertainty is formulated according to the notations
introduced above:

min ∑

𝑖∈𝑁

∑

𝑡∈𝑇

𝑦

𝑖𝑡

MC
𝑖𝑡

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

+ ∑

𝑖∈𝑁

∑

𝑡∈𝑇

𝑧

𝑜

𝑖𝑡

OC
𝑖𝑡

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

+ ∑

𝑖∈𝑁

∑

𝑡∈𝑇

𝑧

𝑐

𝑖𝑡

CC
𝑖𝑡

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

(3a)

+ ∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑚∈𝑀

∑

𝑡∈𝑇

𝐶

𝑖𝑗𝑚𝑡
𝑧

𝑖𝑗𝑚𝑡

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

(3b)

+ ∑

𝑖∈𝑁

∑

𝑗∈𝑁

∑

𝑡∈𝑇

MVT
𝑡
× FLW

𝑖𝑗𝑡
× 𝑡 (FLW

𝑖𝑗𝑡
)

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

(3c)

+ ∑

𝑗∈𝑁

∑

𝑝∈𝑃

∑

𝑡∈𝑇

𝐶

𝐼(𝐷,𝑥
in
𝑗𝑝𝑡
)
× 𝜆

𝐼(𝐷,𝑥
in
𝑗𝑝𝑡
)

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

(3d)

+ ∑

𝑖∈𝑁

∑

𝑝∈𝑃

∑

𝑡∈𝑇

𝐶

𝑆(𝑆,𝑥
out
𝑖𝑝𝑡
)
× 𝜆

𝑆(𝑆,𝑥
out
𝑖𝑝𝑡
)

∏

𝑡

𝑛=1
(1 + IR

𝑛
)

(3e)

subject to 𝑛

𝑖𝑗𝑚𝑝𝑡
= ⌊

𝑥

𝑖𝑗𝑚𝑝𝑡

CAP
𝑚

⌋ + 1 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑝 ∈ 𝑃, ∀𝑚 ∈ 𝑀, ∀𝑡 ∈ 𝑇 (4)

𝑧

𝑖𝑗𝑚𝑡
= ∑

𝑝∈𝑃

𝑛

𝑖𝑗𝑚𝑝𝑡
∀𝑖, 𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀, ∀𝑡 ∈ 𝑇 (5)

FLW
𝑖𝑗𝑡
= BF
𝑖𝑗𝑡
+ ∑

𝑚∈𝑀

TCC
𝑚
× 𝑧

𝑖𝑗𝑚𝑡
∀𝑖, 𝑗 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (6)

∑

𝑗∈𝐼

∑

𝑚∈𝑀

𝑥

𝑖𝑗𝑚𝑝𝑡
−∑

𝑖∈𝐼

∑

𝑚∈𝑀

𝑥

𝑗𝑖𝑚𝑝𝑡

= 𝑦

𝑖𝑡
× 𝑥

out
𝑖𝑝𝑡

− 𝑥

in
𝑖𝑝𝑡

∀𝑖 ∈ 𝑁, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇

(7)

𝜆

𝐼(𝐷,𝑥
in
𝑗𝑝𝑡
)
= 𝑥

in
𝑗𝑝𝑡

− 𝐷

𝑐

𝑗𝑝𝑡
+

𝐷

ls
𝑗𝑝𝑡

2

∀𝑗 ∈ 𝑁, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇

(8)

𝜆

𝑆(𝑆,𝑥
out
𝑖𝑝𝑡
)
= −𝑥

out
𝑖𝑝𝑡

+ 𝑆

𝑐

𝑖𝑝𝑡
+

𝑆

rs
𝑖𝑝𝑡

2

∀𝑖 ∈ 𝑁, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇

(9)

𝑧

𝑜

𝑖𝑡
= 𝑦

𝑖𝑡
× (1 − 𝑦

𝑖(𝑡−1)
) ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇, 𝑡 ≥ 2 (10)

𝑧

𝑜

𝑖𝑡
= 𝑦

𝑖𝑡
∀𝑖 ∈ 𝑁, 𝑡 = 1 (11)

𝑧

𝑐

𝑖(𝑡+1)
= (1 − 𝑦

𝑖(𝑡+1)
) × 𝑦

𝑖𝑡
∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇, 𝑡 ≤ |𝑇| − 1 (12)

𝑧

𝑐

𝑖𝑡
= 𝑦

𝑖𝑡
∀𝑖 ∈ 𝑁, 𝑡 = |𝑇| (13)
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𝑦

𝑖𝑡
, 𝑧

𝑐

𝑖𝑡
, 𝑧

𝑜

𝑖𝑡
∈ {0, 1} ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (14)

𝑥

𝑖𝑗𝑚𝑝𝑡
≥ 0 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑝 ∈ 𝑃, ∀𝑚 ∈ 𝑀, ∀𝑡 ∈ 𝑇. (15)

In the above model, (3a) calculates the total facility cost
which consists of annual maintenance cost, opening cost, and
closing cost of facilities in the SC. Equation (3b) presents
the total transportation cost. Total traffic congestion cost is
calculated in (3c) in which the following formula is provided
by the US Bureau of Public Roads (BPR) as

𝑡 (FLW
𝑖𝑗𝑡
) = FFTT

𝑖𝑗𝑡
(1 + 𝛼(

FLW
𝑖𝑗𝑡

TCAP
𝑖𝑗𝑡

)

𝛽

) ,

∀𝑖, 𝑗 ∈ 𝑁, ∀𝑡 ∈ 𝑇.

