
A graph-based approach for designing
extensible pipelines
Rodrigues et al.

Rodrigues et al. BMC Bioinformatics 2012, 13:163
http://www.biomedcentral.com/1471-2105/13/163

Rodrigues et al. BMC Bioinformatics 2012, 13:163
http://www.biomedcentral.com/1471-2105/13/163

METHODOLOGY ARTICLE Open Access

A graph-based approach for designing
extensible pipelines
Maı́ra R Rodrigues*, Wagner CS Magalhães, Moara Machado and Eduardo Tarazona-Santos*

Abstract

Background: In bioinformatics, it is important to build extensible and low-maintenance systems that are able to deal
with the new tools and data formats that are constantly being developed. The traditional and simplest
implementation of pipelines involves hardcoding the execution steps into programs or scripts. This approach can lead
to problems when a pipeline is expanding because the incorporation of new tools is often error prone and time
consuming. Current approaches to pipeline development such as workflow management systems focus on analysis
tasks that are systematically repeated without significant changes in their course of execution, such as genome
annotation. However, more dynamism on the pipeline composition is necessary when each execution requires a
different combination of steps.

Results: We propose a graph-based approach to implement extensible and low-maintenance pipelines that is
suitable for pipeline applications with multiple functionalities that require different combinations of steps in each
execution. Here pipelines are composed automatically by compiling a specialised set of tools on demand, depending
on the functionality required, instead of specifying every sequence of tools in advance. We represent the connectivity
of pipeline components with a directed graph in which components are the graph edges, their inputs and outputs are
the graph nodes, and the paths through the graph are pipelines. To that end, we developed special data structures and
a pipeline system algorithm. We demonstrate the applicability of our approach by implementing a format conversion
pipeline for the fields of population genetics and genetic epidemiology, but our approach is also helpful in other fields
where the use of multiple software is necessary to perform comprehensive analyses, such as gene expression and
proteomics analyses. The project code, documentation and the Java executables are available under an open source
license at http://code.google.com/p/dynamic-pipeline. The system has been tested on Linux and Windows platforms.

Conclusions: Our graph-based approach enables the automatic creation of pipelines by compiling a specialised set
of tools on demand, depending on the functionality required. It also allows the implementation of extensible and
low-maintenance pipelines and contributes towards consolidating openness and collaboration in bioinformatics
systems. It is targeted at pipeline developers and is suited for implementing applications with sequential execution
steps and combined functionalities. In the format conversion application, the automatic combination of conversion
tools increased both the number of possible conversions available to the user and the extensibility of the system to
allow for future updates with new file formats.

Background
In silico experiments are performed using a set of com-
puter analysis and processing tools that are executed in a
specific order. To automate the execution of these tools,
they are usually organised in the form of a pipeline, so that
the output of one tool is automatically passed on as the

*Correspondence: maira.r.rodrigues@gmail.com; edutars@icb.ufmg.br
Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Av.
Antonio Carlos 6627, Pampulha, Caixa Postal 486, 31270-910, Belo Horizonte,
Brazil

input of the next tool. In such a process, it is helpful to
have tools that are designed in a way that guarantees the
interoperability of all execution steps. The interoperabil-
ity ensures that the output of a tool is processed by the
subsequent tool even if the output format of the former
does not match the input format of the latter. Aside from
enabling task automation and data flow control, pipelines
may be particularly advantageous if they allow an increas-
ing number of possible operations offered to the user by
combining different tools. For example, if we have four

© 2012 Rodrigues et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://code.google.com/p/dynamic-pipeline

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 2 of 11
http://www.biomedcentral.com/1471-2105/13/163

analysis tools: Blast [1], that finds sequence similarities
for a DNA sequence; CLUSTALW [2], which aligns a set
of sequences from different species; PHYLIP [3], which
finds phylogenetic relationships from sequences of dif-
ferent species; and PAML [4,5], that infers sites under
positive selection from a set of closely related sequences.
In addition to their individual functionality, we can com-
bine Blast, CLUSTALW and PHYLIP in a pipeline to find
possible phylogenetic relationships for a DNA sequence.
Alternatively, we can also compose a pipeline using Blast,
CLUSTALWand PAML to infer sites under positive selec-
tion. Because the output of Blast is not compatible with
the input of CLUSTALW, additional reformatting by ad
hoc scripts is required to ensure the interoperability of the
tools in the pipelines.
The traditional and simplest implementation of

pipelines involves hardcoding the execution steps into
programs or scripts. This approach leads to problems
when pipelines need to be expanded, because the addition
of new tools to such a pipeline is error prone and time
consuming. An experienced programmer is needed to
change the hard-coded steps of such pipelines to include
new tools in the pipeline while maintaining bug-free func-
tioning. These problems are a major concern not only
for bioinformatics laboratories that want to continuously
update their pipelines with new software developments,
but also for those who want to consolidate open and
cooperative systems [6,7].
An additional level of flexibility may be achieved by

workflow management systems such as Taverna [8],
Galaxy [9] and Pegasus [10] that are well suited for analy-
sis tasks that are systematically repeated without changes
in the course of execution, such as genome annotation
[11,12] and the tasks registered at the myExperiment
website [13]. Some workflow management systems also
support dynamic execution of workflows, such as Kepler
[14] and others [15], where dynamism occurs during the
mapping and execution phases of the workflow’s life cycle
[15] mainly for the instantiation of workflow components
based on a high-level workflow description and data type
compatibility verification. In these systems, the compo-
sition of the high-level workflow description is usually
left to the user, which can either assemble his own group
of tools or reuse an existing workflow description. How-
ever, in applications in which tools can be combined in
different ways into a pipeline, it is difficult for the user
to keep track of all possible combinations. This requires
an automatic approach one level above execution, dur-
ing the composition of the pipeline. This type of situation
arises, for example, in format mapping, i.e., the conversion
between software file formats that relies on a combina-
tion of conversion tools to map one format into another.
Consider, for example, the following conversion system:

