TRAFFIC ENGINEERING

Other Macmillan titles of interest to Civil Engineers

An Introduction to Engineering Fluid Mechanics J. A. Fox Polymer Materials: An Introduction for Technologists and Scientists, second editions Christopher Hall Reinforced Concrete Design by Computer R.Hulse and W. H. Mosley Prestressed Concrete Design by Computer R. Hulse and W. H. Mosley Civil Engineering Materials third edition edited by N. Jackson Reinforced Concrete Design third edition W. H.Mosley and J. H. Bungey Microcomputer Applications in Structural Engineering W. H. Mosley and W. J. Spencer Strength of Materials third edition G. H. Ryder Surveying for Engineers J. Uren and W. .F. Price

TRAFFIC ENGINEERING Worked examples

R. J. Salter University of Bradford

Second Edition

© R. J. Salter 1981, 1989

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright Act 1956 (as amended), or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 33–4 Alfred Place, London WC1E 7DP.

Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

First edition 1981 Reprinted 1983, 1986 Second edition 1989

Published by MACMILLAN EDUCATION LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world

British Library Cataloguing in Publication Data
Salter, R. J. (Richard John)
Traffic engineering: worked examples.
—2nd ed.
1. Urban regions. Road traffic. Planning.
Mathematical models
I. Title
711'.73'0724

ISBN 978-0-333-49102-7 ISBN 978-1-349-10800-8 (eBook) DOI 10.1007/978-1-349-10800-8

CONTENTS

EXAMPLE 1	Measurement of highway traffic stream speed, time and space mean speeds	1
EXAMPLE 2	Distribution of highway traffic speeds, fitting to a normal distribution	7
EXAMPLE 3	Highway journey speeds, moving car observer method	10
EXAMPLE 4	Theoretical basis of the moving car observer method	13
EXAMPLE 5	Car following theory illustrated by an example	17
EXAMPLE 6	The negative exponential distribution applied to headways on highways	21
EXAMPLE 7	The double exponential distribution applied to headways on congested highways	25
EXAMPLE 8	Flow, speed and density relationships for highway flow	29
EXAMPLE 9	Flow, speed and density relationships applied to a highway bottleneck	34
EXAMPLE 10	Queueing theory applied to highways	36
EXAMPLE 11	Priority intersections, gap and lag acceptance	40
EXAMPLE 12	Delays at priority intersections illustrated by an example	47
EXAMPLE 13	The capacity of oversaturated priority intersections	49
EXAMPLE 14	Geometric delay at an at-grade roundabout	54
EXAMPLE 15	Relationships between entry and circulating flow at roundabouts	57
EXAMPLE 16	Determination of roundabout entry width	61
EXAMPLE 17	Design of weaving sections	63

EXAMPLE	18	Merging on to high speed roads	68
EXAMPLE	19	Design of merging and diverging lanes at grade separated junctions	71
EXAMPLE	20	Introduction to traffic signal control	79
EXAMPLE	21	Traffic signal cycle times	86
EXAMPLE	22	Right turning flows at traffic signals illustrated by an example	96
EXAMPLE	23	Variation of delay with cycle time at traffic signals illustrated by an example	107
EXAMPLE	24	Delay at traffic signals illustrated by an example	110
EXAMPLE	25	Design of a traffic signal controlled intersection	112
EXAMPLE	26	Design of a three phase traffic signal controlled intersection	121
EXAMPLE	27	Platoon dispersion between signal controlled intersections	128
EXAMPLE	28	Combination method of minimising delays in traffic signal controlled networks	131
EXAMPLE	29	Costs and benefits of highway traffic flow	135
EXAMPLE	30	Economic assessment of highway improvements	137
EXAMPLE	31	Calculation of highway operational costs	141
EXAMPLE	32	Simulation of highway headway distributions	147
EXAMPLE	33	Simulation of delay at highway priority intersections	150

PREFACE

Current and projected increases in the number of vehicles on the highway systems of developed and developing countries, together with a realisation of the limited resources available for construction, have made the efficient use of road space by traffic engineering techniques of increasing importance. In response to this demand educational institutions throughout the world now include the study of highway traffic engineering in their curriculum.

This book is intended to be of use to students on these courses by presenting a set of worked examples in a wide range of highway traffic engineering problems designed to illustrate the principles of highway traffic flow and the practical design of highway elements.

The second edition of Traffic Engineering has been considerably revised to include examples of current United Kingdom design methods and will be of considerable use to engineers who are seeking an introduction to current highway traffic engineering or who wish to update their knowledge on this important area of highway design.

R.J. Salter