(16)

Equation (3d) calculates the cost of inferiority of the demand
in demand nodes to the amounts of products transported
to those nodes. Similarly, (3e) is for obtaining the cost of
superiority of the capacity in supply nodes over the amounts
of products transported from those nodes.

Constraint (4) and Constraint (5) determine the total
number of each vehicle type used for transporting goods from
each node to another in each time period. Constraint (6)
is for obtaining the flow of each link on each time period
based on its basic flow and the congestion caused by the fleet
of the SC. Constraint (7) presents the flow balance in each
node. Constraint (8) calculates the inferiority of the demand
in each demand node for each product in each time period
to the amount of that product transported to that node.
Similarly, Constraint (9) gives the superiority of the capacity
in each supply node for each product in each time period
over the amount of that product transported from that node.
In Constraint (10), binary variables are defined to determine
if a facility is opened in each node in each time period and
Constraint (11) initializes the variables for the first timeperiod
in the planning horizon. Similarly, Constraint (12) calculates
binary variables that determine if a facility is closed in each
node in each time period and Constraint (13) determines
the values for the final time period in the planning horizon.
Finally, Constraint (14) and Constraint (15) determine the
types of variables.

4. The Solution Algorithms

The proposed algorithms are hybridization of the
Electromagnetism-Like Algorithm (EMA) with Simulated
Annealing (SA) algorithm and the Variable Neighborhood
Search (VNS), respectively. The hybrid algorithms and their
aforementioned elements (i.e., EMA, SA, and VNS) are
discussed in what follows.

4.1. The Electromagnetism-Like Algorithm. The EMA was
originally proposed by Birbil and Fang [36]. The main idea
in EMAwas originated from the behavior of electromagnetic
particles and the forces they exert on each other based
on their distance and charge. The analogy here is that

the solutions in the search space are considered as particles
and their fitness values are regarded as their charges.

In Algorithm 1 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 is the number of solution points
(particles), 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 is the maximum number of the algo-
rithm iterations, 𝐿𝑆𝐼𝑡𝑒𝑟 is the maximum number of local
search steps, and 𝑖 and 𝑗 are local counter variables.

The original scheme of EMA is presented in Algorithm 1
in which the forces are calculated according to Coulomb law
[86] as

𝐹

𝑖𝑗
=

𝑞

𝑖
𝑞

𝑗

𝑟

2

𝑖𝑗

, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚} , (17)

where 𝐹
𝑖𝑗
is the force particle 𝑖 and particle 𝑗 exert on each

other, 𝑟
𝑖𝑗
is the distance between those particles, 𝑚 is the

number of particles, and 𝑞
𝑖
and 𝑞

𝑗
are the electrical charges

of particle 𝑖 and particle 𝑗, respectively. In EMA, the charges
of the particles are calculated as

𝑞

𝑖
= 𝑒

−𝑛((𝑓(𝑥𝑖)−𝑓(𝑥best))/(∑
𝑚
𝑘=1 𝑓(𝑥𝑘)−𝑓(𝑥best)))

,

∀𝑖 ∈ {1, 2, . . . , 𝑚} ,

(18)

where 𝑓(𝑥) is the objective function value for solution 𝑥 and
𝑛 is the dimension of the solution space. The force exerted
on each particle 𝑖 is then obtained according to the following
equation:

𝐹

𝑖
=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑚

∑

𝑗=1

𝑗 ̸=𝑖

(𝑥

𝑗
− 𝑥

𝑖
) 𝐹

𝑖𝑗
, if 𝑞

𝑖
< 𝑞

𝑗

𝑚

∑

𝑗=1

𝑗 ̸=𝑖

(𝑥

𝑖
− 𝑥

𝑗
) 𝐹

𝑖𝑗
, if 𝑞

𝑖
≥ 𝑞

𝑗
,

∀𝑖 ∈ {1, 2, . . . , 𝑚} .