tool Tαβ maps format α into format β , tool Tβγ maps for-
mat β into format γ , and Tβδ maps format β into δ. A
workflow approach to implement such a conversion sys-
tem requires the creation of five different workflows, one
for each possible mapping (that is, α to β , α to γ , α to δ,
β to γ and β to δ). In this case, to convert α into β , we
would haveWαβ(Tαβ); to convert α into γ , we would have
Wαγ (Tαβ ,Tβγ); and to convert α into δ, we would have
Wαδ(Tαβ ,Tβδ). If a new conversion tool is added into this
system, such as Tδε , additional workflows are needed to
implement the new functionality (in this case, Wδε , Wαε

and Wβε). Without an automated process for composing
workflows, these new workflows have to be created by
users or by the system’s developers. In this case, the ideal
solution would employ pipelines that are arranged “on the
fly” in an automatic way, depending on the functionality
required, instead of being statically programmed into a
limited set of workflows.
In this paper, we propose a graph-based approach to

design extensible pipelines. This approach is a solution
for pipeline applications with multiple functionalities that
require different combinations of steps in each execu-
tion. By automatically combining tools on demand into
a pipeline according to the required functionality, it
becomes unnecessary to specify every potential sequence
of tools beforehand. For developers, this allows the imple-
mentation of low-maintenance bioinformatics pipelines.
Also, users do not have to compose a pipeline for every
different task, since all possible compositions are automat-
ically available to the user. Extensibility is achieved once
new tools are easily added to the pipeline system without
any necessary change on the system’s code. In this way, the
system can expand and the number of tools that it com-
prises can increase without the need for a specialised user
with programming skills. To that end, we have developed
special data structures and a pipeline system algorithm.
We demonstrate the applicability of our approach by
implementing a format conversion pipeline for the fields
of population genetics and genetic epidemiology.

Results
We represent the connectivity of pipeline components
(programs) with a directed graph. If there is an edge e con-
necting two nodesV1 and V2 in a graphG, with e acting as
the incoming edge of V2 and the outgoing edge of V1, then
e is a component that receives input V1 and that generates
output V2. Pipeline components are programs (generally
called tools), and they receive one ormore inputs, perform
some processing on these inputs and generate one ormore
outputs. Inputs and outputs are data file types. In terms
of bioinformatics pipelines, graph edges are tools such as
Blast and CLUSTAL, as well as tools that guarantee inter-
operability. Nodes represent the input and output formats

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 3 of 11
http://www.biomedcentral.com/1471-2105/13/163

required or generated by these tools (e.g., AASeq, NNSEq,
and FASTA).
A path in the graph is any sequence of nodes connected

by edges leading from one node to the next. This sequence
of nodes can also be seen as a sequence of the edges that
connect them. Therefore, a path through the graph con-
necting an input X to an output Y represents a pipeline,
a sequence of tools, that must be executed to generate Y
from X.
To implement the graph-based approach, we developed

(i) a data structure called a Tool Registry, which contains
information about the tools, such as the inputs that they
receive, the outputs that they generate and the names
of their executable file, among other information, and
(ii) a pipeline system algorithm, which creates a graph
representation of the tool registry, finds a path through
the graph and generates an executable function-specific
pipeline.
The pipeline system algorithm is illustrated in

Figure 1(1-4) and works generally as follows: (1) it receives
as input the start and end points of the pipeline, which
are, respectively, the original file to be processed and the
desired resulting file, as well as the tool registry; (2) it
builds a directed graph based on the registry file, using

inputs and outputs as nodes and tools as edges connecting
their respective inputs and outputs; (3) it applies a graph-
traversing procedure to find a path through the graph
connecting the start and end points, which represents
the execution steps of a pipeline for a specific processing
task; and (4) it returns this pipeline in an executable for-
mat. In Figure 1, letters represent data file types that are
processed by bioinformatics tools. Although it is a simpli-
fication of real world cases, the illustration is intended to
show how the connectivity among tools is represented in
the graph, based on the descriptions on the Tool Registry.
In case there are alternative paths (or pipelines) available

for the required processing task, the graph-traversing pro-
cedure selects the best one according to some criterion.
We defined two alternative criteria for the best pipeline:
performance, as measured by the speed of the pipeline,
and input dependencies, according to which the selected
pipeline is the one requiring the smallest number of input
files. These criteria are called weight criteria (wt). The per-
formance criterion in calculated on the basis of the tool’s
response time for processing one or more input files of a
specific size (see the Additional file 1 for more details on
this calculation). The choice for one criterion or another
can be presented to the system’s user, or the decision can

Figure 1 Graphic representation of the pipeline system algorithm. Graphic representation of the pipeline system algorithm. (1) algorithm
inputs: start and end points, A and F (which are data formats), for a specific processing task, and the tool registry file; (2) directed graph built based
on information from the tool registry, where regular nodes represent inputs and outputs, edges represent tools (denoted by their Code) and have a
specific weight (wj), and double circled nodes represent input dependencies (XI) or secondary outputs (XO); (3) path through the graph connecting
the start and end points, PA,F((A, B), (B, C), (C, E), (E, F)), generated by a graph-traversing procedure; (4) executable task-specific pipeline, which
specifies the required inputs for the pipeline (file .inputs), the sequence of tools to be run (file .exec) and the output file (file .outputs).

