
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 853845, 11 pages
http://dx.doi.org/10.1155/2013/853845

Research Article
Pattern Analysis of Driver’s ‘‘Pressure-State-Response’’ in
Traffic Congestion

Weiwei Qi,1 Yulong Pei,2 Mo Song,3 and Yiming Bie1

1 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2 College of Traffic, Northeast Forestry University, Harbin 150040, China
3Department of Automobile Service Engineering, Zhejiang Traffic Technician College, Jinhua 321000, China

Correspondence should be addressed to Weiwei Qi; qwwhit@163.com

Received 25 September 2013; Revised 4 November 2013; Accepted 10 November 2013

Academic Editor: Huimin Niu

Copyright © 2013 Weiwei Qi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Traffic congestion, which has a direct impact on the driver’s mood and action, has become a serious problem in rush hours in
most cities of China. Currently, the study about driver’s mood and action in traffic congestion is scarce, so it is necessary to work
on the relationship among driver’s mood and action and traffic congestion. And the PSR (pressure-state-response) framework is
established to describe that relationship. Here, PSR framework is composed of a three-level logical structure, which is composed
of traffic congestion environment, drivers’ physiology change, and drivers’ behavior change. Based on the PSR framework,
various styles of drivers have been chosen to drive on the congested roads, and then traffic stream state, drivers’ physiology, and
behavior characters have been measured via the appropriative equipment. Further, driver’s visual characteristics and lane changing
characteristics are analyzed to determine the parameters of PSR framework. According to the PSR framework, the changing law of
drivers’ characteristics in traffic congestion has been obtained to offer necessary logical space and systematic framework for traffic
congestion management.

1. Introduction

Traffic congestion has become a peculiar phenomenon in
rush hour of big city, and the rapid increasing number of
automobiles and comparable insufficiency of transportation
facilities are the direct reason [1]. So, scholars usually research
the causes, formation mechanism, and mitigation strategies
of traffic congestion from the perspective of traffic supply
and traffic demand. Arnott [2] established a bathtub model
of downtown rush-hour traffic congestion to perfect the
standard economic models of traffic congestion. Tsekeris and
Geroliminis [3] analyzed the relationship between land use
and traffic congestion by employing the macroscopic funda-
mental diagram, which constitutes robust second-best opti-
mal strategies that can further reduce congestion externali-
ties. Traffic congestion prediction plays an important role in
route guidance and traffic management [4], and many traffic
congestion prediction models have been proposed by schol-
ars, such as the nearest neighbor method [5], the ARIMA

(autoregressive integratedmoving average)model [6] and the
vector ARMA (autoregressive moving average) model [7].

Traffic congestion has brought huge economic losses and
adverse impact on the driver’s mood [8]. Traffic congestion
increases the drivers’ physiological pressures and the burdens
of visual cognition [9], which leads to risky driving behavior
[10]. So, “perception-judgment-decision” process reflects the
formation mechanism for the driving behavior in rush hour
of urban road.

According to statistical data, 70% of the driver’s per-
ception information is based on visual system, and many
studies have recorded and analyzed drivers’ eye movements.
Lansdown [11] completed a study in which visual allocation
and verbal reports were recorded to determine individual dif-
ferences in drivers conducting in-vehicle tasks. Underwood
et al. [12] argued that it was common sense that a driver must
look at the appropriate locations in a traffic scene in order to
gain information about risks and potential risks in the scene.
Benedetto et al. [13] obtained more short blinks that occur
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Figure 1: Model of driver’s “pressure-state-response”.

with an IVIS (in-vehicle information systems) interaction
during driving, while more long blinks arise as time spent
driving increases.

In various driving situations, drivers with higher trait
tendencies are considered more likely to experience frequent
and intense emotional states [14]. The influence of driving
anger tendencies on the driver’s behavior has not been clear.
Anger-prone drivers have reported driving at higher speed
and with less speed limit compliance as well as more near
accidents [15, 16], less concentration, and reduced vehicular
control while driving [14, 15].

So, traffic congestion would have a negative impact on the
mood of the drivers on urban road [8], which will be reflected
in the eye movements and driving behavior characteristics.
This paper attempts to explore the regular pattern for “traffic
congestion-eye movement-driving behavior.”

