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Rate Monotonic Analysis
for Real-Time Systems.

Abstract: The essential goal of the Rate Monotonic Analysis (RMA) for Real-
Time Systems Project at the Software Engineering Institute is to cat~alyze improve-
ment in the practice of real-time systems engineering, specifically by increasing
the use of rate monotonic analysis and scheduling algorithms. In this report, we
review important decisions in the development of RMA. Our experience Indicates
that technology transition considerations should be embedded in the process of
technology development from the start, rather than as an afterthought.

As a mathematical discipline travels far from its empirical source, or still more, if it
is a second and third generation only indirectly inspired by the ideas coming from
'reality,' it is beset with very grave dangers. It becomes more and more pure aes-
theticizing, more and more purely I'art pour i'art....

There is grave danger that the subject will develop along the lite of least resistance,
that the stream, so far from its source, will separate into a multitude of insignificant
branches, and that the discipline will become a disorganized mass of details and
complexities. In other words, at a great distance from its empirical source, or after
much "abstract" breeding, a mathematical subject is in danger of degeneration." -
John Von Neumann, "The Mathematician," an essay in The Works of Mind, Editor
E. B. Heywood, University of Chicago Press, 1957.

1. Introduction

The essential goal of the Rate Monotonic Analysis for Real-Time Systems 1 (RMARTS) Proj-
* ect at the Software Engineering Institute (SEi) is to catalyze an improvement in the state of

the practice for real-time systems engineering. Our core strategy for accomplishing this is to
p,-ovide a solid analytical foundation for real-time resource management based on the. prin-
ciples of rate monotonic theory. However, Influencing the state of the practice requires more
than research advances; it requires an ongoing interplay between theory and practice. We

0 have encouraged this interplay between theory and practice through cooperative efforts
among academia, industry, and government. These efforts include:

o Conducting proof of concept experiments to explore the use of the theory on
test case problems and to understand issues related to algorithm implemen-
tation in commercially available runtime systems.

0

1This is a follow-on to the Real-Time Scheduling 'n Ada (RTSIA) Project.
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- Working with major development projects to explore the practical applicability of
the theory and to identify the fundamental issues related to its use.

* Conducting tutorials and developing instructional materials for use by other or-
ganizations.

"* Publishing important findings to communicate results to practitioners and to
stimulate the research community.

"* Working to obtain support from major national standards.

The interplay between research and application has resulted in our extending rate
monotonic theory from its original form of scheduling Independent periodic tasks [11] to
scheduling both periodic and aperiodic tasks (24] with synchronization requirements
[15, 16, 19] and mode change requirements [18]. In addition, we have addressed the asso-
ciated hardware scheduling support [10] [22], implications for Ada scheduling rules [5], algo-
rithm implementation in an Ada runtime system [1], and schedulability analysis of
input/output paradigms [7]. Finally, we also have performed a number of design and anal-
ysis experiments to test the viability of the theory [2, 13]. Together, these results constitute
a reasonably comprehensive set of analytical methods for real-time system engineering. As
a result, real-time system engineering based on rate monotonic theory has been:

"* Recommended by both the 1st and 2nd International Workshop on Real-Time
Ada Issues for real-time applications using Ada tasking. The rate monotonic ap-
proach has been supported by a growing number of Ada vendors, e.g, DDC-I
and Verdix, and is influencing the Ada 9X process.

"• Provides the theoretical foundation in the design of the real-time scheduling
support for IEEE Futurebus+, which has been widely endorsed by Industry, in-
cluding both VME and MultIBUS communities. It is also the standard adopted
by the US Navy. The rate monotonic approach is the recommended approach
in the Futurebus+ System Configuration Manual (IEEE 896.3).

* Recommended by IBM Federal Sector Division (FSD) for its real-time projects.
Indeed, IBM FSD has been conducting workshops in rate monotonic scheduling
for its engineers since April 1990.

* Successfully applied to both the active and passive sonar of a major submarine
system of the US Navy.

* Selected by the European Space Agency as the baseline theory for its Hard
Real-Time Operating System Project.

* Adopted In 1990 by NASA and its Space Station contractors for development of
real-time software for the Space Station data management subsystem arid as-
sociated avionics applications.

Many of the important results of the rate monotonic approach have been reviewed else-
where [20, 21]. in this paper, we would like to Illustrate the interplay between rate
monotonic theory and practice by drawing on three examples. The first example, which is
discussed in the next section, describes how this interplay influenced the developmental his-
tory of the theory itself. The second example, discussed in Chapter 3, outlines several is-
sues arising from the use of the theory to understand the timing behavior of real-time
Input/output paradigms. Chapter 4 discusses the importance of considering standard
hardware architectures.

2 CMU/SEI-91-TR-6
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2. The Development of Rate Monotonic Theory

7e The development of rate monotonic theory after the Initial work of Liu and Layland (11] has
been closely related to practical applications from its very beginning. Many of the significant
results are the product of the close cooperation between Carnegie Mellon University, the
Software Engineering Institute, IBM's Federal Sector Division, and other industry partners.
The Interplay between research and practice hai guided us to develop analytical methods

*• that are not only theoretically sound but also have wide applicability.