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 4 of 11
http://www.biomedcentral.com/1471-2105/13/163

be made by the system’s designer beforehand. We discuss
the use of different selection criteria in Section Discus-
sion. The components of our graph-based approach and
the steps through the algorithm are explained in detail
next.
We use the following notation to represent spe-

cific graph elements: esource,target, where e is the edge
that connects a source node to a target node, and
Pstart,end((start, node1), . . . , (noden, end)), where Pstart,end
is a path through the graph that begins at the start node
and finishes at the end node passing by zero or more
nodes.

The tool registry
All information about the tools that are part of the
pipeline system is stored in a Tool Registry. Each entry on
the registry describes a particular tool with the following
attributes (see Figure 1(1) for a partial representation): the
input that it accepts (Input), which is a file type; the out-
put that it generates (Output), which is also a file type;
its executable file name (Tool); its programming language
(Language); an identification number (Code); a list of extra
input file types required to run it (XI or input dependen-
cies); a list of secondary output file types generated by the
tool (XO or subproducts); a performance measure indi-
cating its average execution time (Performance); free text
observations that the tool provider thinks the user should
know in order to run it (Observations); and the provider’s
name (Provider) and contact information (Contact). This
information must be given by the tool provider before it
is added as a new component of the pipeline system. A
complete sample file is provided in the Additional file 1:
Table S1.
New tool versions can be added to the registry with a

new tool name. If the input and output file types from both
versions are the same, the algorithm would find both tools
as alternative paths and choose the one with best perfor-
mance. If the input or output is different from the previous
version, new format type names must be provided at the
new version’s entry on the registry.

Pipeline components
Pipeline components are programs or scripts that receive
one or more inputs, perform some processing on these
inputs and generate one or more outputs. To generate
executable pipelines automatically, we define a specific
format for the command line calls used to invoke the
pipeline components:

<Tool> <Input> [Input1..n] <Output>
[Output1..n]

Here, Input and Output are the tool’s parameters
stored in the tool’s entry in the Tool Registry. Parame-
ters in square brackets are optional and correspond to
the tool’s extra inputs and secondary outputs. We dis-
cuss an extension to this command line format in Section
Discussion.

Pipeline system algorithm
To generate an executable pipeline for a specific func-
tionality, such as converting data file A to data file F, our
pipeline system algorithm builds a directed graph on the
basis of the tool registry, and it finds a path through this
graph using the original input to be processed (A) as start
point and the desired output (F) as the end point. This
path represents a pipeline where the sequence of edges in
the path is the sequence of tools to be run. This process is
illustrated in Figure 1 (and a formalisation of the algorithm
can be found on the Additional file 1).
The algorithm receives as input the start and end points,

the tool registry file (toolRegistry) and the weight criterion
to be applied to the graph edges (wt). It starts by building
a directed graph G based on the information in the tool
registry file. This process is accomplished by taking each
entry in the tool registry, represented by E1, . . . , Ej, and
parsing it into a tuple Ej(i, o, t, l, c,XI,XO, f , b, r, e), where
each element corresponds to a field (or column) in the tool
registry. It then adds the input and output information,
Ej[i] and Ej[o], as nodes in graph G and the tool’s name,
Ej[t], as an edge connecting its respective input and out-
put. If the input and output file types of a specific tool are
the same, an edge is created in the same way as before. In
this case, edge’s source and target nodes will be the same.
Provided that a tool to trim or filter files of the same type,
generating an output file with different content but of the
same file type as the input, is included in the Tool Reg-
istry, our solution allows adding tools that perform these
tasks. To each edge, we assign a weight wj that is calcu-
lated according to the chosen criterion (wt) for selecting
among multiple paths. If wt is performance, then wj is the
performance measure Ej[f]; if wt is dependencies, then wj
is the length of the input dependencies list for that tool,
length(Ej[XI]).
After that, the same process is repeated for adding to the

graph both the list of input dependencies (Ej[XI]) and the
list of secondary outputs (Ej[XO]) for all tools. The only
difference is that the graph edges connecting extra inputs
and outputs to other nodes receive a symbolic zeroweight,
since they do not account for any processing task. Also,
if a node is equal to an extra input or to an extra output
already found in G, an alias is created (a numerical index)
so that these extra input or output nodes can be added to
the graph (such as A1 if G already contains a node A).
With the tool registry represented as a directed graph,

the algorithm then searches for a path (P) to connect

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 5 of 11
http://www.biomedcentral.com/1471-2105/13/163

the start and end points (such as data files A and
F , in Figure 1). This process is accomplished using a
graph-traversing shortest path procedure that implements
Dijkstra’s shortest path algorithm (we have tested the
implementation of other shortest path algorithms such as
Bellman-Ford, but they did not show any difference in
performance). If a path exists, it represents the sequence
of tools that need to be run to generate the desired
output. This process is illustrated in Figure 1(3), where
the path connecting the start and end points A and F
is PA,F((A,B), (B,C), (C, E), (E, F)), and its corresponding
tool path is PA,F ((TAB), (TBC),(TCE), (TEF)). If no path is
found, then there is no available pipeline for the required
processing task. On the other hand, if there is more than
one possible path connecting the start and end points,
the shorted path procedure chooses the path with the
smallest sum of its composing edges’ weights. As men-
tioned before, this process entails selecting the path that
will result in a pipeline composed of the best performing
scripts (when the performance criterion is used) or requir-
ing less user intervention (if the dependency criterion is
used).
After finding the pipeline for the required processing

task, the algorithm generates an executable version of this
pipeline. This process is illustrated in Figure 1(4). The
executable version indicates the inputs required to run
the pipeline (file .inputs), the command line call for each
tool (file .exec), and the outputs that are generated (file
.outputs).
Required inputs (which we call list LI) include, in