(19)

The forces are used to move the particles in the solution
space such that the updated particle is in the feasible solution
space. The particles are moved according to the total force
exerted on them through the following equation in which 𝜆
randomizes the particle movement and ‖𝐹

𝑖
‖ is the norm of

the force vector:

𝑥

𝑖
←󳨀 𝑥

𝑖
+ 𝜆

𝐹

𝑖

󵄩

󵄩

󵄩

󵄩

𝐹

𝑖

󵄩

󵄩

󵄩

󵄩

, ∀𝑖 ∈ {1, 2, . . . , 𝑚} . (20)

Originally, EMA is designed for solving continuous opti-
mization problems with bounded variables; however, many
discrete problems such as machine scheduling [38, 87], cell
formation [45], project scheduling [41], flow-shop scheduling
[88], job-shop scheduling [42], assembly sequences planning
[28], set covering [37], and travelling salesman problem [43,
44] are solved using the EMA.
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(1) Initialize the particles.
(2) 𝑖 ← 1

(3) WHILE 𝑖 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 DO
(4) 𝑗 ← 1

(5) WHILE 𝑗 < 𝐿𝑆𝐼𝑡𝑒𝑟 DO
(6) Perform a local search.
(7) 𝑗 ← 𝑗 + 1

(8) ENDWHILE
(9) Calculate forces.
(10) Move particles.
(11) 𝑖 ← 𝑖 + 1

(12) ENDWHILE

Algorithm 1: General procedure of the original EMA.

4.2. The Simulated Annealing Algorithm. Simulated Anneal-
ing was introduced by Kirkpatrick et al. [49]. The method is
inspired by metal annealing process in which the material is
heated in order to prepare the material for atomic restructure
and then gradually cooled down to reach the desired atomic
configuration. Here, the analogy is between the temperature
in the real annealing process and the temperature in SA. The
algorithm is capable of escaping the local optima by allowing
the acceptance of worse solutions in each iteration based on
its temperature.More specifically, the higher the temperature,
the more the chance of the algorithm moving to a worse
solution in hope of finding the optimum point in the search
space. SA is capable of efficiently and effectively solving com-
binatorial optimization problem and is easy to implement
[89]. However, as a parameter-sensitive trajectory method,
SA may fail to fully explore the search space. Therefore, it is
combined with othermetaheuristics to compensate its lack of
exploration [48, 53–55].

4.3. The Variable Neighborhood Search Algorithm. Trajectory
methods deal with a single solution in each step; however,
they have shown their capability in exploiting the promising
subsets of search space in order to reach high quality
solutions. VNS is a simple and yet effective trajectory search
algorithm originally proposed by Mladenović and Hansen
[56]. VNS utilizesmore than a single neighborhood structure
and switches between the structures in a local search process.
Contrary to many other metaheuristics, VNS needs few or
sometimes no parameters. Despite its capabilities, VNS may
be trapped in localminima due to limited exploration.Hence,
its hybridization with other metaheuristics is proposed in the
literature and is recently applied to solve problems [15, 57–61].

4.4. Solution Representation. One of the major issues in any
search algorithm is the solution representation. In order to
encode solutions into a particle, a 5-dimensional matrix, 𝑋,
of size |𝑁| × |𝑁| × |𝑀| × |𝑃| × |𝑇|, where |𝐴| represents
the number of elements in the set 𝐴, is considered. In 𝑋,
each element 𝑋[𝑖, 𝑗, 𝑚, 𝑝, 𝑡] has the same interpretation as
𝑥

𝑖𝑗𝑚𝑝𝑡
. It should be noted that𝑋 also contains the information

about the decision variable 𝑦

𝑖𝑡
. For example, consider the

binary decision variable, 𝑦
23
, which is equal to 1 if a facility

is operating in node 2 ∈ 𝑁 in time period 3 ∈ 𝑇 and equals 0

otherwise. If 𝑦
23
= 0, then no facility is opened in node 2 ∈ 𝑁

in time period 3 ∈ 𝑇. Therefore, we have 𝑥
2𝑗𝑚𝑝3

= 0, ∀𝑗 ∈ 𝑁,
∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, and apparently according to the definition
of𝑋, we set𝑋[2, 𝑗, 𝑚, 𝑝, 3] = 0, ∀𝑗 ∈ 𝑁, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃.

4.5.The EMA-SAHybrid. EMA results in satisfying solutions
when combined with SA and has been successfully applied
to discrete problems [40] and continuous search spaces [48].
In this section, an algorithm which benefits from both the
EMA and SA is discussed. More specifically, the local search
procedure in the original EMA is replaced by the SA. In
addition, in order to provide the algorithm with a more
guided search, the concept of temperature is incorporated
into the movement of particles such that, in the early
iterations of the algorithm, the particles move faster in order
to increase the exploration of the search space, while in the
final iterations, the temperature is dropped and the particles
move slower in order to provide the intensification of the
search procedure.

A neighborhood to a solution, 𝑆, in SA is a solution 𝑆󸀠 =
𝑁

1
(𝑆) that is generated by adding a matrix𝐷, with randomly

generated element, of the same size as 𝑆 to 𝑆. By applying
this type of neighborhood structure, some of the generated
solutions may be infeasible. In such cases, the solutions
are simply discarded. The general scheme of the EMA-SA
hybrid for aminimization problemcan be expressed as shown
in Algorithm 2.

