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We present Oð1015Þ string compactifications with the exact chiral spectrum of the standard model of
particle physics. This ensemble of globally consistent F-theory compactifications automatically realizes
gauge coupling unification. Utilizing the power of algebraic geometry, all global consistency conditions
can be reduced to a single criterion on the base of the underlying elliptically fibered Calabi-Yau fourfolds.
For toric bases, this criterion only depends on an associated polytope and is satisfied for at least Oð1015Þ
bases, each of which defines a distinct compactification.
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Introduction and summary.—As a theory of quantum
gravity that naturally gives rise to rich gauge sectors at low
energies, string theory is a leading candidate for a unified
theory. Achieving unification is an ambitious goal that
requires accounting for all aspects of our physical world,
which includes not only a rich cosmological history, but
also the detailed structure of the standard model of particle
physics.
In this Letter, we present an explicit construction that

guarantees the existence of Oð1015Þ fully consistent string
compactifications, which realize the exact chiral particle
spectrum of the minimally supersymmetric standard model
(MSSM). This construction is performed in the framework
of F theory [1], a strongly coupled generalization of type
IIB superstring theory. It captures the nonperturbative
backreactions of 7-branes onto the compactification space
B3 in terms of an elliptically fibered Calabi-Yau fourfold
π∶Y4 → B3 over it. Gauge symmetries, charged matter,
and Yukawa couplings are then encoded beautifully by Y4’s
singularity structures in codimensions one, two, and three,
respectively. (We refer the interested reader to [2] and
references therein for recent reviews on F theory.)
In the present Letter, we consider a class of elliptically

fibered Calabi-Yau fourfolds giving rise to precisely the
three-generation MSSM spectrum, provided certain
geometric conditions on the base of the fibration are
satisfied. We perform a concrete analysis, finding
Oð1015Þ such bases. All these models come equipped with

moduli-dependent quark and lepton Yukawa couplings, as
well as gauge coupling unification at the compactifica-
tion scale.
The existence of a very large number of standard model

realizations in string theory could perhaps be anticipated
within the set of an even larger number of string compac-
tifications (see, e.g., [3]) that form the so-called string
landscape. Indeed, though standard model realizations
within the landscape could potentially be scarce [4], recent
works hint towards an astronomical number of them [5].
Our construction explicitly demonstrates this possibility,
increasing the number of concretely known global standard
model compactifications in string theory by about 10 orders
of magnitude.
There are also explicit constructions of the standard

model in other corners of string theory. Some of the early
examples of globally consistent intersecting brane models
[6] in type II compactifications (see also [7] and references
therein) were strongly constrained by global consistency
conditions such as tadpole cancellation. In the heterotic
string, the typical difficulties of constructions like [8–10]
arise from having a stable hidden bundle and the existence
of Yukawa couplings. These issues are solved elegantly in
F theory through the geometrization of nonperturbative
stringy effects: (almost all) global conditions analogous to
tadpole cancellation or bundle stability are automatically
taken care of by having a compact, elliptic Calabi-Yau
fourfold Y4, and the presence or absence of Yukawa
couplings can be easily read off from codimension three
singularities of Y4. (In F theory, D3-tadpole cancellation
requires extra care and will be a major theme in our
constructions.)
Despite these advantages, only a handful [11,12] of

F-theory compactifications that realize the exact chiral
spectrum of the MSSM are currently known, due to
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focusing on a very simple base, B3 ¼ P3. This limitation
will be avoided in the current Letter by instead studying
smooth toric varieties, which provide a much larger class
[13,14] of geometries. To take advantage of this large
ensemble, we first construct a class of elliptic fibrations
(based on the class PF11

in [15]) that can be consistently
fibered over all such toric threefolds.
Every such fibration realizes the precise standard model

gauge group ½SUð3Þ × SUð2Þ × Uð1Þ�=Z6 as well as its
matter representations and Yukawa couplings [11,15,16].
Moreover, all models exhibit gauge coupling unification at
the compactification scale, compatible with the existence of
a complex structure deformation to a geometry realizing the
Pati-Salam model with unified gauge coupling [11,15].
Furthermore, for each compatible B3 there exists a G4

flux that induces three families of chiral fermions. These
models have a particularly pleasant feature: all global
consistency conditions on the flux (including quantization
and D3-tadpole cancellation) can be reduced to a single
criterion on the intersection number K̄3 of the anticanonical
class K̄ of the base B3. For toric threefolds that have a
description in terms of a reflexive polytope Δ, K̄3 depends
only on the point configuration of Δ and not its triangu-
lation. On the other hand, for a single polytope there can be
multiple different toric threefolds associated with the
different fine-regular-star triangulations (FRSTs) of Δ,
the number of which grows exponentially with the number
of lattice points in the polytope [13]. Putting together these
different components, we find that the number Ntoric