addition to the original file to be processed, the input
dependencies that might exist for each tool that will
run in the pipeline. For example, of all the tools in
PA,F ((TAB), (TBC), (TCE), (TEF)), TCE (or E4[t]) is the
only one with an extra input file E4[XI]= {Y }. This
information is extracted from the Tool Registry. Thus,
LI = {A,Y }. Similarly, the output files of the pipeline
(which we call list LO) include, in addition to the desired
output file, any secondary outputs thatmight be generated
by each tool in the pipeline. For example, in PA,F , none of
the tools has an extra output file; in this case, LO = {F}.
These lists of inputs and outputs are used to generate the
files .inputs and .outputs.
In the file .exec, tools are invoked by a command line

call with the following format (see Section Pipeline Com-
ponents):

En[l] En[t] En[i] En[XI[1..k]]
En[o] En[XO[1..k]]

where En[l] is the programming language call, En[t] is the
executable name, En[i] is the input, and En[o] is the out-
put for all En[t]∈ P. The parameters En[XI[1..k]] and
En[XO[1..k]] are optional and represent extra inputs and
secondary outputs for each tool.

Running the executable function-specific pipeline
The executable function-specific pipeline in the .exec file
can be run as a shell file or incorporated into another
application as a set of system calls. The user just needs
to provide the required input files (in file .inputs). Tools
in the .exec file execute locally on the same machine.
Since our pipeline design approach focuses on pipeline
composition instead of execution, we have adopted a sim-
pler execution mechanism. For error control, we provide
a .err file, which stores error messages generated during
the execution of the function-specific pipeline. Quality
control procedures for input data must be implemented
within each independent tool by its provider, since each
processing task or data format will have its own require-
ments. This type of setup helps to maintain the system’s
modularity and extensibility.
For a broader application that requires a more user-

friendly interface, the three files generated by the pipeline
system algorithm can be easily incorporated into a graph-
ical interface to create an interactive pipeline. An example
of an interactive pipeline system written in PHP is pro-
vided at the project’s website and is described in Section
A format conversion pipeline application. This web-based
system reads the .inputs file and presents to the user
an upload page requiring all inputs specified in this file.
When all required inputs are uploaded into the system, it
executes all system calls in the file .exec, in order. After
the last system call is finished, the interface system reads
the file .outputs and presents the user with a link to each
of the output files specified in the list. A similar proce-
dure can be used to incorporate the pipeline system into a
standalone application.

Adding new tools
To add a new tool to the pipeline system, a new entry
must be added in the Tool Registry containing the infor-
mation about the new tool, therefore, no programming is
required. This update can be performed directly by the
tool’s developer or by the system’s administrator upon
request from the tool’s developer that, in this case, must
send all the required information about the tool. The ordi-
nary user sees only the final result and the next time that
he uses the pipeline system, the new tool’s functionality
will be considered as part of the pipeline composition.
This is possible since our pipeline system algorithm auto-
matically and on demand generates the tool graph includ-
ing this information. The only requirement for adding a
tool to a pipeline system implemented with our algorithm
is that it must follow the command line format described
earlier in Section Pipeline components . Also, if the new
tool requires a file type that is not already specified in
the pipeline system, it is recommended that the developer
provides a sample of such an input file so that a benchmark
can be run to determine the tool’s performance.

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 6 of 11
http://www.biomedcentral.com/1471-2105/13/163

A format conversion pipeline application
We applied our graph-based approach to implement an
automatic pipeline system for data format mapping in
the fields of population genetics and genetic epidemiol-
ogy. These fields, and others such as gene expression and
proteomics analyses, require a specific set of data analy-
sis procedures that use several different software packages
[16-18]. Since most of these programs are not compatible
in terms of accepted input and output formats, solutions
to allow interoperability are required. We proposed else-
where [19] a conversion pipeline to solve this interoper-
ability problem in the context of DNA re-sequencing data.
This conversion pipeline is composed of a set of scripts
that convert one specific format to another. By combin-
ing such specialised scripts in a pipeline, we increase the
number of possible conversions that are available to the
user. In the [19] pipeline, however, possible combinations
of scripts are hard-coded into the system, and thus, exten-
sion with new tools is costly because of the need for
an experienced programmer to alter all of the pipeline
code. To avoid this problem, we applied our graph-based
approach to implement a dynamic version of this con-
version pipeline. By combining the conversion scripts on
demand into a pipeline based on the specific conversion
required, it becomes unnecessary to specify beforehand
the sequence of scripts for performing every possible con-
version. We also added new tools to the original pipeline
to increase the scope of its functionality.
Currently, our format conversion pipeline handles data

formats that are compatible with the following soft-
ware: PolyPhred (for polymorphism identification from
aligned raw sequences reads), PHASE (to infer chro-
mosome phase), DnaSP (for general population genetics
analysis), Structure (for population structure inferences),
Sweep (for natural selection inferences), Haploview (for
linkage disequilibrium analysis) and R-based tools for
population genetics and genetic epidemiology such as
HierFstat (for inferences about population structure)
(more information about these software packages is avail-
able as Additional file 1). The pipeline also handles
general purpose file formats such as SDAT, NEXUS
and PrettyBase. It comprises 15 conversion tools imple-
mented in Perl, which allow for 26 possible format
conversions.
To make the format conversion pipeline interactive and