In Algorithm 2, the force particle 𝑖 and particle 𝑗 exert on
each other, 𝐹

𝑖𝑗
, is calculated as

𝐹

𝑖𝑗
= 𝑘

𝑞

𝑖
𝑞

𝑗

𝑟

2

𝑖𝑗

, ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚} , (21)

where 𝑘 is obtained through the following equation and other
elements are the same as defined in (17):

𝑘 = 1 +

𝑇 − 𝑇

𝑓

𝑇

0
− 𝑇

𝑓

. (22)

It should be noted that, in EMA, we have 𝑘 = 1. The
reason for using the coefficient in (22) is to incorporate
the concept of temperature into the movement of particles.
More specifically, as the temperature drops the force that the
particles exert on each other decreases resulting in a more
intense search in comparison with the early iterations of the
algorithm. In addition, in aminimization problem, the charge
for a particle 𝑖 is calculated as

𝑞

𝑖
= 𝑛

𝑓 (𝑥worst) − 𝑓 (𝑥𝑖)

𝑓 (𝑥worst) − 𝑓 (𝑥best)
, ∀𝑖 ∈ {1, 2, . . . , 𝑚} , (23)

where 𝑥worst is the particle with the worst (largest) objective
function and other elements are the same as defined in (18).
The above equation not only considers the closeness to the
best solution but also takes into account the distance from
the worst particle. The calculation of 𝐹

𝑖
and the movement of

each particle are the same as in EMA.
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(1) Initialize the parameters 𝑇
0
, 𝑇
𝑓
,𝑚𝑎𝑥𝑅𝑒𝑝, 𝐿𝑆𝐼𝑡𝑒𝑟 and the initial population

(2) 𝑇 ← 𝑇

0

(3) WHILE 𝑇 ≥ 𝑇

𝑓
DO

(4) 𝑗 ← 1

(5) WHILE 𝑗 < 𝐿𝑆𝐼𝑡𝑒𝑟 DO
(6) 𝑖 ← 1

(1) WHILE 𝑖 < 𝑚𝑎𝑥𝑅𝑒𝑝 DO
(2) FOR each particle 𝑆 in the populationDO
(3) Generate a solution 𝑆󸀠 = 𝑁

1
(𝑆) in the neighborhood 𝑆

(4) Δ ← 𝑓(𝑆

󸀠
) − 𝑓(𝑆)

(5) IF Δ ≤ 0 THEN
(6) 𝑆

󸀠
← 𝑆

(7) ELSE
(8) Generate a random number 𝑟 ∈ 𝑈(0, 1).
(9) IF 𝑟 ≤ 𝑒

−Δ/𝑇 THEN
(10) 𝑆

󸀠
← 𝑆

(11) END IF
(12) END IF
(13) END FOR
(14) 𝑖 ← 𝑖 + 1

(15) ENDWHILE
(16) 𝑗 ← 𝑗 + 1

(17) ENDWHILE
(18) Calculate forces.
(19) Move particles.
(20) Reduce 𝑇.
(21) ENDWHILE

Algorithm 2: General procedure of the EMA-SA hybrid.

4.6.The EMA-VNSHybrid. EMAandVNS have already been
successfully combined for tackling problems [15]. Similar to
what was mentioned in the previous section, we combine the
EMA and VNS by replacing the simple local search in EMA
by the VNS.

The neighborhood structure in VNS is simple: a neighbor
to a solution 𝑆 is 𝑆󸀠 = 𝑁

2
(𝑆), which is generated by adding a

matrix 𝐷 of the same size as 𝑆 to 𝑆. The elements of 𝐷 are
normally distributed random variables with a mean of their
corresponding elements in 𝑆 and a variance of 𝜎 which is an
increasing function of, 𝑖, the VNS iteration number, denoted
by V(𝑖). Similar to what was mentioned above, the infeasible
generated neighbors are discarded. Therefore, the general
scheme of the EMA-VNS hybrid for a minimization problem
can be expressed in Algorithm 3 in which other calculations
are as in what was mentioned regarding the original EMA.

5. Numerical Results

5.1. A Small Test Problem. In order to investigate the pro-
posed model, a small test problem of size 4×4×2×2×2, that
is, 4 network nodes, 2 transportation modes, 2 products, and
2 periods, is studied. The problem is coded into LINGO 9.0
and solved by using a PC equipped with an Intel Atom CPU
N455 @1.66GHz and 2.00GB of RAM running Windows 7
Starter operating system. The obtained cost components are
presented in Table 2 and the optimal solution is depicted in
Tables 3 and 4 and illustrated in Figure 1. It should be noted
that the demand for both products in period 1 in City 3 is

Table 2: The obtained results for the global optimal solution to the
small test problem.

Cost component Value
Total system cost 184.15
Total facility maintenance cost 3.39
Total facility opening cost 101.02
Total facility closing cost 6.01
Total demand violation cost —
Total supply violation cost 11.79
Total transportation cost 37.22
Total congestion cost 24.73

Table 3: Facility open/close status for planning periods.