2. ‘‘Pressure-State-Response’’ Model of
Drivers in Traffic Congestion

In 1979, Rapport et al. [17, 18] proposed a PSR (pressure-
state-response) model and concluded that humans and all
other biota coevolve with their environments. Then, the PSR
model was widely used in ecological security assessment,
land quality assessment, evaluation of sustainable land use,
and ecosystem health assessment [19, 20]. In the state of
traffic congestion, the interaction between drivers and traffic
environment can be described through an improved PSR
model, as shown in Figure 1. So, the definition and structure
for the improved PSR model are the research focus of this
section. In order to explore the regular pattern for the
improved PSR model (pressure-traffic congestion, state-eye
movement, and response-lane changing), the frame model
in traffic congestion can be regarded as a three-level logical
structure, which can be explained as follows.

(1) Pressure-traffic congestion: drivers start a travel with
some purposes, and they want to drive under a
desired speed, but the traffic congestion will reduce
the speed of their vehicles. Daily driving, particularly
in congestion condition, can be viewed as a frequent
source of stress [21]. Therefore, the pressure can be
measured by the degree of traffic congestion.

(2) State-eye movement: it is the change of drivers’ physi-
ological indexes under the condition of traffic conges-
tion, which can bemeasured by driver’s visual charac-
teristics, such as fixation points’ distribution, fixation
duration, average saccade speed, average saccade ac-
celeration, blink duration, and blink rate.

(3) Response-lane changing: drives’ stress has been found
to subsequently influence mood, thoughts, feelings,
and behaviors [22].The response is the driving action
that drivers take under the specific physiological con-
dition due to traffic congestion, and the response can
be measured by driver’s lane changing characteristics.

3. Source Pressure for Drivers in
Traffic Congestion

Traffic congestion is the loss of travel time and running speed
for divers; thus, pressure coefficient𝜒𝑡0−𝑡𝑛press is defined to express
the stress that drivers are subjected to in traffic congestion.
Pressure coefficient𝜒𝑡0−𝑡𝑛press , which is the product of divers’ time
and speed, is a cumulative index due to traffic congestion
from 𝑡

0
to 𝑡
𝑛
in rush hour. It can be shown as follows:

𝜒
𝑡0−𝑡𝑛

press =
(∫
𝑡𝑛

𝑡=𝑡0

𝑉off-peak (𝑡) 𝑑𝑡 − ∫
𝑡𝑛

𝑡=𝑡0

𝑉rush (𝑡) 𝑑𝑡)

∫
𝑡𝑛

𝑡=𝑡0

𝑉off-peak (𝑡) 𝑑𝑡
, (1)

where 𝜒𝑡0−𝑡𝑛press is the pressure coefficient of drivers driving
on route 𝑆 from 𝑡

0
to 𝑡
𝑛
during rush hour, km; 𝑉rush(𝑡) is

the function of time, representing driving speed on route 𝑆
during rush hour, km/h; 𝑉off-peak(𝑡) is the function of time,
representing driving speed on route 𝑆 during nonrush hour,
km/h; 𝑡 is the travel time of drivers, h; 𝑡

0
is the departure time

of drivers on route 𝑆 during rush hour, h; 𝑡
𝑛
is the arrival time

of drivers on route 𝑆 during rush hour, h.
According to the definition of the pressure coefficient in

traffic congestion, it can be simplified as follows:

𝜒
𝑡0−𝑡𝑛

press =
[𝑉off-peak ⋅ (𝑡𝑛 − 𝑡0) − 𝑉rush ⋅ (𝑡𝑛 − 𝑡0)]

[𝑉off-peak ⋅ (𝑡𝑛 − 𝑡0)]
, (2)

𝜒
𝑡0−𝑡𝑛

press =
(𝑉off-peak − 𝑉rush)

𝑉off-peak
, (3)

where𝑉rush is the average speed of vehicles on route 𝑆 during
rush hour, km/h; 𝑉off-peak is the average speed of vehicles on
route 𝑆 during nonrush hour, km/h.