2.1. Selection of Rate Monotonic Theory

The notion of rate monotonic scheduling was first introduced by Liu and Layland in 1973
[11]. The term rate monoionic (RM) derives from a method of assigning priorities to a set of

processes: assigning priorities as a monotonic function of the rate of a (periodic) process.
Given this simple rule for assigning priorities, rate monotonic scheduling theory provides the
following simple inequality--comparing total processor utilization to a theoretically deter-
mined bound-that serves as a sufficient condition to ensure that all processes will complete
their work by the end of their periods.

CI C., n-•l " " +- U(n) =n(21/11-1)

T ~Tn
C, and Ti represent the execution time and period respectively associated with periodic task
,ri. As the number of tasks increases, the scheduling bound converges to In 2 (69%). We will
refer to this as the basic rate monotonic schedulbilltytest,

in the same paper, Liu and Layland also showed that the earliest deadline scheduling algo-
rithm is superior since the scheduling bound is always 1:

0 C1  C.
-- + +. +--<U(n) =I

The 31% theoretical difference In performance is large. At first blush, there seemed to be
little justification to further develop the rate monotonic approach. Indeed, most publications

* on the subject after [11] were based on the earliest deadline approach. However, we found
that our Industrial partners at the time had a strong preference for a static priority scheduling
approach for hard real-time applications. This appeared to be puzzling at first, but we quickly
learned that the preference Is based on Important practical considerations:

1. The performance difference is small in practice. Experience indicates that an
* •approach based on rate monotonic theory can often achieve as high as 90%

utilization. Additionally, most hard real-time systems also have soft real-time
components, such as certain non-critical displays and built-in self tests that
can execute at lower priority levels to absorb the cycles that cannot be used
by the hard real-time applications under the rate monotonic scheduling ap-
proach.

2. Stability is an important problem. Transient system overload due tc excep-

CMU/SEI-91-TR-6 3



tions or hardware error recovery actions, such as bus retries, are inevitable.
When a system is overloaded and cannot meet all the deadlines, the dead-
lines of essential tasks still need to be guaranteed provided that this subset of
tasks Is schedulable. In a static priority assignment approach, one only needs
to ensure that essential tasks have relatively high priorities. Ensuring that es-
sential tasks meet their deadlines becomes a much more difficult problem
when earliest deadline scheduling algorithms are used, since under them a
periodic task's priority changes from one period to another.

These observations led members of the Advanced Real-Time Technology (ART) Project at
Carnegie Mellon University to investigate the following two problems:

1. What is the average scheduling bound of the rate monotonic scheduling algo-
rithm and how can we determine whether a set of tasks using the rate
monotonic scheduling algorithm can meet its deadlines when the Liu &
Layland bound is exceeded? This problem was addressed in Lehoczky et al.
[91, which provides an exact formula to determine if a given set of periodic

tasks can meet their deadlines when the rate monotonic algorithm is used. In
addition, the bound for tasks with harmonic frequencies is 100%, while the
average bound for randomly generated task sets is 88%.

2. If an essential task has a low rate monotonic priority (because its period is
relatively long), how can its deadline be guaranteed without directly raising its
priority and, consequently, lowering the system's schedulability? This problem
led to the discovery of the period transformation method [171, which allows a
critical task's priority to be raised in a way that is consistent with rate
monotonic priority assignment. In addition, the period transformation method
can be used to Increase a task set's scheduling bound should a particular set
of periods result in poor schedulability.

While these results were encouraging, the ART Project still faced the problem of scheduling
both aperiodic and periodic tasks, as well as the handling of task synchronization in a unified
framework.

2.2. Scheduling Aperiodic Tasks

The basic strategy for handling aperiodic processing is to cast such processing into a peri-
odic framework. Polling Is an example of this. A polling task will check to see if an aperiodic
event has occurred, perform the associated processing if It has, or if no event has occurred,
do nothing until the beginning of the next polling period. The virtue of this approach is that
the poriodic polling task can be analyzed as a periodic task. The execution time of the task
is the time associated with processing an event and the period of the task is its polling
period. There are two problems with this model:

, If many events occur during a polling period, the amount of execution time as-
sociated with the periodic poller may vary widely and on occasion cause lower
priority periodic tasks to miss deadlines.

* If an event occurs immediately after the polling task checks for events, the as-
sociated processing must wait an entire polling period before it commences.

4 CMU/SEI-91-TR-6



A central concept Introduced to solve these problems is the notion of an aperiodic server
[8, 24]. An aperiodic server is a conceptual task2 that is endowed with an execution budget

* and a replenishment period. An aperiodic server will handle randomly arriving requests at
Its assigned priority (determined by the RM algorithm based on its replenishment period) as
long as the budget is available. When the server's computation budget has been depleted,
requests will be executed at a background priority (i.e., a priority below any other tasks with
real-time response requirements) until the server's budget has been replenished. The ex-

- ecution budget bounds the execution time, thus preventing the first problem with the polling
server. The aperiodic server provides on-demand service as long as it has execution time
left in its budget, thus preventing the second problem.