Facilities Period 1 Period 2
City 1 M M
City 2 ✓ M
City 3 ✓ ✓

City 4 M M

satisfied by the facility opened in that node. It is interesting
to see that the configuration of the network is changed in
the second time period in a way that the demand in City
1 is partially satisfied by products initially transported from
City 3 to City 4 and then to City 1. The obtained solution
may be justified by the model parameter data presented in
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1 2

3 4

1 2

3 4

2.95 units of product 1

1.95 units of product 1 1.59 units of product 1

0.95 units of product 1

and 1.95 units of product 2

and 1.95 units of product 2 and 0.81 units of product 2 

and 2.95 units of product 2 

using 41 vehicles of type 2

using 40 vehicles of type 1 using 20 vehicles of type 2 

using 33 vehicles of type 2 

0.36 units of product 1
and 0.14 units of product 2 
using 5 vehicles of type 2 

3.31 units of product 1
and 1.09 units of product 2 
using 44 vehicles of type 1 

Time period 1 Time period 2 

Figure 1: The illustration of the solution to the small problem.

(1) Initialize the parameters𝑚𝑎𝑥𝐼𝑡𝑒𝑟,𝑚𝑎𝑥𝑅𝑒𝑝, 𝐿𝑆𝐼𝑡𝑒𝑟 and the initial population
(2) 𝑡 ← 1

(3) WHILE 𝑡 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 DO
(4) 𝑗 ← 1

(5) WHILE 𝑗 < 𝐿𝑆𝐼𝑡𝑒𝑟 DO
(6) 𝑖 ← 1

(7) WHILE 𝑖 < 𝑚𝑎𝑥𝑅𝑒𝑝 DO
(8) FOR each particle 𝑆 in the populationDO
(9) Generate a solution 𝑆󸀠 = 𝑁

2
(𝑆) in the neighborhood 𝑆

(10) Δ ← 𝑓(𝑆

󸀠
) − 𝑓(𝑆)

(11) IF Δ ≤ 0 THEN
(12) 𝑆

󸀠
← 𝑆

(13) ELSE
(14) 𝜎 = V(𝑖)
(15) END IF
(16) END FOR
(17) 𝑖 ← 𝑖 + 1

(18) ENDWHILE
(19) 𝑗 ← 𝑗 + 1

(20) ENDWHILE
(21) Calculate forces.
(22) Move particles.
(23) 𝑡 ← 𝑡 + 1

(24) ENDWHILE

Algorithm 3: General procedure of the EMA-VNS hybrid.

the Appendix. The LINGO code is available upon requesting
the corresponding author.

In order to shed light on the impact of congestion
in SCND, the model is solved not considering the traffic
congestion cost. The results, presented in Table 5, indicate
that neglecting the congestion costs leads to an increase
in the total system cost. Moreover, by not considering the
congestion cost, total transportation cost decreases while
the total congestion cost increases. This translates to the
significant fact that slightly cheaper but more congested
routes are selected for transportation of products, and/or
cheaper transportation modes that have higher congestion
costs are preferred.

Here, the monetary value of time plays a significant role.
To show its effect, in another experiment the monetary value
of time is increased from 0.01 to 0.05 for the same test

problem. In this case, the result of neglecting the congestion
cost is a 3.66% decrease in total transportation cost and
13.87% and 34.00% increase in the total system cost and total
congestion cost, respectively. It is notable that the decrease
in total transportation cost is smaller and the increase in
the total system cost and the congestion cost is greater in
comparison to what is presented in Table 5 where monetary
value of time is 0.01.Therefore, the higher themonetary value
of time is, the more significant it is to consider the congestion
cost in SCND.

5.2. Comprehensive Experiments. In order to justify the pro-
posed model and the performance of the solution algorithm,
several test problems are solved and the results are presented
in this section. The test problems are categorized into three
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Table 4: Product flows for optimal solution.

Product flows Period 1 Period 2
Mode 1 Mode 2 Mode 1 Mode 2

From To Product 1 Product 2 Product 1 Product 2 Product 1 Product 2 Product 1 Product 2

City 1

City 1 — — — — — — — —
City 2 — — — — — — — —
City 3 — — — — — — — —
City 4 — — — — — — — —

City 2

City 1 — — 2.95 1.95 — — — —
City 2 — — — — — — — —
City 3 — — — — — — — —
City 4 1.95 1.95 — — — — — —

City 3

City 1 — — — — — — 1.59 0.81
City 2 — — — — — — 0.95 2.95
City 3 — — — — — — — —
City 4 — — — — 3.31 1.09 — —

City 4

City 1 — — — — — — 0.36 0.14
City 2 — — — — — — — —
City 3 — — — — — — — —
City 4 — — — — — — — —

Table 5: The impact of traffic congestion in SCND problem.

Cost component Value Value (neglecting congestion) Relative percent change
Total system cost 184.15 189.21 2.75%
Total facility maintenance cost 3.39 3.39 0.00%
Total facility opening cost 101.02 101.02 0.00%
Total facility closing cost 6.01 6.01 0.00%
Total demand violation cost — — 0.00%
Total supply violation cost 11.79 11.79 0.00%
Total transportation cost 37.22 35.78 −4.02%
Total congestion cost 24.73 31.22 20.79%

Table 6: The size characteristics of small, medium, and large test
problems.