Evaluation questionnaire on traffic congestion is a draft
based on the definition of the pressure coefficient in traffic
congestion, and the analyzing results of 1000 questionnaires
are shown in Figure 2.The statistical results of 1000 question-
naires are fitted to normal distribution function (𝜇 = 0.5087,
𝜎 = 0.1361, and 𝑅2 = 0.9656); therefore, pressure coefficient
for the 85% cumulative frequency value is 0.65; thus 𝜒𝑡0−𝑡𝑛press =

0.65 can be treated as the threshold value to classify the road
traffic volume state. When 𝜒𝑡0−𝑡𝑛press < 0.65, traffic volume can
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Figure 2: Evaluation results of pressure coefficient in traffic congestion.

be regarded as being in general state; while 𝜒𝑡0−𝑡𝑛press > 0.65, it is
in the congested state. Next, the drivers’ visual characteristics
and lane changing characteristics will be compared separately
during the two states.

4. Driver’s Visual Characteristics in
Traffic Congestion

4.1. Experimental Design. Eighty drivers (30 females, mean
age = 33, min = 21, max = 50, and SD = 8; 50 males, mean
age = 36, min = 21, max = 58, and SD = 11) were recruited
and informed about the experiment’s general purposes. All of
them declared that they had valid Chinese driving licenses,
with a mean of 9 years of driving experience. The dynamic
visual characteristics of the drivers are selected as indicators
of “state” on the basis for pressure source of traffic congestion,
and the test scenarios of drivers’ visual characteristics are
shown in Figure 3. All participants were informed about the
possibility of giving up (without any consequences) at any
time if they did not feel comfortable during the experiment.
All of them finished the process about data recording of their
eye movements and driving performance in the general and
congested state (that two states are distinguished via formula
(3) and the threshold value of 𝜒𝑡0−𝑡𝑛press ).

Whether the change of drivers’ eye movements is obvious
and what kind of characteristics drivers’ vision may have in
traffic congestion are studied based on the test about the
eye movement characteristics of 80 drivers in general and
congested state via an SMI iView X HED head-mounted
monocular eye tracker. The test indicators (dependent vari-
ables) of participants’ eye movements are shown in Table 1.

4.2. Eye Fixation

4.2.1. Fixation Points’ Distribution. Similarities and differ-
ences of fixation points in general and congested state are
represented by the coordinates, and this indicates the spatial

Table 1: Indexes of drivers’ visual characteristics in general and
congested state.

No. Types of eye movements Indexes of eye movements

1 Fixation Fixation points’ distribution
Fixation duration

2 Saccade Average saccade speed
Average saccade acceleration

3 Blink Blink duration
Blink rate

distribution of the fixation points. 𝑥-axis of the horizon plane
is divided into 800 units and 𝑦-axis is divided into 600 units,
as shown in Figure 4. According to Figure 4, in general state,
fixation points of divers are mainly accumulated in an area
where 𝑥-axis is from 150 to 500 and 𝑦-axis is from 300 to 550,
while, in congested state, fixation points of divers are mainly
accumulated in an areawhere𝑥-axis is from 100 to 600 and𝑦-
axis is from 200 to 500. So, the space range of fixation points’
distribution in congested state is 1.7 times that of in general
state.

4.2.2. Fixation Duration. The fixation duration is an impor-
tant indicator of the drivers’ visual capacity allocation. And
the results of statistical analysis are shown in Table 2. The
mean value and standard deviation of the fixation duration
are different in general and congested state. From Figures 5
and 6, it can be concluded that the fixation duration in general
and congested state generally obeys log-normal distribution
other than normal distribution.

4.3. Eye Saccade

4.3.1. Average Saccade Speed. The statistical analysis results of
drivers’ average saccade speed are shown inTable 3.Themean
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Figure 3: Test scenarios of driver’s visual characteristics.
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Figure 4: Planar distribution characteristics of driver’s fixation points.

value and standard deviation of the average saccade speed
are higher in congested state than those in general state.
The average saccade speed in general and congested state
generally obeys normal distribution other than log-normal
distribution, as shown in Figures 7 and 8.

4.3.2. Average Saccade Acceleration. The statistical analysis
results of drivers’ average saccade acceleration are shown
in Table 4. The mean value and standard deviation of the
average saccade acceleration are different in general and
congested state. The average saccade acceleration in general
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Figure 5: P-P figure of normal distribution fitting.
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Figure 6: P-P figure of log-normal distribution fitting.
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Figure 7: P-P figure of normal distribution fitting.
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Figure 8: P-P figure of log-normal distribution fitting.
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Figure 9: P-P figure of normal distribution fitting.

and congested state does not obey normal or log-normal
distribution, as shown in Figures 9 and 10.