The first algorithm using this concept to handle aperiodic tasks was known as the priority
* exchange algorithm [8, 23]. This algorithm was shown to have very good theoretical perfor-

mance and to be fully compatible with the rate monotonic scheduling algorithm. However,
our Industry partners were not pleased with the runtime overhead Incurred by this algorithm.

This led to the design of the second algorithm known as the deferrable server algorithm [8].
This algorithm has a very simple computation budget replenishment policy. At the beginning
of every server period, the budget will be reset to the designated amount. While this algo-
rithm Is simple to implement, it turns out to be very difficult to analyze when there are multi-
ple servers at different priority levels due to a subtle violation of a rate monotonic scheduling
assumption known as the deferred execution effect [8, 15]. It is interesting to note that the

0 deferred execution effect appears In other contexts. This effect is further discussed In Chap-
ter 3.

This problem led to a third revision of an aperiodic server algorithm known as the sporadic
server algorithm [24]. The sporadic server differs from the deferrable server algorithm in a
small, but theoretically important, way: the budget is no longer replenished periodically.

0 Rather, the allocated budget Is replenished only if It is consumed. In its simplest form, a
server with a budget of 10 msec and a replenishment period of 100 msec will replenish its
10 msec budget 100 msec after the budget is completely consumed. Although more sophis-
ticated replenishment algorithms provide better performance, the Important lesson is that
with relatively little additional implementation complexity, the deferred execution effect was

0 eliminated, making the sporadic server equivalent to a regular periodic task from a theoret-
Ical point of view and thus f illy compatible with RMS algorithm.

The sporadic server algorithm represents a proper balance between the conflicting needs of
implementation difficulty and analyzability. Such balance is possible only with the proper in-

0 teraction between theory and practice.

2ft is conceptual in the sense that it may manifest itself as an application-level task or as part of the runtime

system scheduler. Nevertheless, it can be thought of as a task.

CMUISEI-91-TR-6 5



2.3. Handling Task Synchronization

To provide a reasonably comprehensive theoretica! framework, task synchronization had to
be treated. However, the problem of determining necessary and sufficient schedulability
conditions in the presence of synchronization appeared to be rather formidable [14]. Tne
ART project team realized that for practical purposes all that is needed is a set of sufficient
conditions coupled with an effective synchronization protocol that allows a high degree of
schedulability. This led to an investigation of the cause of poor schedulability when tasks
synchronize and use semaphores; this inivestigation, in turn, led to the discovery of un-
bounded priority inversion (3].

Consider the following three-task example that illustrates unbounded priority inversion. The
three tasks are "High," "Medium," and "Low." High and Low share a resource that is
protected by a classical semaphore. Low locks the semaphore; later High preempts Low's
critical section and then attempts to lock the semaphore and, of course, is prevented from
locking it. While High is waiting for Low to complete, Medium preempts Low's critical sec-
tion and executes. Consequently, High must wait for both Medium to finish executing and
for Low to finish Its critical section. The duration of blocking that is experienced by High can
be arbitrarily long If there are other Medium priority tasks that also preempt Low's critical
section. As a result, the duration of priority inversion is not bounded by the duration of criti-
cal sections associated with resource sharing. Together with our industry partners, we In-
itially modified a commercial Ada runtime to investigate the effectiveness of the basic priority
inheritance protocol at CMU, and later, at the SEI, the priority ceiling protocol as solutions to
the unbounded priority Inversion problem [12].

Although the basic priority Inheritance protocol solved the problem of unbounded priority In-
version, the problems of multiple blocking and mutual deadlocks persisted. Further research
resulted in the priority ceiling protocol, which Is a real-time synchronization protocol with two
important properties: 1) freedom from mutual deadlock and 2) bounded priority inversion,
namely, at most one lower priority task can block a higher priority task during each task
period (5, 19].

Two central ideas are behind the design of this protocol. First is the concept of priority
inheritance: when a task r blocks the execution of higher priority tasks, task 'r executes at
the highest priority level of all the tasks blocked by c. Second, we must guarantee that a
critical section is allowed to be entered only if the critical section will always execute at a
priority level that is higher than the (inherited) priority levels of any preempted critical sec-
tions. It was shown [19] that following this rule for entering critical sections leads to the two
desired properties. To achieve this, we define the priority ceiling of a binary semaphore S to
be the highest priority of all tasks that may lock S. When a task ,r attempts to execute one of
its critical sections, it will be sL'spendea unless its priority is higher than the priority ceilings
of all semaphores currently locked by tasks other than T. If task T is unable to enter its
critical section for this reason, the task that holds the lock on the semaphore with the highest
priority ceiling Is said to be blocking r and hence Inherits the priority of r. As long as a task '
is not attempting to enter one of its critical sections, it will preempt any task that has a lower
priority.