Category |𝑁| |𝑀| |𝑃| |𝑇|

Min Max Min Max Min Max Min Max
Small 10 14 3 5 5 9 3 4
Medium 15 20 6 9 10 15 5 6
Large 11 25 10 13 16 20 7 10

groups based on their sizes: small, medium, and large. The
sizes of these test problems are shown in Table 6.

In order to further study different hybrids of EMA, a third
algorithm comprised of EMA and Tabu Search (TS) is added
to the comparison. Following the same structure explained
for EMA-SA and EMA-VNS, the local search procedure
in EMA is replaced with TS in EMA-TS hybrid. In each
problem category, 50 test problems are randomly generated
and solved 30 times by EMA-SA, EMA-VNS, and EMA-TS
hybrids and the original EMA. The hybrid of EMA and VNS
has been shown to outperform other well-known algorithms
in the context of SCND [15]. Therefore, to demonstrate the
performance of the proposed algorithms, they are used in the

comparison. All algorithms are coded by MATLAB R2013a.
In each problem category, the parameters of the algorithms
are tuned for the largest problem in the category by using
a factorial Design of Experiments (DOE) and the Response
Optimizer in MINITAB 16.

The overall performances of algorithms are compared in
Table 7 which provides the results for the experiments for
small, medium, and large problems and the corresponding
mean objective function values, the mean CPU times, and
the gap from the best results in each criterion. The statistical
significance of the gaps is tested by means of Wilcoxon and
the results indicate that the minimum significance is 5% for
the gaps. In addition, in this table, the best value in each
criterion for each problem group is indicated by boldface
numbers.

Generally, considering the solution quality, EMA-VNS
outperforms other algorithms (at the cost of a larger compu-
tational time), whilewith less computational effort (at the cost
of a lower solution quality), EMA performs better than other
algorithms.

In order to demonstrate the evolution of the objective
function, a problem instance from each problem category is



12 Mathematical Problems in Engineering

Table 7: The comparison of the algorithms regarding the objective
function and computational time.

Problem Algorithm OBJ TIME OBJ GAP CPU GAP

Small

EMA-SA 30203.0 83.15 0.000% 18.055%
EMA 39772.9 68.13 24.061% 0.000%

EMA-VNS 30276.3 108.82 0.242% 37.388%
EMA-TS 36967.8 75.91 18.299% 10.238%

Medium

EMA-SA 112212.6 1499.71 0.242% 12.167%
EMA 123348.4 1317.24 9.248% 0.000%

EMA-VNS 111941.0 1541.92 0.000% 14.571%
EMA-TS 121293.9 1493.37 7.711% 11.794%

Large

EMA-SA 237645.1 9048.42 0.004% 15.623%
EMA 250421.9 7634.80 5.106% 0.000%

EMA-VNS 237636.1 9825.95 0.000% 22.300%
EMA-TS 247392.1 10963.4 3.944% 30.362%

All

EMA-SA 124831.5 3477.21 0.053% 15.156%
EMA 135961.7 2950.21 8.235% 0.000%

EMA-VNS 124765.1 3754.09 0.000% 21.413%
EMA-TS 133328.5 4090.02 6.423% 27.868%

Table 8: The significance for Mann-Whitney test for MIC of the
algorithms.

Problem Algorithm EMA-SA EMA-VNS EMA-TS

Small

EMA-SA
EMA-VNS 0.0625
EMA-TS 0.0050 0.0129
EMA 0.0005 0.0085 0.4001

Medium

EMA-SA
EMA-VNS 0.4725
EMA-TS 0.0087 0.0105
EMA 0.0001 0.0001 0.1352

Large

EMA-SA
EMA-VNS 0.4047
EMA-TS 0.0000 0.0000
EMA 0.0002 0.0002 0.1086

All

EMA-SA
EMA-VNS 0.2568
EMA-TS 0.0000 0.0000
EMA 0.0000 0.0000 0.1947

Table 9: Transportation modes data.

Modes Mode traffic costs Mode capacities
Mode 1 1 0.1
Mode 2 1.5 0.12

solved by using all four algorithms.The algorithms are started
with the same initial population of solutions.The evolution of
the objective function value of the small, medium, and large
problem instance in each algorithm is depicted in Figures 4,
3, and 2, respectively.These figures show that the replacement
of the local search procedure in the EMA with SA and
VNS results in promising improvements in the quality of the
obtained solutions.
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Figure 2: The evolution of the objective function of the small
problem instance for the algorithms.
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Figure 3: The evolution of the objective function of the medium
problem instance for the algorithms.