available online, we implemented our pipeline system
algorithm as part of the web interface shown in Figure 2.
Its website is hosted at http://pggenetica.icb.ufmg.br/
divergenome/pagina/dynamicpipeline/tools.php. The al-
gorithm is invoked after the user selects the input format
and desired output format (Figure 2, top). Examples of
the file formats are available at our re-sequencing pipeline
website (http://www.cebio.org/pipelineldgh/). The tool
registry for this application is shown partially on Table 1

and in more detail in the Additional file 1: Table S1. The
registry is used by the pipeline system algorithm to gen-
erate the graph in Figure 3. Here, graph nodes represent
data formats, and edges represent the conversion tools’
codes with their corresponding weights. In our applica-
tion, we used the performance criterion for selecting the
best path among alternatives. Thus, edge weights are the
performance measures that are specified for each tool
in the tool registry. Note that extra inputs and outputs
are represented by double circled nodes, as before, and
they are renamed by adding a numerical index to their
format name, in case they already appear in the graph
(such as SDAT1, SDAT2 or NEXUS1). The weights of
the latter incoming or outgoing edges are set to 0 since
they do not account for any processing task. To demon-
strate the functionalities provided by our automatic
pipeline approach, we present three different potential
usage scenarios.

SDAT to R-HierFstat
First, let us suppose that, in a population genetics study,
a researcher downloaded a dataset in SDAT format, con-
taining a matrix of genotypes per sample and locus, and
now the researcher wants to perform an analysis with the
R package HierFstat to compute and test fixation indices
for any hierarchical level of population structure. Since the
SDAT format is not a valid input for HierFstat because
the latter requires additional population information, the
user needs to convert the SDAT format. To perform
this conversion, the user chooses the two file formats of
interest on the web interface shown in Figure 2 (top, in
green), SDAT and RHierfstat. As visualised in the graph in
Figure 3 (green arrows), there are two possible paths for
this conversion: P1((SDAT ,RHfs)) or P2((SDAT ,NEXUS),
(NEXUS,RHfs)). From these, the first path is chosen since
its sum of edge weights (0.15) is smaller than that of the
second path (0.36), meaning that the pipeline correspond-
ing to the former path is the fastest. The tool path for this
selected path is P1((SDAT2Rhierfstat.pl)) (see Table 1,
line 4).
The tool path P1 is used by the pipeline system algo-

rithm to generate the executable pipeline for the specific
conversion, as described in Section Pipeline system algo-
rithm. The three output files of the executable pipeline
are shown in Table 2 (top). They are handled internally
by the system and the users see only the final web inter-
face. Upload boxes for each required input are built into
the interface based on the .inputs file (Figure 2, left).
Each SDAT file corresponds to different populations that
should be included in the study. Although for simplicity
we show only one extra SDAT file for the tools convert-
ing from SDAT to RHierFstat in Table 1 and Figure 2, in
practice these tools currently accept up to five popula-
tions. After these input files are uploaded, the interface

http://pggenetica.icb.ufmg.br/divergenome/ pagina/dynamicpipeline/tools.php
http://pggenetica.icb.ufmg.br/divergenome/ pagina/dynamicpipeline/tools.php
http://www.cebio.org/pipelineldgh/

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 7 of 11
http://www.biomedcentral.com/1471-2105/13/163

Figure 2Web interface for our format conversion pipeline. Three scenarios are depicted: a conversion from SDAT format to R HierFstat format
(denoted in green); a conversion from the PolyPhred output format to the Structure input format (denoted in purple); and a conversion from the
PHASE output format to DnaSP input format or Fasta format (denoted in blue).

reads the .exec file, runs it as a shell file, and presents the
output files in .outputs as links for the user to download
from.

PolyPhred to structure
In the second scenario, the software package Phred-
Phrap-Consed-PolyPhred is used for variation screening
and one follow up analysis is to infer population structure
using the program Structure. This may be useful, for
example, if a set of linked chromosome regions have been

re-sequenced in a set of individuals, and the linkagemodel
of Structure [20] is intended to be used to explore the
population structure of this genomic region. The output
and input files generated and accepted by these two soft-
ware programs are not compatible, and thus, the user
needs to convert the output of the end-line software
PolyPhred, containing individual genotypes and, into the
input for Structure. To do so, the user chooses the two file
formats of interest on the web interface shown in Figure 2
(top, in purple), PolyOut and Structure Format.

Table 1 Tool Registry example for format conversion pipelines

Input Output Tool Language Code XI XO Performance

PolyPhred PrettyBase PolyPhred2PrettyBase.pl perl 1 - - 0.004

PrettyBase SDAT PrettyBase2SDAT.pl perl 2 - - 0.01

SDAT StructureFormat SDAT2Structure.pl perl 5 - mainparam, 0.15

extraparam

SDAT RHierfstat SDAT2Rhierfstat.pl perl 7 SDAT - 0.02

PHASEOUT Fasta Phase2Fasta.pl perl 9 Fragments, - 0.02

RefSeq

Columns Input and Output are file formats that are accepted and generated by a conversion tool; Tool and Language are the conversion tool’s name and its
programming language; Code is the identifier of the tool; XI is the list of extra input files required for the tool’s execution; XO is the list of extra output files that is
generated by the tool; and Performance is a measure related to the tool’s execution time. Other information not represented on this table can be found in the
Additional file 1: Table S1.

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 8 of 11
http://www.biomedcentral.com/1471-2105/13/163

Figure 3 Tool Graph for our format conversion pipeline system. Nodes are popular data formats from population genetics and genetic
epidemiology. Edges are labelled with the conversion tool’s Code and have an associated weight (represented in round brackets) indicating the
tools’ performance.