6 CMU/SEI-91 -TR-6



Associated with these results is a new schedulability test (also referred to as the extended
rate monotonic schedulability teso that accounts for the blocking that may be experienced
by each task. Let BI be the worst-case total amount of blocking that task TI can Incur during
any period. The set of tasks will be schedulable if the following set of inequalities are satis-
fied:

ClB,
C+ <: 1(21/1- 1) and

*T, T,

C1 C2 B2 2(21/2- 1) and

T, T2 T2

C+ C2 +... +-Ck+ B.-+ <k(2 11,-1) and

T1 T2  Tk Tk
C,+C +.. S + s'n(2'1n- 1)

*Ti T2  T

This set of schedulability Inequalities can also be viewed as a mathematical model that
predicts the schedulability of a set of tasks. Each task is modeled with its own inequality
and there are terms in the Inequality that account for all factors that impact that task's
schedulability. This idea is discussed further in Chapter 3. The priority ceiling protocol was
also extended to address the multi-processor issues [15, 16, 21].

* 2.4. The Requirements of the Mode Change Protocol

Potential usess of the rate monotonic algorithm were uncomfortable with the notion of a fixed
task set with static priorities. Their point was that In certain real-time applications, the set of
tasks in the system, as well as the characteristics of the tasks, change during system execu-
tion. Specifically, the system moves from one mode of execution to another as it3 mission
progresses. A change in mode can be thought of as a deletion of some tasks and the addi-
tion of new tasks, or changes in the parameters of certain tasks (e.g., increasing the sam-
pling rate to obtain a more accurate result). Our dialogue with practitioners made it clear
that the eyisting body of rate monotonic theory needed to be expanded to Include this re-
quirement. This precipitated the development of the mode change protocol.

At first sight, it appeared that the major design goal was to achieve near optimal perfor-
mance in terms of minimal mode change delay.3 However, having surveyed the complaints

3 The elapsed time between the initiation time of a mode change command to the starting time of a new mode.

CMU/SEI-911-TR-6 7



about the difficulties associated with maintaining the software of a cyclical executive with
embedded mode change operations, we realized that performance was only part of the re-
quirement. To be useful, rate monotonic theory must address software engineering Issues
as well. The requirements Include:

* Compatibility: The addition of the mode change protocol must be compatible
with existing RM scheduling algorithms, e.g., the preservation of the two Impor-
tant properties of the priority celling protocol: the freedom from mutual dead-
locks and the blocked-at-most-once (by lower priority tasks) property.

"* Maintainability: To facilitate system maintenance, the mode change protocol
must allow the addition of new tasks without adversely affecting tasks that are
written to execute In more than o, le mode. Tasks must be able to meet dead-
lines, before, during, and after the mode change. In addition, a task cannot be
deleted until it completes its current transaction and leaves the system in a con-
sistent state.

"* Performance: The mode change protocol for rate monotonic scheduling should
perform at least as fast as mode changes In cyclical executives.

Once the mode change requirements were clear, designing the protocol was straightfor-
ward.

1. Compatibility: The addition and/or the deletion of tasks in a mode change
may lead to the modification of the priority ceilings of some semaphores
across the mode change. Upon the initiation of a mode change:

"* For each unlocked semaphore S whose priority ceiling needs to be
raised, Ss ceiling is raised immediately and indivisibly.

"* For each locked semaphore S whose priority ceiling needs to be raised,
Ss priority ceiling is raised immediately and indivisibly after S is un-
locked.

" For each semaphore S whose priority ceiling needs to be lowered, Ss
priority ceiling is lowered when all the tasks which may lock S, and
which have priorities greater than the new priority ceiling of S, are de-
leted.

"* If task T's priority is higher than the priority ceilings of locked
semaphores S1, ... , Sk, which it may lock, the priority ceilings of S1,
Sk must be first raised before adding task ,.

2. Maintainability and Performance: A task ,, which needs to be deleted, can
be deleted Immediately upon the initiation of a mode change if T has not yet
started its execution in its current period. In addition, the spare processor
capacity due 'l's deletion may be reclaimed Immediately by new tasks. On the
other hand, If - has started execution, r can be deleted after the end of its
execution and before its next Initiation time. In this case, the spare processor
capacity due to c's deletion cannot become effective until the deleted task's
next initiation time. In both cases, a task can be addod into the system only if
sufficient spare processor capacity exists.

8 CMU/SEI-91-TR-6



Sha et al. [18] showed that the mode change protocoi described above is compatible with
the priority ceiling protocol in the sense that it preser.,es the properties of freedom from

* mutual deadlock and blocked-at-most-once. In addition, under this protocol tasks that ex-
ecute in more than one mode can always meet their deadlines as long as all the modes are
schedulable [18]. Since a task is not deleted until it completes Its current transaction, the
consistency of the system state will not be adversely affected.

* Finally, Sha et al. [18] showed that the mode change delay is bounded by the larger of two
numbers: the longest period of all the tasks to be deleted and the shortest period associated
with the semaphore that has the lowest priority ceiling and needs to be modified. This is
generally much shorter and will never be longer than the least common multiple (LCM) of all
the periods. In the cyclical executive approach, the major cycle is the LCM of all the periods

* and a mode change will not be Initiated until the current major cycle completes. In addition,
the mode change protocol also provides the flexibility of adding and executing the most ur-
gent task in the new mode before the mode change is completed.