In order to further investigate the performance of the
four algorithms, a slightly modified version of the Marginal
Improvement per CPU (MIC) criterion, originally proposed
by Osman [90], is utilized. The MIC for an algorithm 𝛼 in a
problem instance 𝜌 is calculated by the following equation:

MIC
𝛼𝜌
=

RPI
𝛼𝜌

CPU
𝛼𝜌

, ∀𝛼 ∈ 𝐴, ∀𝜌 ∈ 𝑃. (24)

In the above equation, RPI
𝛼𝜌

and CPU
𝛼𝜌

are the Relative
Percent Improvement (RPI) and the CPU for algorithm 𝛼

in a problem instance 𝜌, respectively. 𝐴 and 𝑃 are the set of
algorithms and the set of problems, respectively. The RPI is
given by

RPI
𝛼𝜌
=

𝑐

𝜌

𝑊
− 𝑐

𝛼𝜌

𝐵

𝑐

𝜌

𝑊
− 𝑐

𝜌

𝐵

× 100, ∀𝛼 ∈ 𝐴, ∀𝜌 ∈ 𝑃 (25)
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Table 10: The data for links traffic capacities.

Link traffic capacity City 1 City 2 City 3 City 4
Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

City 1 76 56 68 54 36 20 72 22
City 2 44 72 58 44 60 40 42 52
City 3 64 32 34 46 62 48 36 52
City 4 70 50 56 30 32 32 48 40

Table 11: The data for links basic flows.

Link basic flow City 1 City 2 City 3 City 4
Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

City 1 6 7 2 5 4 1 4 3
City 2 2 2 10 6 1 6 5 7
City 3 3 8 5 1 7 3 6 8
City 4 9 8 1 3 8 7 4 10
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Figure 4: The evolution of the objective function of the large
problem instance for the algorithms.

in which 𝑐𝜌
𝐵
and 𝑐𝜌
𝑊
are the best and theworst known objective

function values for problem instance 𝜌, respectively, and 𝑐𝛼𝜌
𝐵

is the best objective function value for problem 𝜌 obtained by
using algorithm 𝛼.

In order to compare the algorithm by using the MIC
criterion, a Mann-Whitney test (two-sample Wilcoxon test)
is utilized. The Mann-Whitney test is a nonparametric
hypothesis test which is utilized to determine whether two
populations have the same population median. This test
does not require the data to be sampled from normally
distributed populations.The 𝑃 values for Mann-Whitney test
for the medians of MICs for each pair of algorithms in each
problem category are given in Table 8. In this table, each value
represents the 𝑃 value for the following test:

𝐻

0
: 𝜂

𝑐
= 𝜂

𝑟

𝐻

1
: 𝜂

𝑐
> 𝜂

𝑟
,

(26)

where 𝜂
𝑐
is the median of the MIC of the algorithm in the

column and 𝜂
𝑟
is that of the one mentioned in the row of the

table. For example, the significance for the test

𝐻

0
: 𝜂EMA-SA = 𝜂EMA

𝐻

1
: 𝜂EMA-SA > 𝜂EMA

(27)

for the small problem category is equal to 0.0005 and can
be found in the fifth row and third column of Table 8. From
this 𝑃 value, it can be concluded that the null hypothesis
of equality of the MIC median for EMA-SA with that of
EMA is rejected with 99.95% confidence. Considering the
alternative hypothesis in (27), it can be concluded that EMA-
SA is superior to EMA according to MIC criterion.

From Table 8, it can be concluded that the difference
between the MICs of EMA-SA and EMA-VNS is not statisti-
cally significant. However, according to this table, EMA-VNS
and EMA-SA are both improvements of the EMA in terms
of MIC criterion. Furthermore, the MICs of EMA-SA and
EMA-VNS hybrids are higher than that of the hybrid of EMA
andTS (EMA-TS) and the difference is statistically significant
(at least with 90% confidence). In addition, although the
EMA-TSperforms better thanEMAconsidering the objective
function value, due to its relatively high computational effort,
the MIC of this hybrid is not higher than that of EMA.

The results presented in Table 8 show that the hybrid of
EMA andVNS outperforms other algorithms inmedium and
large instances (the most interesting) in terms of solution
quality. Given the timeframe of the SCND problem, the
execution time is not a concern; therefore, the EMA-VNS
hybrid is preferable in our case; however, if the target would
be a real-time application, then the EMA-SA hybrid may be
considered as the superior algorithm.

6. Conclusion and Future Works

In this paper, the designing of a multiproduct multimode
multiperiod supply chain network considering traffic conges-
tion and both supply-side and demand-side uncertainties is
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Table 12: The data for links free flow travel times.

Free flow travel time City 1 City 2 City 3 City 4
Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

City 1 1 8 9 9 3 3 2 9
City 2 1 9 1 6 9 2 2 6
City 3 9 6 7 9 2 5 8 10
City 4 4 8 6 6 7 7 9 2

Table 13: The data for transportation costs.