4.4. Eye Blink

4.4.1. Blink Duration. The statistical analysis results of
drivers’ blink duration are shown in Table 5. From Figures 11
and 12, it can be concluded that the blink duration in general
and congested state generally obeys log-normal distribution
other than normal distribution.

4.4.2. Blink Rate. The statistical analysis results of drivers’
blink rate are shown in Table 6.Themean value and standard
deviation of the blink rate are different in general and
congested state. From Figures 13 and 14, it can be concluded
that the blink rate in general and congested state generally
obeys normal distribution and log-normal distribution.

4.5. Significance Test. Based on the foregoing analysis, the
indicators of drivers’ visual characteristics could not meet
the requirements (normal distribution and variance homo-
geneity) for parameter test. Therefore, the nonparametric
test method (Mann-Whitney 𝑈 test) is selected to test the
difference significance for the indicators of drivers’ visual
characteristics in the general and congested state.

According to Table 7, the indicators of drivers’ visual
characteristics in the general and congested state are different
in difference significance. Among them, the difference for
the fixation duration and blink rate index is very significant
(𝑃 ≤ 0.01); the difference for the average saccade speed and
blink duration index is significant (𝑃 ≤ 0.05); but the differ-
ence for the average saccade acceleration index is not signif-
icant (𝑃 > 0.05). So, our research results suggest that traffic
congestion has a strong effect on driver’s visual characteris-
tics.
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Table 2: Results of statistical analysis on the fixation duration.

No. Sample Average Std. Deviation Kurtosis
1 General state 299 205 1.330 1.371
2 Congested state 271 229 1.550 1.486

Table 3: Results of statistical analysis on the average saccade speed.

No. Sample Average Std. Deviation Kurtosis
1 General state 122 69 0.191 −0.972
2 Congested state 146 81 −0.033 −1.072

Table 4: Results of statistical analysis on the average saccade
acceleration.

No. Sample Average Std. Deviation Kurtosis
1 General state 8704 5958 0.050 −1.333
2 Congested state 9129 6510 0.043 −1.463

Table 5: Results of statistical analysis on the blink duration.

No. Sample Average Std. Deviation Kurtosis
1 General state 212 97 0.736 −0.328
2 Congested state 202 94 0.856 −0.087

Table 6: Results of statistical analysis on the blink rate.

No. Sample Average Std. Deviation Kurtosis
1 General state 0.25 0.05 0.341 −1.130
2 Congested state 0.22 0.05 −0.140 −0.935

Table 7: Difference significance for the indicators of drivers’ visual
characteristics.

No. Index General state Congested state Sig.
Average Std. Average Std.

1 Fixation
duration 299 205 271 229 0.000

2 Average saccade
speed 122 69 146 81 0.019

3 Average saccade
acceleration 8704 5958 9129 6510 0.553

4 Blink duration 212 97 202 94 0.023
5 Blink rate 0.25 0.05 0.22 0.05 0.006

5. Lane Changing Characteristics in
Congested State

5.1. Types and Statistical Characteristics of Risky Lane Chang-
ing. While driving in crowded traffic flow, drivers are sub-
jected to the pressure of low speed, and they would change
lanes to improve driving condition and gain higher speed.
With the increase of congestion pressure,many drivers would
choose risky lane changing behaviors to obtain bigger space,
which may generate traffic conflicts. Risky lane changing
behaviors are divided into three types according to their
different characteristics.

(1) Lane changing directly: drivers directly import their
vehicles into the target lane even if the headway
does not meet the demands. It is a kind of risky
lane changing behavior that would lead to serious
conflicts.

(2) Lane changing pressingly: drivers continue to squeeze
their vehicles into the target lane even if the headway
does not meet the demands, and once enough space
is gained, they are imported into the target lane
immediately. It is a kind of risky lane changing
behavior that would lead to certain conflicts.

(3) Lane changing selectively: drivers’ vehicles and other
vehicles in the target lane run in parallel, and drivers
gradually turn their vehicles to the target lane even if
the headway does notmeet the demands. It is a kind of
risky lane changing behavior that would lead to slight
conflicts.

The statistical data of risky lane changing behaviors with
different traffic parameters is as shown in Table 8. In Figures
15(a) and 15(b), we see that traffic volume and speed have
the similar impact on the three types of risky lane changing
behaviors. The percentage of lane changing selectively rises
with the increase of traffic volume and speed, while the
percentage of lane changing pressingly falls. Farther, the
percentage of lane changing directly comes to its max value
in the middle value of traffic volume and speed.