SM of
globally consistent three-family standard models in our
construction is

7.6 × 1013 ≲ Ntoric
SM ≲ 1.6 × 1016: ð1Þ

We emphasize that this number is construction dependent;
F theory could realize more standard models.
The detailed derivation of this count first requires the

construction in Sec. II of a class of elliptic fibrations with a
flux inducing three chiral families. All flux consistency
conditions reduce to a single criterion on the base B3. To
count how many B3 satisfy this criterion, we discuss the
methods to construct FRSTs of 3D polytopes in Sec. III,
which ultimately lead us to Oð1015Þ possibilities. We close
in Sec. IV with some geometric and physical comments, as
well as future directions.
Universally consistent fibrations with three families.—

The class of elliptic fibrations we are interested in is based
on an elliptic curve that is a specialized cubic insideP2 with
homogeneous coordinates ½u∶v∶w�, given by the vanishing
of the polynomial

P≔ s1u3þ s2u2vþ s3uv2þ s5u2wþ s6uvwþ s9vw2: ð2Þ

By promoting the coefficients si to rational functions over a
Kähler threefold B3, one obtains a singular, elliptically

fibered fourfold π∶YðsÞ
4 → B3. For Y

ðsÞ
4 to be a Calabi-Yau

fourfold, the functions si have to be holomorphic sections
of line bundles on B3 with first Chern classes ½si� ∈
H1;1ðB3;ZÞ given by [11,15]

½s1� ¼ 3K̄−S7−S9; ½s2� ¼ 2K̄−S9; ½s6� ¼ K̄;

½s3� ¼ K̄þS7−S9; ½s5� ¼ 2K̄−S7; ½s9� ¼ S9; ð3Þ

where K̄≡ c1ðB3Þ is the anticanonical class of B3. The
classes S7;9 ∈ H1;1ðB3;ZÞ parametrize different fibrations
over the same base, on which fsi ¼ 0g define effective
divisors.
When all si are generic (that is, irreducible and si ≠ sj

for i ≠ j), F-theory compactified on YðsÞ
4 has the gauge

symmetry ½SUð3Þ × SUð2Þ × Uð1Þ�=Z6 [15,16]. The
global gauge group structure is reflected in the precise
agreement between the geometrically realized matter rep-
resentations and those of the standard model,

ð3;2Þ1
6
; ð1;2Þ−1

2
; ð3̄;1Þ−2

3
; ð3̄;1Þ1

3
; ð1;1Þ1: ð4Þ

These data can be extracted via the M-=F-theory duality

from an explicit resolution Y4 of Y
ðsÞ
4 , which preserves the

Calabi-Yau structure.
A chiral spectrum in F theory requires a nonzero flux

G4 ∈ H2;2ðY4Þ, which must also be specified. For the
relevant subspace of so-called primary vertical G4 fluxes,
there is by now a large arsenal of computational methods
[17,18] (see also [11,19,20]) that allows us to determine
base independently the most general flux on Y4.
For physical consistency, this G4 flux has to satisfy

certain conditions. The first condition is a proper quantiza-
tion [21,22]

G4 þ
1

2
c2ðY4Þ ∈ H2;2ðY4;ZÞ; ð5Þ

where c2ðY4Þ is the second Chern class of Y4. Heuristically,
this condition ensures that the notion of fermions (which
requires a flux-dependent spin structure on subspaces of
Y4) is well defined. Since explicitly verifying this condition
for concrete geometries is difficult, we will content our-
selves with the usual necessary consistency checks
[11,12,18,19,23]. The second consistency condition is a
D3 tadpole satisfying [24]

nD3 ¼
χðY4Þ
24

−
1

2

Z
Y4

G4 ∧ G4∈
!
Z≥0: ð6Þ

While integrality follows as a consequence of the quanti-
zation condition (5), positivity aids in ensuring the stability
of the compactification.
We must also impose phenomenological constraints on

the flux. A massless electroweak hypercharge Uð1ÞY is
guaranteed if the D-terms vanish [25,26],
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∀ η ∈ H1;1ðB3Þ∶
Z
Y4