The development of the mode change protocol illustrates how the Interaction between the
real-time systems development and research communities guided the extension of rate
monotonic theory.

9
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3. Analysis of Real-Time Paradigms
An Important goal of the RMARTS Project Is to ensure that the principles of rate monotonic
theory as a whole provide a foundation for a solid eng;neering method that is applicable to a
wide range of realistic real-time problems. One mechanism for ensuring the robustness of
the theory is to perform case studies. In this vein, the concurrency architecture of a generic
avionics system [131 was designed using the principles of rate monotonic theory. Addition-
ally, an inertial navigation system simulator written at the SEI [1] Is an example of an exist-
ing system that was subjected to rate monotonic analysis and Improved as a consequence.

Another mechanism for ensuring the robustness of the theory is to apply It to common de-
sign paradigms that are pervasive In real-time systems. Klein and Ralya examined various

0 Inpujt/output (I/O) paradigms to explore how the principies of rate monotonic scheduling can
be applied to I/O interfaces to predict the timing behavior of various design alternatives (7].
Two main topics they explored (7] will be rs\viewed here:

"* Reasoning about time when the system design does not appear to conform to
the premises of rate monotonic scheduling.

"• Developing mathematical models of schedulability.

3J. Reasoning About Time
On the surface, it appears that many important problems do not conform to th3 premises of
rate monotonic theory. The basic theory (11 ] gives us a rule for assigning priorities to peri-
odic processes and a formula for determining whether a set of periodic processes will meet
all of their deadlines. This result is theoretically Interesting but its basic assumptions are
much too restrictive. The set of assumptions that are prerequisites for this result are (see

* Task switching is instantaneous.
* Tasks account for all execution time (i.e., the operating system does not usurp

the CPU to perform functions such as time management, memory manage-
ment, or 1/0).

* Task interactions are not allowed.
* Tasks become ready to execute precisely at the beginning of their periods and

relinquish the CPU only when execution is complete.
* Task deadlines are always at the start of the next period.

* 9 Tasks with shorter periods are assigned higher priorities; the criticality of tasks
is not considered.

v Task execution is always consistent with its rate monotonic priority: a lower pri-
ority task never executes when a higher priority task is ready to execute.

Notice that under these assumptions, only higher pr!ority tasks can affect the schedulability
of a particular task. Higher priority tasks delay a lower priority task's completlon time by
preempting it. Yet we know there are many circumstances, especially when considering I/O
services, where 'hose assumptions are.violated. For example:

CMU/SEI-91-TR-8 11



"* Interrupts (periodic or aperiodic) generally interrupt task execution, independent
of the period of the interrupt or the importance of the event that caused the
Interrupt. Interrupts are also used to signal the completion of I/O for direct
memory access (DMA) devices.

"* Moreover, when a DMA device is used, tasks may relinquish the CPU for the
duration of the data movement, allowing lower priority tasks to execute. This
will, of course, result in a task switch to the lower priority task, which requires
saving the current task's state and restoring the state of the task that will be
executing.

"* It is not uncommon that portions of operating system execution are non-
preemptable. In particular, it may be the case that portions of an I/O service
may be non-preemptable.

It appears that the above mentioned aspects of performing i/O do not conform to the funda-
mental assumptions of rate monotonic scheduling and thus are not amenable to rate
monotonic analysis. To show how rate monotonic analysis can be used to model the
aforementioned seemingly non-conforming aspects of I/O, we will examine:

"• Nor -zero task switching time.
"* Task suspension during I/O.
"• Tasks executing at non-rate monotonic priorities.

From [7] we know that task switching can be modeled by adding extra execution to tasks.
More specificaliy, let C, represent the execution time of task rl and the worst-case context
switching time between tasks is denoted by C.. Then C' is the new execution time that
accounts for context switching, where Ci = Ci+2C.. Thus, context switching time is easily
included in the basic rate monotonic schedulability test.

Task I/O time refers to the time interval when a task relinquishes the CPU to lower priority
tasks. Clearly, this I/O time (or interval of suspension time) must be accounted for when
considering a task's schedulability. A task's completion time is postponed by the duration of
the I/O suspension. Notice, however, that this period of suspension is not execution time for
the suspending task and thus is not preemption time for lower prioriby tasks.

On the surface, it appears as if lower priority tasks will benefit only from I/O-related suspen-
sion of higher priority tasks. This is not totally true. A subtle effect of task suspension is the
jitter penalty (also known as the deferred execution effect), which is discussed in (7, 15, 21].
This is an effect that i/O suspension time for task r has on lower priority tasks. Intuitively,
I/O suspension has the potential to cause a "bunching of execution time."