5.2. Relationship between Frequency of Risky Lane Changing
and Traffic Conflicts. According to the selection of classifica-
tion indexes for risky lane changing behaviors, influences for
different types of risky lane changing behaviors on road safety
are different, and the frequencies of risky lane changing and
number of traffic conflicts per unit time at varied observation
points are shown in Table 9.

The frequencies of lane changing directly, lane changing
pressingly, and lane changing selectively are defined as
independent variable of𝑋

1
,𝑋
2
, and𝑋

3
; the number of traffic

conflicts is defined as a dependent variable of 𝑌. A linear
model of the traffic conflicts and different lane changing
frequencies is established by regression analysis on data of
Table 9. The model is shown in formula (4), and the value of
residual and standard residual of themodelwhich satisfies the
requirements is shown in Table 10:

𝑌 = 2.5𝑋
1
+ 1.4𝑋

2
+ 0.53𝑋

3
+ 13.29. (4)

According to the absolute value of the influence coeffi-
cient for all kinds of risky lane changing behaviors on traffic
conflicts, behavior of lane changing directly has the most
influence on road safety, in which drivers changing lane
directly for once can lead to 2.5 times of traffic conflicts in
average. Accordingly, behavior of lane changing selectively
has the least influence on road safety, in which drivers
changing lane selectively for once can lead to 0.53 times of
traffic conflicts in average.
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Figure 10: P-P figure of log-normal distribution fitting.
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Figure 11: P-P figure of normal distribution fitting.
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Figure 12: P-P figure of log-normal distribution fitting.
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Figure 13: P-P figure of normal distribution fitting.
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Figure 14: P-P figure of log-normal distribution fitting.
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Table 8: Statistical analysis of risky lane changing behaviors via different traffic parameters.

Type of risky lane changing Lane changing directly (%) Lane changing pressingly (%) Lane changing selectively (%)

Volume of traffic flow
(pcu/h/lane)

<100 19.71 47.18 33.11
100–250 27.31 42.34 30.35
250–400 30.29 37.92 31.79
400–550 25.78 34.55 39.67
550–650 21.38 31.41 47.21

Speed of traffic flow
(km/h)

<5 20.34 51.41 28.25
5–10 26.52 46.13 27.35
10–15 29.39 38.43 32.18
15–20 25.21 33.63 41.16
20–25 22.78 27.83 49.39

Table 9: Statistical analyses for frequencies of risky lane changing and number of traffic conflicts.

No. Frequencies of risky lane changing behaviors (times/h) Traffic conflicts (times/h)
Lane changing directly Lane changing pressingly Lane changing selectively

1 35 23 19 143
2 22 18 27 108
3 18 29 15 107
4 16 22 23 96
5 28 16 25 119

Table 10: Value of residual and standard residual of formula (4).

Prediction 𝑌 143.10 107.81 106.85 96.28 118.96
Residual −0.0986 0.1899 0.1532 −0.2801 0.0357
Standard residual −0.2555 0.4920 0.3968 −0.7257 0.0924

6. Conclusion

Drivers’ physical and mental health in traffic congestion
should attract more attention from traffic engineer and gov-
ernment administration. So, the impact of traffic congestion
on drivers’ eye movement and lane changing behavior has
been quantified via the PSR model in this paper. In addition,
the pressure coefficient has been defined to reflect drivers’
feelings about the degree of traffic congestion; that traffic
congestion has a strong effect on driver’s visual characteristics
has been proved via adequate data analysis; the risky lane
changing behaviors in traffic congestion have been specifi-
cally analyzed.

The comparative analysis of the dynamic visual character-
istics (fixation points’ distribution, fixation duration, average
saccade speed, average saccade acceleration, blink duration,
and blink rate) is done via the data being obtainedduring rush
hour. And, it is discovered that the eye movement character-
istics are different between the general and congested state.

The characteristics of the risky lane changing behaviors
are obtained through video monitoring, and the risky lane
changing behaviors on the pressure of congestion have been
divided into three types, and the proportion of the three types

of risky lane changing behaviors is analyzed by statistical
tools. Further, the linear relationship between the number of
the traffic conflicts and risky lane changing is established to
measure the security features for the risky lane changing in
the pressure of traffic congestion.
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