The path found by our algorithm, shown in pur-
ple arrows in Figure 3, is P3((PPout,PBase), (PBase,
SDAT), (SDAT, STRin)), which corresponds to the tool
path P3((PolyPhred2PrettyBase.pl), (PrettyBase2SDAT.pl),
(SDAT2Structure.pl)) (see Table 1). The executable
pipeline that is generated by our algorithm for the specific
conversion and implementation of this tool path is shown
in Table 2 (centre). Note that this pipeline requires only
one input file but generates three output files, which are
displayed in Figure 2 (centre). This is because the end-line
tool SDAT2Structure.pl in P3 has two extra output files
(mainparam and extraparam), which are necessary to run
the program Structure.

PHASE to DnaSP
For the third scenario, we take the fact that, in population
genetics studies, it is common to run the software PHASE
to infer haplotype phase and then perform general pop-
ulation genetics analysis with the program DnaSP. Since
the input and output of these software tools are not com-
patible, the user needs to convert the output of PHASE,
containing phased polymorphic sites, to the input format
for DnaSP, a Fasta file. This conversion can be accom-
plished by selecting the two file formats of interest on
the web interface shown in Figure 2 (top, in blue). The
path found by our algorithm that connects PHASE output
format (PHout) and Fasta format is depicted in Figure 3
with blue arrows and is formalised as P4((PHout, Fasta)).
Its corresponding tool path is P4(Phase2Fasta.pl) (see
Table 1, line 5). The executable pipeline generated by the
algorithm for the specific conversion is shown in Table 2

(bottom). It requires three input files, (the PHASE out-
put, Fragments, and RefSeq), and generates one output file,
(the Fasta file). This is because the tool Phase2Fasta.pl has
two extra input files, which are necessary to build the new
Fasta sequence (see [19] for details).

Discussion
Building extensible systems is essential to ensure that new
tools and data formats can be used with existing systems.
This principle applies to the design of pipelines, a com-
mon task in most bioinformatics laboratories. Here, we
propose a graph-based approach to this view of exten-
sible pipelines, in contrast to traditional ad hoc pipeline
designs.
Our approach is suitable for sequential pipelines in

which each execution requires different combinations of
steps through the pipeline. We have shown one such
pipeline application for format mapping for population
genetics and genetic epidemiology analyses. This pipeline
provides 26 possible format conversions that originate
from the combination of 15 independent conversion tools.
By combining these scripts on demand into a pipeline
according to each required conversion, it is not nec-
essary to specify every possible combination of scripts
beforehand. Moreover, with the graph-based implemen-
tation, new format conversion tools can be easily incor-
porated, and the system can stay updated. For instance,
our group is developing conversion tools compatible
with the SAM formats created by the 1000Genomes
Project team [21]. Our approach also allows prompt
integration of third party conversion tools developed

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 9 of 11
http://www.biomedcentral.com/1471-2105/13/163

Table 2 Executable pipelines for three usage scenarios

File Code

SDAT to R HierFstat

.inputs SDAT02

SDAT202

.exec perl SDAT2Rhierfstat.pl SDAT02
SDAT202 RHierfstat02

.outputs RHierfstat02

PolyPhred output to Structure

.inputs PolyOut01

.exec perl PolyPhred2PrettyBase.pl PolyOut01
PrettyBase01

perl PrettyBase2SDAT.pl PrettyBase01
SDAT01

perl SDAT2Structure.pl SDAT01 Struc-
tureFormat01 mainpar01 extrapar01

.outputs StructureFormat01

mainparamt01

extraparam01

Phase to Fasta

.inputs PHASEOUT03

Fragments03

RefSeq03

.exec perl Phase2Fasta.pl PhaseOut03 Frag-
ments03 RefSeq03 Fasta03

.outputs Fasta03

Executable pipelines for file-format conversions: (top) SDAT format to R Hierfstat
input format; (centre) PolyPhred output format to Structure input format; and
(bottom) software PHASE output format to Fasta format. In practice, input and
output files handled by the pipeline system are renamed to include a timestamp
identifier of each specific pipeline (such as numbers 01, 02 and 03 above). This
guarantees that inputs and outputs stored in the system are unique for each
dynamically generated pipeline.

by collaborators or available in public software reposi-
tories. The process of third-party adding new tools to
the system was tested with the tools SDAT2Rgenetics.pl,
SDAT2Rhierfstat.pl and SDAT2NEXUS.pl which were
later incorporated by different group members of
our laboratory.
Notably, when planning the addition of a new tool

to the pipeline system, it is possible to take advantage
of graph properties such as node connectivity to max-
imise the number of new functionalities. For example,
taking our application graph in Figure 3, it is clear that
if you develop a conversion tool that maps formatX into
the NEXUS format, you gain only one additional con-
version when adding this tool to the system (that is,
formatX to RHfs). On the other hand, if you develop
a conversion tool mapping formatX into SDAT format,
you gain 6 additional conversions (that is, formatX to

PBase, PHin, STRin, NEXUS, RHfs and RGen). We pro-
vide a java program in the project’s website (http://
code.google.com/p/dynamic-pipeline/) to help with this
analysis.
In contrast, to implement the same format conversion

pipeline with a workflow management system [8,9], it
would be necessary to create a separate workflow for
each possible inter-format conversion. Also, these work-
flow management systems are more frequently used in
genomic sciences and focus on workflow execution, while
their users (or their bioinformatics assistants) have to
select and combine their specific components. Another
example is the Pegasus framework [10], which is very
robust on managing workflow execution but does not
address the problem of automatic composition. Differ-
ently, our approach has been developed keeping in mind
users who may not be necessarily bioinformatics experts
and who require assistance on the combination of tools
to be used in a specific analysis. For this purpose, our
approach incorporates pipeline automatic composition as
a conceptual and operational instrument to facilitate its
use.
Similar work on automatic service composition, such