Imagine the case where the highest priority task has no suspension time. It commences
execution at the beginning of every period and there Is always an Interval of time between
the end of one interval oi execution and the beginning of the next. This pattern of execution
is built into the derivation of the basic rate-monotonic inequality. Now Imagine if this same
task Is allowed to suspend and spend most of its execution time at the end of one period,
followed by a period in which it spends all of its execution at the beginning of the period. In

12 CMU/SEI-91-TR-6



this case, there is a contiguous "bunch* of execution time. Lower priority tasks will see an
atypical amount of preemption time during this "bunching." Also, this "bunching" is not built

* into the basic rate monotonic inequality. However, this situation can be accommodated by
adding an extra term in the inequalities associated with lower priority tasks. Alternatively,
Sha et al. discuss a technique for eliminating the jitter penalty completely by eliminating the
variability in a task's execution [21].

* Another factor that affects the schedulability of a task is priority inversion. Priority inversion
was first discussed in [3] in the context of task synchronization, where the classic Bxample
of so called unbounded priority inversion was described. This synchronization-induced pri-
ority inversion motivated the creation of a class of priority inheritance protocols that allows
us to bound and predict the effects of synchronization-induced priority Inversion (briefly dis-

* cussed in Chapter 2).

However, there are other sources of priority inversion. This becomes more apparent when
we consider the definition of priority inversion: delay in the execution of higher priority tasks
caused by the execution of lower priority tasks. Actually, we are concerned with priority
Inversion relative to a rate monotonic priority assignment. Intervals of non-preemptability
and interrupts are sources of priority inversion. When a higher priority task is prevented
from preempting a lower priority task, the higher priority task's execution is delayed due to
the execution of a lower priority task. Interrupts in general preempt task processing inde-
pendent of event arrival rate and thus clearly have an Impact on the ability of other tasks to
meet their deadlines. Once again, additional terms can be added to the schedulability in-

0 equalities to account for priority inversion.

3.2. Schedulability Models

* The preceding discussion merely offers a sample of how rate monotonic analysis allows us
to reason about the timing behavior of a system. In fact, we have found that the principles
of rate monotonic scheduling theory provide analytical mechanisms for understanding and
predicting the execution timing behavior of many real-time requirements and designs. How-
ever, when various input/output paradigms are viewed in the context of a larger system, it

"*, becomes apparent that timing complexity grows quickly. It is not hard to imagine a system
comprised of many tasks that share data and devices, where the characteristics of the de-
vices vary. The question is, how do we build a model of a system's schedulability in a
realistically complex context?

We refer to a mathematical model that describes the schedulability of a system as a
schedulablilty model. A schedulability model is basically a set of rate monotonic Inequalities
(i.e., the extended schedulability test) that captures the schedulability-related characteristics
of a set of tasks. As described in [1], there is generally one inequality for each task. Each
Inequality has terms that describe or model various factors that affect the ability of a task to
meet its deadline. For example, there are terms that account for preemption effects due to
higher priority tasks; a term is needed that accounts for the execution time of the task itself;
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there may be terms to account for blocking due to resource sharing or priority Inversion due
to Interrupts; and terms may be needed to account for schedulability penalties due to the
jitter effect.

An incremental approach for constructing schedulability models Is suggested by [7] . The
approach basically involves striving to answer two fundamental questions for each task 'ri:

1. How do other tasks affect the schedulability of ri?

2. How does task T, affect the schedulability of other tasks?

In effect, answering these two questions is like specifying a schedulability interface for proc-
ess TI: importing the information needed to determine its schedulability and exporting the
information needed to determine the schedulability of other processes. This approach facili-
tates a separation of concems, allowing us to focus our attention on a single task as differ-
ent aspects of its execution are explored. It is not hard to imagine extending this idea of a
schedulability Interface to collections of task that represent common design paradigms. 4

The person responsible for implementing the paradigm would need to determine how other
tasks in the system affect the schedulability of the paradigm, and it would be incumbent
upon this person to offer the same information to others. These ideas were illustrated in [7],
where schedulability models were constructed for several variations of synchronous and
asynchronous input/output paradigms. The analysis at times confirmed intuition and com-
mon practice, and at times offered unexpected insights for reasoning about schedulability in
this context.

4For example, the client-server model for sharing data between tasks (1].
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4. Systems Issues
The successful use of RMS theory in a large scale system Is an engineering endeavor that
Is constrained by many logistical issues in system development. One constraint is the use
of standards. For reasons of economy, it is important to use open standards. An open
standiard is, however, often a compromise between many contlicting needs, and provides a

* number of primitive operations which usually allow a system configuration to be optimized
for certain applications while maintaining inter-operability. The RMARTS Project has been
heavily Involved w!th an emerging set of standards including IEEE Futurebus+, POSIX real-
time extension and Ada 9x.

The RMS theory belongs to the class of priority scheduling theory. Hence, it is important to
ensure that primitives for priority scheduling are properly embedded in the standards. In this
section, we will review some the design considerations in the context of IEEE 896
(Futurebus+).