G4 ∧ σ ∧ π�η¼! 0: ð7Þ

Here, σ is the (1,1)-form Poincaré dual to the so-called
Shioda-divisor associated with the U(1) [27]. A three-
family chiral standard model requires that [28]

χðRÞ ¼
Z
γR

G4¼! 3; ð8Þ

for all representations R in (4). The geometric data c2ðY4Þ,
χðY4Þ and the matter surfaces γR were computed in [11,15].
In the Supplemental Material [29], we provide the explicit
expression of the generic vertical flux in the resolution Y4

presented in [15] and explain in detail how the above
conditions can be checked using well-studied topological
methods.
We now present our main result: how these consistency

conditions can be satisfied for a large ensemble of explicit
geometries. For that, we first consider the generic flux
configuration on (smooth) fibrations Y4 with S7;9 ¼ K̄,
which simplifies the expressions for the topological
quantities (6)–(8). In fact, one can show that all consistency
conditions are reduced to a single criterion on B3 from the
D3 tadpole

nD3 ¼ 12þ 5

8
K̄3 −

45

2K̄3
∈
!
Z≥0; ð9Þ

where K̄3 denotes the triple self-intersection number of the
anticanonical class K̄ of the base. This dramatic simplifi-
cation only requires K̄3 of appropriate value and a base that
allows irreducible and distinct si, all of which are sections
of the anticanonical class.
In summary, we have constructed a class of elliptically

fibered Calabi-Yau fourfolds that gives rise in F theory to
the standard model gauge group and matter representations
with three chiral generations. The only consistency require-
ment that guarantees flux quantization and D3-tadpole
cancellation is that the base B3 of the fibration is a smooth
Kähler threefold with nonrigid irreducible anticanonical
divisors that satisfy (9). In fact, some basic arithmetic shows
that the only values K̄3 can take such that nD3 ∈ Z≥0 are

K̄3 ∈ f2; 6; 10; 18; 30; 90g: ð10Þ

Counting standard model geometries.—Any smooth
threefold B3 with nonrigid anticanonical divisors satisfying
(10) realizes a globally consistent three-family MSSM in F
theory. A subset of such spaces, which can be enumerated
combinatorially, is the set of weak Fano toric threefolds
encoded by 3D reflexive polytopes Δ. While there are
“only” 4319 such polytopes [30], each Δ can specify
inequivalent manifolds B3 through different FRSTs of the
polytope, whose numbers can be very large [13].

What makes this ensemble particularly attractive for our
purpose is the fact that the intersection number K̄3 is
determined solely by the polytope Δ and is completely
triangulation independent. Therefore, any B3 associated
with a FRST of Δ gives rise to a consistent chiral three-
generation MSSM by our construction, provided that the
triangulation-independent constraint on K̄3 is satisfied. In
fact, there is a set S with 708 polytopes that satisfy (10). By
our construction, we immediately have

Ntoric
SM ¼

X
Δ∈S

NFRSTðΔÞ; ð11Þ

where NFRSTðΔÞ is the number of FRSTs of Δ.
Hence, the problem of counting the number of consistent

F-theory models that admit the chiral MSSM spectrum by
our construction reduces to counting FRSTs of reflexive
polytopes.
Since NFRSTðΔÞ grows exponentially with the number of

lattice points in Δ, the set of consistent threefolds B3 is
dominated by triangulations of the largest polytope [13],
labeled Δ8 in the list of [30]. The FRSTs of this polytope
(with K̄3 ¼ 6 and 39 lattice points) cannot be all con-
structed explicitly using standard computer programs such
as SAGEMATH [31]. To enumerate them, we therefore
follow the strategy put forward in [13] to provide bounds
on NFRSTðΔ8Þ.
The idea is to reduce the complexity by first counting the

number of fine-regular triangulations (FRTs) of each facet
of a polytope Δ. Since the facets are two-dimensional
polytopes, it is possible to use brute force on the combina-
torics of FRTs for (almost) all polytopes’ facets. (For facets
with more than 15 lattice points, using brute force on FRTs
also becomes computationally too costly. For these facets,
we use different methods outlined in [13] to obtain lower
and upper bounds for the number of FRTs.) By virtue of the
reflexivity of Δ, any combination of FRTs of all its facets
yields fine-star triangulation of Δ.
The drawback of this approach is that the triangulation of