Transportation costs City 1 City 2 City 3 City 4
Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

City 1 Mode 1 0.044 0.705 0.971 0.744 0.857 0.492 0.118 0.429
Mode 2 0.796 0.434 0.962 0.714 0.877 0.297 0.11 0.456

City 2 Mode 1 0.526 0.166 0.997 0.152 0.692 0.744 0.066 0.351
Mode 2 0.106 0.745 0.987 0.893 0.129 0.496 0.501 0.399

City 3 Mode 1 0.176 0.486 0.376 0.356 0.058 0.434 0.402 0.013
Mode 2 0.687 0.132 0.895 0.128 0.274 0.3 0.109 0.131

City 4 Mode 1 0.694 0.751 0.602 0.285 0.916 0.048 0.273 0.442
Mode 2 0.568 0.022 0.346 0.564 0.139 0.381 0.189 0.61

Table 14: The data for facility costs.

Facility costs Maintenance cost Opening cost Closing cost
Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

City 1 0.405 3.883 80.098 77.651 0.810 7.765
City 2 2.169 4.858 43.383 97.153 4.338 9.715
City 3 0.382 0.837 57.640 36.748 0.764 1.675
City 4 2.982 1.404 59.642 28.082 5.964 2.808

investigated and an optimizationmodel is proposed. In order
to justify the proposed model, a small numerical problem
is solved by LINGO. The experiments with the numerical
example show that neglecting the congestion cost in SCND
results in preferring the cheaper but more congested routes
for transportation of products, and/or cheaper transportation
vehicles that have higher congestion costs are given prefer-
ence. This fact shows the significance of considering traffic
congestion in SCND.

In addition, to tackle the complexity of the larger prob-
lems, two hybrid Electromagnetism-Like Algorithms are
presented and several test problems are solved. The numer-
ical experiments results show that proposed algorithms are
promising.

The outcomes of the experiment with the small test prob-
lem yield the applicability of the proposed model in many
real-world situations.Therefore, one of future studies may be
comprehensive real case study and sensitivity analyses of an
application of the proposed model. Uncertainty may exist in
other parameters such as transportation costs. Therefore, a
possible future research may be the study of uncertainty in
parameters other than those considered in this research.

Table 15: The data for products demands.

Demand Product 1 Product 2
Period 1 Period 2 Period 1 Period 2

City 1 3 2 2 1
City 2 2 1 1 3
City 3 3 2 2 2
City 4 2 3 2 1

Appendix

The data for the small test problem are presented here.
The traffic capacity, transportation costs, link flows, and so
forth, from a city to itself, can be interpreted as the local
transportation properties such as total capacity of urban
roads within the city. Similar discussion can be presented
regarding the transportation costs, basic link flow, and free
flow travel times.

It should be noted that the aforementioned data are
generated randomly. In addition, the monetary value of time
and the interest rate are assumed to be constant for both
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Table 16: The data for products potential production capacities.

Demand Product 1 Product 2
Period 1 Period 2 Period 1 Period 2

City 1 8 10 6 6
City 2 8 8 8 6
City 3 6 8 6 8
City 4 6 6 8 6

periods and equal 0.01 and 0.1, respectively. 𝛼 and 𝛽 are set
to 0.15 and 4, respectively. Furthermore, all violation cost
coefficients for demand and supply are set to 1 and the spreads
for all fuzzy numbers are set to 0.1. The data are summarized
in Tables 9, 10, 11, 12, 13, 14, 15, and 16.
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gramming model to strategic planning problem of a lead/acid
battery closed-loop supply chain,” Journal of Manufacturing
Systems, 2014.

[9] S. J. Sadjadi, R. Soltani, and A. Eskandarpour, “Location based
treatment activities for end of life products network design
under uncertainty by a robust multi-objective memetic-based
heuristic approach,” Applied Soft Computing, vol. 23, pp. 215–
226, 2014.

[10] A. Osmani and J. Zhang, “Economic and environmental
optimization of a large scale sustainable dual feedstock
lignocellulosic-based bioethanol supply chain in a stochastic
environment,” Applied Energy, vol. 114, pp. 572–587, 2014.

[11] A. Hasani, S. H. Zegordi, and E. Nikbakhsh, “Robust closed-
loop global supply chain network design under uncertainty: the
case of the medical device industry,” International Journal of
Production Research, vol. 53, no. 5, pp. 1596–1624, 2014.

[12] R. Dubey and A. Gunasekaran, “Sustainable supply chain net-
work design: a case of Indian company,” International Journal of
Logistics Research and Applications, pp. 1–21, 2014.

[13] T. Boukherroub, A. Ruiz, A. Guinet, and J. Fondrevelle, “An
integrated approach for sustainable supply chain planning,”
Computers & Operations Research, vol. 54, pp. 180–194, 2015.

[14] M. Brandenburg, “Low carbon supply chain configuration for
a new product—a goal programming approach,” International
Journal of Production Research, pp. 1–23, 2015.

[15] K. Govindan, A. Jafarian, and V. Nourbakhsh, “Bi-objective
integrating sustainable order allocation and sustainable supply
chain network strategic design with stochastic demand using a
novel robust hybrid multi-objective metaheuristic,” Computers
& Operations Research, 2015.

[16] M. Eskandarpour, P. Dejax, J. Miemczyk, and O. Péton, “Sus-
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