* 4.1. Overview of Futurebus+
The Futurebus+ is a specification for a scalable backplane bus architecture that can be con-
figured to be 32, 64, 128 or 256 bits wide. The Futurebus+ specification is a part of the
IEEE 8906 family of standards. The Futurebus+ specification has become a US Navy stan-

- •dard and has also gained the support of the VMEbus International Trade Association and
other major industry concerns. This government and industry backing promises to make the
Futurebus+ a popular candidate for high-performance and embedded real-time systems of
the 1990s. The important features of Futurebus+ include:

e A true open standard in the sense that it is independent of any proprietary tech-
- •nology or processor architecture.

* A technology-independent asynchronous bus transfer protocol whose speed
will be limited only by physical laws and not by existing technology. Transmis-
sion line analysis [4] indicates that Futurebus+ can realize 1 OOM transfers of 32,
64, 128, or 256 bits of data per second.

"-- * Fully distributed connection, split transaction protocols and a distributed arbiter
option that avoid single point failures. Parity is used on both the data and con-
trol signals. Support is available for dual bus configuration for fault tolerant ap-
plications. In addition, Futurebus+ supports on-line maintenance involving live
insertion/removal of modules without turning off the system.

* * Direct support for shared memory systems based on snoopy cache. Both
strong and weak sequential consistency are supported.

* Support for real-time mission critical computation by providing a sufficiently
large number of priorities for arbitration. In addition, there is a consistent treat-
ment of priorities throughout the arbitration, message passing and DMA
protocols. Support is available for implementing distributed clock synchroniza-

* tion protocols.
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From the viewpoint of real-time computing, the Futurebusi. is perhaps the first major nation-
al standard that provides extensive support for priority-driven preemptive real-time schedul-
ing. In addition, the support for distributed clock synchronization protocols provides users
with accurate and reliable timing information. In summary, Futurebus+ provides strong sup-
port for the use of priority scheduling algorithms that can provide analytical performance
evaluation such as the rate monotonic theory [11, 10, 15, 20]. As a result, the Futurebus+
architecture facilitates the development of real-time systems whose timing behavior can be
analyzed and predicted.

In the following, we provide an overview on the design considerations. Readers interested
in a more comprehensive overview of this subject may refer to [22]. Those who are inter-
ested in the details of Futurebus+ are referred to the three volumes of Futurebus+ docu-
ments. IEEE 896.1 defines the logical layer that is the common denominator of Futurebus+
systems. IEEE 896.2 defines the physical layer which covers materials such as live Inser-
tion, node management, and profiles. IEEE 896.3 is the system configuration manual which
provides guidelines (rot requirements) for the use of Futurebus+ for real-time systems, fault-
tolerant systems, or secure computing environments.

4.2. The Design Space for Real-Time Computing Support

It is important to realize that the design space is highly constrained not only by technical
considerations but also by cost and management considerations. The final specification is
determined by a consensus process among representatives from many industrial concerns.
The constraints include:

" Pin count: The pin count for the bus must be tightly controlled. Each additional
pin increases power requirements In addition to increasing weight and imposing
connector constraints. Many of these costs are recurring.

" Arbitration logic complexity: The complexity of bus arbitration driver logic is
low in the context of modern VLSI technology. The addition of simple logic
such as multiplexing arbitration lines for dual or multiple functions is not a recur-
ring cost once It has been designed. The major constraint here is managerial.
The development process must converge to a standard that would meet the
manufacturers' expected schedules. This implies that a good idea that comes
too late is of little value.

"* Arbitration speed: Proodty levels nan be increased by multiplexing the same
priority pins over two or more cycles. While such straightforward multiplexihg of
the arbitration lines will increase the priority levels without adding pins, it will
also double the arbitration time for even the h~ghest priority request.

" Bus transaction complexity: While specialized bus transaction protocols can
be introduced for functions useful for real-time systems (such as clock
synchronization), each additional transaction type can add to the size and com-
plexity of the bus Interface chips. In other words, whenever possible, e'isting
transaction types should be used to achieve real-time functions like clock
synchronization.
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To summarize, support mechanisms for real-time systems must not add non-negligible over-
head to either the performance or the manufacturing cost of a bus that is designed primarily
for general data processing applications. However, these constraints do not have an equal
Impact on dIfferent support features for real-time computing. For example, while they
heavily constrain the design space of arbitration protocols, they are essentially independent
cf the design of real-time cache schemes.5

4.3. The Number of Priority Levels Required

Ideally, there should be as many priority levels as are required by the scheduling algorithm,
and a module must use the assigned priority of the given bus transaction to contend for the
bus. For example, under the rate-monotonic algorithm [11], if there are 10 periodic tasks
each with a different period, each of these tasks should be assigned a priority based on its
period. The bus transactions executed by each of these tasks should reflect the task prior-
ity. From the viewpoint of backplane design, only a small number of pins should be devoted
to arbitration and the degree of multiplexing for arbitration speed should be limited.