Δ8 obtained this way is not guaranteed to be regular. To
tackle this issue, we randomly pick 1.3 × 104 samples out
of Oð109Þ fine-star triangulations constructed by gluing
together FRTs of the facets Δ8. Out of these samples, we
find roughly 2

3
to be also regular triangulations. Combining

the factor 2
3
with the bounds of fine-star triangulations for

Δ8 [13], we then obtain 2.6 × 1013 ≤ NFRSTðΔ8Þ ≤
1.6 × 1016.
For the other polytopes in S [i.e., those leading to

threefolds satisfying (10)], we can either compute all
FRSTs, or we can resort to a similar estimation as with
Δ8 if the polytope is too large to use brute force on all
FRSTs. We find that these other polytopes sum up to only
∼5 × 1013 FRSTs, which confirms the dominance of Δ8.
In total, we therefore expect the number of consistent
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three-family F-theory standard models in our construction
over toric threefold bases to be

7.6 × 1013 ≲ Ntoric
SM ≲ 1.6 × 1016:

Discussion and outlook.—We have presented a con-
struction that ensures the existence of Oð1015Þ explicit
globally consistent string compactifications having
the exact chiral spectrum of the standard model within
the framework of F theory. To our knowledge, this is the
largest such ensemble in literature, outnumbering existing
results by about 10 orders of magnitude. The models arise
by varying the base of one “universal” class of elliptic
fibrations introduced in [11,15]. We have only focused on
the set of toric bases, which already produces around a
quadrillion examples. However, we expect that the ensem-
ble of standard models arising from our construction is of
orders of magnitude larger than this, as might be shown, for
instance, by including nontoric bases.
All these models have in common that the Higgs and

lepton doublets are localized on the same matter curve. As
such, this curve must have nonzero genus to allow for the
existence of vectorlike pairs [32]. Given the homology
class of the doublet curve [11] and our restriction S7;9 ¼ K̄,
the genus in question is indeed g ¼ 1þ 9=2K̄3 > 0, since
K̄3 ≥ 2 by (10). It would be very interesting, albeit
extremely difficult with current methods, to study the
precise complex structure dependence of the number of
Higgs doublets and other charged vectorlike pairs in this
ensemble.
Furthermore, since our models have no additional (pos-

sibly massive) Abelian gauge symmetries, all Yukawa
couplings relevant for the standard model are automatically
realized perturbatively, as can be shown by an explicit study
of codimension-three singularities [15]. However, this in turn
also implies that certain proton decay operators compatible
with the standard model gauge group will, in general, be
present [11]. We expect that, in some corners of the moduli
space, which incidentally could also support high-scale
supersymmetry breaking, these operators can be suppressed.
Another avenue could be to instead focus on “F-theory
standard models” that have additional [U(1) [18,33] or R
parity [12] ] selection rules and estimate their numbers in the
toric base landscape. We leave this for future work.
One interesting aspect of our ensemble is gauge coupling

unification without a manifest grand unified theory (GUT)
origin at the compactification scale. It can be easily read off
geometrically from the divisors on B3, which the 7-branes
supporting the gauge symmetries in the type IIB picture
wrap. Because of our restriction S7;9 ¼ K̄, both SU(3) and
SU(2) gauge symmetries are realized on anticanonical
divisors fs9 ¼ 0g and fs3 ¼ 0g with class K̄. (Note that
because K̄ is not rigid, its deformation moduli give rise to
nonchiral charged matter at the compactification scale. They
have to be stabilized suitably at low energies.) Therefore, the

gauge couplings are g23;2 ¼ 2=volðK̄Þ [25,34]. [The factor of
2 arises because, in F theory, the normalization dictated by
geometry is one where the Cartan generators satisfy
trfundðTiTjÞ ¼ Cij with C as the Cartan matrix. On the
other hand, the particle physics convention necessary to
determine the coupling is trfundðTiTjÞ ¼ δij=2.] The Uð1ÞY
coupling is the inverse volume of the so-called height-pairing
divisor b ⊂ B3 [35], which has been computed in [15] and
reduces to b ¼ 5K̄=6 in our ensemble. Therefore, we have
the standard MSSM gauge coupling unification