as Magallanes [22] and Bio-jETIi [23] also focus on lin-
ear workflows and components with basic interfaces (such
as tools accepting only file inputs and outputs). However,
the main difference is that they present a different imple-
mentation for the automatic composition problem, not
graph-based, and their approaches consider web services
to compose the workflows, without performance informa-
tion. The automatic pipeline approach, on the contrary,
integrates ad hoc bioinformatics tools or scripts, in our
case format conversion tools for population genetics or
genetic epidemiology, with an associated performance
measure that is used to select among possible alternative
pipeline executions. Another difference regards the gener-
ation of an executable pipeline. In the case of Magallanes,
it does not generate an executable workflow but only a
model to be instantiated with web services by workflow
management tools. Similarly, in Bio-jETI automatic ser-
vice composition starts only after the user has assembled
a high-level workflow specification manually through a
graphical interface.
At present, our system can only perform automatic

composition based on computer-measurable metrics,
such as processing time, memory usage, and accuracy,
among others. This is to guarantee the composition
of a pipeline without user intervention. However, our
approach has the potential to accommodate a user-
centered choice, either based on his preferences or the
context of his analysis. To implement that, instead of
automatically selecting a pipeline among alternatives, our
algorithm can be modified to present these alternative

http://code.google.com/p/dynamic-pipeline/
http://code.google.com/p/dynamic-pipeline/

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 10 of 11
http://www.biomedcentral.com/1471-2105/13/163

pipelines to the user, which can then select the best
one.
A current limitation of our approach is that it can-

not yet be used for automatically designing pipelines
that require the execution of parallel steps because it
focuses on the problem of finding alternative sequen-
tial steps to achieve a particular aim. However, adjusting
our algorithm to support the second type of pipeline
is straightforward. This can be done by taking alterna-
tive paths through a tool graph with overlapping edges
as single pipelines where non-overlapping steps are exe-
cuted concomitantly. Therefore, if there are three edges
connecting nodes A and B, that is, three different tools
processing file type A into B, the parallel algorithm
would select all three tools to be executed at the same
time.
For future development, we are studying an extension

to the current algorithm to allow the inclusion of soft-
ware tools that require specific command line parameters,
such as strings and thresholds. Currently, pipelines are
created with a set of tools that each use a standard com-
mand line interface that allows for the specification of
one or more input files and one or more output files. We
are working on a XML implementation of the Tool Reg-
istry to incorporate definitions of different classes of input
parameters for the tools, such as files (the one currently
accepted), strings and numerical values. This extension
will allow the incorporation of bioinformatics tools that
require different types of parameters, and general bioin-
formatics programs available in public repositories such
as BioPerl and BioJava. We will consider current work
on semantic service description, such as OWL-S [24] and
the Web Services Description Language (WSDL) [25] to
develop the XML-based Tool Registry. Finally, although
here we have focused on applications that are composed
of software tools, our graph-based approach could also be
used to create pipelines that are composed of workflows
or web services. This would only require a modification of
the function that generates the executable pipeline so that
it generates executable code that is compatible with each
specific technology.

Conclusions
Our graph-based approach enables the automatic cre-
ation of pipelines by compiling a specialised set of tools
on demand, depending on the functionality required.
It allows the implementation of extensible and low-
maintenance pipelines and contributes towards consoli-
dating openness and collaboration in bioinformatics sys-
tems. It is targeted at pipeline developers and is suited
for implementing applications with sequential execution
steps and combined functionalities. The algorithm serves
as an alternative to workflow systems since it generates
pipelines automatically without living the composition to

the end-user. We have shown that this is the case for
format conversion applications, in which the automatic
combination of conversion tools increases the number of
possible conversions available to the user and increases
the extensibility of the system to allow for future updates
with new file formats. Future developments will include
an adaptation of our pipeline algorithm to enable the
generation of pipelines with parallel steps and to allow
the inclusion of tools that require external parameters.
Extensions are also possible to generate executable code
that is compatible with specific technologies, such as web
services and workflows.

Methods
The pipeline system algorithm was implemented in Java
and we used the package jgraphT to implement the
graph-related functions. The format conversion tools that
compose the format conversion pipeline application were
implemented in Perl. The format conversion pipeline’s
web interface was implemented in PHP. The system has
been tested on Linux and Windows platforms. Only Java
is required for running the algorithms; for using the
PHP web interface code, a web server such as Apache is
required.

Additional file

Additional file 1: Supplementary Information. This document
provides additional information on the performance measure, the pipeline
system algorithm, the list of tools in the pipeline application, and the
complete Tool Registry for the Format Conversion Pipeline.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MRR conceived and developed the pipeline system algorithm, the java
executables and the format conversion pipeline’s web interface. WCSM
contributed to the design of the pipeline system algorithm and developed the
format conversion tools used in the pipeline application. MM benchmarked
and tested the tools composing the format conversion pipeline application.
ETS supervised the project. MRR, WCSM, and ETS wrote the manuscript. All the
authors read and approved the final manuscript.

Acknowledgements
This work was supported by grants from Brazilian Ministry of Health/FINEP
(EPIGEN-Brasil), MS/SCTIE/Decit, CAPES Agency, National Cancer
Institute/Fogarty International Center [1R01TW007894 to ETS], Minas Gerais
State Foundation in Aid of Research (FAPEMIG) and Brazilian National Research
Council (CNPq). MRR (MS/SCTIE/Decit) and WCSM are supported by Brazilian
Ministry of Health and Ministry of Education (CAPES Agency - PNPD). We
appreciate the support of Pro-Reitoria de Pesquisa of UFMG. We are grateful to
Douglas Santos for his technical assistance. We thank the reviewers for their
insightful suggestions.