As a result, we need to find a way that can use a smaller number of priority levels than the
ideal number for the rate monotonic algorithm. When there is a smaller number of priority
levels available compared with tne number needed by the priority scheduling algorithm, the
schedulability of a resource is lowered (10]. For example, suppose that we have two tasks
¢1 and r2. Task r has 1 msec execution and a period 100 msec while task ' 2 has 100 msec
execution time and a period of 200 msec. If we have only a single priority to be shared by
these two tasks, It Is possible that task r2 may take precedence over task 'r, since ties are
broken arbitrarily, As a result, task T, will miss its deadline even though the total processor
utilization is only 51%.

Fortunately, the loss of schedulability due to a lack of sufficient number of priority levels can
be reducod by employing a constant ratio priority grid for priority -assignments. Consider a
range of the task periods such as 1 msec to 100 seconds. A constant-ratio grid divides this
range into segments such that the ratio between every pair of adjacent points is the same.
An example of a constant ration priority grid Is {L1 - 1 msec, L2 = 2 msec, L3 = 4 msec, ..
where there Is a constant ratio of 2 between pairs of adjacent points in the grid.

With a constant ratio grid, a distinct priority is assigned to each interval in the grid. For
"example, all tasks with periods between 1 to 2 msec will be assigned the highest priority, all
tasks with periods between 2 to 4 msec will have the second highest priority and so on when
using the rate-monotonic algorithm. It has been shown [10] that a constant ratio priority grid
is effective only if the grid ratio is kept smaller than 2. For the rate-monotonic algorithm, the
percentage loss in worstcase schedulability due to the imperfect priority representation can
be computed by the following formula [10]:

5Rea.drs who are Interested in using cache for real-time applications are referred to [6].
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Loss - 1 - (In(2/r) + 1 - 1/r)/In2

where r is the grid ratio.
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Figure 4-1: Schedulability Loss vs. The Number of Priority Bits

For example, suppose that the shortest and longest periods in the system are 1 msec and
100,000 msec respectively. In addition, we have 256 priority levels. Let Lo = 1 msec and
L.256 - 100,000 msec respectively. We have (L1/Lo) = (L2/L,) - ... - (L2 w6/L255) - r. That is, r
- (L258/Lo) 1 /25 6 . 1.046. The resulting schedulability loss is (1 - (ln(2/r) + 1 - 1/r)/An2) ,
0.0014, which is small.

Figure 4-1 plots the schedulability loss as a function of priority bits under the assumption
that the ratio of the longest period to the shortest period in the system is 100,000. As can
be seen, the schedulability loss is negligible with 8 priority bits. In other words, the worst
case obtained with 8 priority bits Is close to that obtained with an unlimited number of priority
levels. 6 As a result, Futurebus+ arbiters have real-time options that support 8 priority bits for
arbitration.

*Th. ratio of 100,000 was chosen here for illustration purposes only. The equation for schedulability loss
indicates that 8 priority bits (256 priority levels) are effective for a wide range of ratios.
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4.4. Overview of Futurebus+ Arbitration

* The Futurebus+ supports up to 31 modules. Each module with a request contends during
an arbitration cycle, and the winner of an arbitration becomes bus master for one trans-
action. Futurebus+ designers can choose between one of two possible arbiters:

* A distributed arbiter scheme: as the name implies, the arbitration of multiple re-
quests happens In a distributed fashion in this model. Its chief advantage is

* that its distributed nature tends to make it fault-tolerant. However, the arbitra-
tion procedure is relatively slow, because the request and grant process has to
be resolved over the backplane wired-or logic bit by bit.

* A central arbiter scheme: in this scheme, all requests for bus access are trans-
mitted to the central arbiter, which resolves the contention and grants the bus to
one module at a time. The obvious disadvantage is that the central arbiter

* could cause single point failure unless a redundant arbiter is employed. On the
other hand, fault tolerance Is not a major concern in workstation applications,
and a central arbiter operates faster since there is no contention over the dedi-
cated request and grant lines for each module.

The difference between the two is perlormance vs reliability. One can, however, combine
the two schemes to achieve both performance and reliability. For example, Texas
Instrument's Futurebus+ Arbitration Controller chip set, TFB201 0, allows one to first operate
in centralized arbitration mode after Initialization for performance. If the central arbiter fails,
the system can switch into the slower but more robust distributed arbitration mode.

1
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5. Summary
a The essential goal of the Real-Time Scheduling in Ada Project at the SEI is to catalyze an

Improvement In the state of the practice for real-time systems engineering. Our goals natu-
rally include contributing to the advancement of the state-of-the-art, but we are equally con-
cemed with advancing the state-of-the-practice. While research Is central to changing the
state-of-the-practice, research alone is not sufficient. We have tried to illustrate through
several examples the importance of the interplay between research and practice, which at
times forces tradeoffs between solving theoretically Interesting problems versus producing
practicable results.

The first example illustrated this interplay by examin!ng the rationale for selecting a research
agenda. The second example illustrated several issues conceming the use of the theory in
a potentially complex but realistic setting. The third example exposed the problem of having
to consider the current and future technology infrastructure when attempting to push a tech-
nology from research to practice. In summary, our experience indicates that technology
transition considerations should be embedded in the process of technology development
from the start, rather than as an afterthought.
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