g23 ¼ g22 ¼
5

3
g2Y ¼ 2

volðK̄Þ ; ð12Þ

which for our models is achieved at the compactification
scale. While this scale as well as the actual values of the
couplings will depend on the details of moduli stabilization,
the relationship (12) is independent of Kähler moduli. It
would be interesting to see if this relationship originates
from an honest geometric realization of a GUT structure.
Given the known connection of our ensemble to a Pati-
Salam ½SUð4Þ × SUð2Þ2�=Z2 model [11,15], we expect an
underlying SO(10).
Our results may provide phenomenological motivation

for the study of new moduli stabilization scenarios.
Specifically, though gauge coupling unification is auto-
matic in our ensemble, it is natural to ask whether the
correct value αGUT ≃ 0.03 can be obtained in canonical
moduli stabilization schemes. For instance, the Kachru-
Kallosh-Linde-Trivedi (KKLT) and large volume scenarios
[36] assume that cycles are at sufficiently large volume to
safely ignore string world sheet instanton corrections to the
Kähler potential. This is essential because it is not known
how to systematically compute and control all instanton
contributions in N ¼ 1 backgrounds. A necessary con-
dition for safely ignoring these corrections is to have
volðCÞ > 1 (in string units) for all curves C ⊂ B3. This
condition defines a stretched out subset of the Kähler cone
[37], where it was also shown that the Kähler cones become
increasingly narrow for increasing h1;1. In effect, this forces
toric divisors to be increasingly large in order to safely
ignore world sheet instantons, leading to smaller gauge
couplings, because on toric B3 the class K̄ is the sum of all
toric divisors. Brief calculations suggest that the correct
αGUT cannot be obtained in this controlled regime, in which
case realistic models in our scenario are not consistent with
the KKLT or large volume scenarios. Firmly concluding
this requires a more detailed study, but we emphasize that it
would not rule out our models and instead motivate the
study of new moduli stabilization scenarios that allow for
the observed value of gauge couplings.
Our compactifications also exhibit D3-branes. These

sectors generically give rise to U(1) gauge theories that
could be cosmologically relevant as dark photons. Each has
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its own open string moduli, the position of the D3-brane,
which are massless at tree level but may be stabilized by
nonperturbative effects due to their appearance in instanton
prefactors [38]. However, since all but one of the toric
divisors are rigid in the geometries we study, it is likely that
there are many instanton corrections to the superpotential.
Each instanton acts with an attractive force on the
D3-brane, pulling it toward the associated divisor, but
the existence of many such contributions would provide
competing forces that stabilize the D3-brane away from
each toric divisor. In particular, due to these competing
effects we see a priori no reason that the D3-branes should
be stabilized anywhere near the SU(3) or SU(2) 7-branes, in
which case jointly charged matter in the form of 3–7 strings
decouple from the spectrum. Such a scenario gives rise to
numerous dark photon sectors that have cosmological
effects only through kinetic mixing with the visible sector
and with one another. It would be interesting to study these
sectors further, in light of current and future dark photon
experiments.
We note that gravity cannot be decoupled in our

ensemble since the standard model gauge divisors are in
the anticanonical class, yielding a nontrivial interplay
between gravity and the visible sector. This interplay arises
due to the details of our construction and could lead to other
interesting interactions between particle physics and cos-
mology. At the level of toric geometry, the models of our
ensemble differ from one another by how the facets are
triangulated. This does not affect the structure of the
anticanonical divisors that realize SU(3) and SU(2), and
thus the particle physics spectrum is insensitive to details of
the triangulation; it is, after all, what gives rise to the large
number of standard models in our construction. The
triangulation is critical, however, for moduli stabilization.
For instance, the classical Kähler potential on Kähler
moduli is determined by triangulation-dependent topologi-
cal intersections. This affects numerous aspects of the
cosmology of these models, including inflation.
This visible sector universality in the midst of cosmo-

logical diversity might lead one to question the extent to
which these should be counted as truly different models.
Though a natural question, it has a clear answer: since the
geometries are different, they lead to distinct four-dimen-
sional effective theories below the Kaluza-Klein scale, each
of which could give rise to numerous metastable vacua.
Instead, our view is that the universal structure in the visible
sector provides some evidence for a long-held hope in the
string landscape, that, despite large numbers of vacua, there
could exist semiuniversal features that lead to meaningful
statistical predictions.
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