Received: 16 September 2011 Accepted: 22 June 2012
Published: 12 July 2012

References
1. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment

search tool. J Mol Biol 1990, 215:403–410.

http://www.biomedcentral.com/content/supplementary/1471-2105-13-163-S1.pdf

Rodrigues et al. BMC Bioinformatics 2012, 13:163 Page 11 of 11
http://www.biomedcentral.com/1471-2105/13/163

2. Thompson JD, Higgins DG, Gibson TJ: CLUSTALW: improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res 1994, 22:4680.

3. Felsenstein J: PHYLIP – Phylogeny Inference Package (Version 3.2).
Cladistics 1989, 5:164–166.

4. Yang Z: PAML: a program package for phylogenetic analysis by
maximum likelihood. Comput Appl Bio Sci 1997, 13:555–556.

5. Yang Z: PAML 4: a program package for phylogenetic analysis by
maximum likelihood. Mol Biol Evol 2007, 24:1586–1591.

6. Stein L: Creating a bioinformatics nation. Nature 2002,
417(6885):119–120.

7. Kaye J, Heeney C, Hawkins N, de Vries J, Boddington P: Data sharing in
genomics - re-shaping scientific practice. Nat Rev Genet 2009,
10:331–335.

8. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P, Oinn T:
Taverna: a tool for building and running workflows of services.
Nucleic Acids Res 2006, 34(Web Server issue):729–732.

9. Goecks J, Nekrutenko A, Taylor J, Team TG: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010, 11:R86.

10. Deelman E, Singh G, Su M, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K,
Berriman G, Good J, Laity A, Jacob J, Katz D: Pegasus: a framework for
mapping complex scientific workflows onto distributed systems. Sci
Programming 2005, 13:219–237.

11. Stevens R, Tipney H, Wroe C, Oinn T, Senger M, Lord P, Goble C, Brass A,
Tassabehji M: Exploring Williams-Beuren syndrome usingmyGrid.
Bioinformatics 2004, 20(Suppl 1):i303–i310.

12. Orvis J, Crabtree J, Galens K, Gussman A, Inman J, Lee E, Nampally S, Riley
D, Sundaram J, Felix V, Whitty B, Mahurkar A, Wortman J, White O,
Angiuoli S: Ergatis: a web interface and scalable software system for
bioinformatics workflows. Bioinformatics 2010, 26(12):1488–1492.

13. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman
D, Borkum M, Bechhofer S, Roos M, Li P, Roure DD:myExperiment: a
repository and social network for the sharing of bioinformatics
workflows. Nucleic Acids Res 2010, 38(2):W677–W682.

14. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S: Kepler: an
extensible system for design and execution of scientific workflows.
In Proceedings of the 16th International Conference on Scientific and
Statistical Database Management. Santorini Island Greece; 2004:423–424 .

15. Deelman E, Gannon D, Shields M, Taylor I:Workflows and e-Science: An
overview of workflow system features and capabilities. Future Gener
Comput Syst 2009, 25(5):528–540.

16. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney
L, Yang J, Zhang J: Bioconductor: open software development for
computational biology and bioinformatics. Genome Res 2004, 5:R80.

17. Excoffier L, Heckel G: Computer programs for population genetics
data analysis: a survival guide. Nat Rev Genet 2006, 7(10):745–758.

18. Mueller L, Brusniak M, Mani D, Aebersold R: An assessment of software
solutions for the analysis of mass spectrometry based quantitative
proteomics data. J Proteome Res 2008, 7:51–61.

19. Machado M, Magalhaes WCS, Sene A, Araujo B, Faria-Campos A, Chanock
S, Scott L, Oliveira G, Tarazona-Santos E, Rodrigues MR: Phred-Phrap
package to analyses tools: a pipeline to facilitate population
genetics re-sequencing studies. Invest Genet 2011, 2:3.

20. Falush D, Stephens M, Pritchard J: Inference of population structure
usingmultilocus genotype data: linked loci and correlated allele
frequencies. Genetics 2003, 164:1567–1587.

21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup:
The sequence alignment/map (SAM) format and SAMtools.
Bioinformatics 2009, 25:2078–2079.

22. Rios J, Karlsson J, Trelles O:Magallanes: a web services discovery and
automatic workflow composition tool. BMC Bioinformatics 2009,
10:1–12.

23. Lamprecht A, Margaria T, Steffen B: Bio-jETI: a framework for
semantic-based service composition. BMC Bioinformatics 2009,
10:1–19.

24. Martin D, Paolucci M, McIlraith S, Burstein M, McDermott D, McGuinness
D, Parsia B, Payne T, Sabou M, Solanki M: Bringing Semantics to Web
Services: the OWL-S approach. Lecture Notes Comput Sci 2005,
3387:26–42.

25. The World Wide Web Consortium: Web Services Description Language
(WSDL) 1.1. 2001. [http://www.w3.org/TR/wsdl]

doi:10.1186/1471-2105-13-163
Cite this article as: Rodrigues et al.: A graph-based approach for designing
extensible pipelines. BMC Bioinformatics 2012 13:163.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.w3.org/TR/wsdl

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	The tool registry
	Pipeline components
	Pipeline system algorithm
	Running the executable function-specific pipeline
	Adding new tools
	A format conversion pipeline application
	SDAT to R-HierFstat
	PolyPhred to structure
	PHASE to DnaSP

	Discussion
	Conclusions
	Methods
	Additional file
	Additional file 1

	Competing interests
	Authors' contributions
	Acknowledgements
	References

