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The extremal Reissner-Nordström black hole admits a conformal inversion symmetry, in which the
metric is mapped into itself under an inversion of the radial coordinate combined with a conformal
rescaling. In the rotating generalization, Couch and Torrence showed that the Kerr-Newman metric no
longer exhibits a conformal inversion symmetry, but the radial equation arising in the separation of
the massless Klein-Gordon equation admits a mode-dependent inversion symmetry, where the radius
of inversion depends upon the energy and azimuthal angular momentum of the mode. It was more
recently shown that the static four-charge extremal black holes of STU supergravity (i.e., N ¼ 2

supergravity in four dimension coupled to three vector multiplets) admit a generalization of the
conformal inversion symmetry, in which the conformally inverted metric is a member of the same
four-charge black hole family but with transformed charges. In this paper we study further
generalizations of these inversion symmetries, within the general class of extremal STU supergravity
black holes. For the rotating black holes, where again the massless Klein-Gordon equation is
separable, we show that examples with four electric charges exhibit a generalization of the Couch-
Torrence symmetry of the radial equation. Now, as in the conformal inversion of the static
specializations, the inversion of the radial equation maps it to the radial equation for a rotating
black hole with transformed electric charges. We also study the inversion transformations for the
general case of extremal Bogomol’nyi-Prasad-Sommerfield STU black holes carrying eight charges
(four electric plus four magnetic), and argue that analogous generalizations of the inversion
symmetries exist for both the static and the rotating cases.

DOI: 10.1103/PhysRevD.102.086007

I. INTRODUCTION

It was observed many years ago that the extremal limit of
the Reissner-Nordström black hole exhibits a remarkable
conformal inversion symmetry, in which an inversion of the
radial coordinate, which maps the near-horizon region to
the region near infinity, combined with a conformal
rescaling, transforms the original metric back into itself
[1]. Explicitly, consider the original extremal Reissner-
Nordström metric written in the isotropic form

ds2 ¼ −
�
1þQ

r

�
−2
dt2 þ

�
1þQ

r

�
2

ðdr2 þ r2dΩ2
2Þ;

ð1:1Þ

where dΩ2
2 is the metric on the unit 2-sphere. The horizon is

located at r ¼ 0. Performing the inversion to a new radial
coordinate

r̃ ¼ Q2

r
; ð1:2Þ

one finds that the conformally related metric ds̃2

defined by

ds2 ¼ Q2

r̃2
ds̃2 ð1:3Þ
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is given by

ds̃2 ¼ −
�
1þQ

r̃

�
−2
dt2 þ

�
1þQ

r̃

�
2

ðdr̃2 þ r̃2dΩ2
2Þ:

ð1:4Þ

Thus after the conformal inversion, the resulting metric ds̃2

is again the extremal Reissner-Nordström metric and takes
the identical form to the original metric (1.1) [1]. The radius
of the inversion in (1.2) is equal to the electric charge Q
(and hence also the mass).
The conformal inversion symmetry of the extremal

Reissner-Nordström metric has been employed in a number
of papers (see, for example, [2–4]) in order to relate some of
the recent observations about the asymptotic behavior of
Klein-Gordon and other fields on the future horizon of an
extremal black hole (see, for example, [5,6]) to the
asymptotic behavior of these fields at future null infinity.
It was shown also in [1] that the conformal inversion

symmetry of the extremal Reissner-Nordström metric does
not generalize to the rotating case, namely the extremal
Kerr-Newman metric. It was, however, observed that if one
considers a massless Klein-Gordon field Φ in the extremal
Kerr-Newman background, then after performing a sepa-
ration of variables the differential equation for the radial
function exhibits a remarkable inversion symmetry. This
involves a radius of inversion that depends not only on the
black hole charge and rotation parameters but also on the
separation constants ω and m that arise in the factorized
solutions

Φðt; r; θ;φÞ ¼ RðrÞSðθÞe−iωteimφ: ð1:5Þ

Thus the inversion radius is different for different modes.
In [4], conformal inversions of a class of more general

static extremal black holes were investigated. Specifically,
the static extremal four-charge black hole solutions [7]
of the four-dimensional STU supergravity (i.e., N ¼ 2
supergravity in four dimension coupled to three vector
multiplets) theory were studied.1 Thus there are four
electromagnetic field strengths in total, each of which
can carry, in general, independent electric and magnetic
charges. The general eight-charge solution is quite com-
plicated but the special case where each field strength
carries just an electric charge is much simpler, with the
metric being given by

ds2 ¼ −H−1=2dt2 þH1=2ðdr2 þ r2dΩ2
2Þ; ð1:6Þ

H ¼
Y4
i¼1

�
1þQi

r

�
; ð1:7Þ

As was shown in [4], under the inversion

r̃ ¼ Π2

r
; Π≡Y4

i¼1

Q1=4
i ; ð1:8Þ

one finds that the conformally related metric ds̃2 given by

ds2 ¼ Π2

r̃2
ds̃2 ð1:9Þ

takes the form

ds̃2 ¼ −H̃−1=2dt2 þ H̃1=2ðdr̃2 þ r̃2dΩ2
2Þ; ð1:10Þ

H̃ ¼
Y4
i¼1

�
1þ Q̃i

r̃

�
; ð1:11Þ

where

Q̃i ¼
Π2

Qi
: ð1:12Þ

Thus the metric ds̃2 obtained by the conformal inversion is
in the same class of four-charge static extremal black holes
as the original metric (1.6), but for new charges Q̃i related
to the original charges Qi by (1.12) [4].
In the special case where all four charges are equal, the

metric (1.6) reduces to the extremal Reissner-Nordström
metric (1.1) and the conformal inversion gives back this
metric again. A more general specialization where the
conformal inversion becomes an actual symmetry is if the
charges are set equal in pairs; for example,

Q3 ¼ Q1; Q4 ¼ Q2;⇒ Q̃3 ¼ Q̃1 ¼ Q2;

Q̃4 ¼ Q̃2 ¼ Q1; ð1:13Þ

and hence H̃ ¼ H [4].
One purpose of the present paper is to investigate

whether the observation of Couch and Torrence that the
conformal inversion symmetry of the extremal static
Reissner-Nordström metric has a corresponding inversion
transformation of the radial equation in the rotating case
might generalize to rotating versions of the four-charge
extremal black holes in STU supergravity. We show that
this question can be answered in the affirmative. Namely,
we show that in the rotating extremal four-charge STU
supergravity background, the radial equation for the sep-
arated massless Klein-Gordon equation indeed exhibits an
inversion symmetry. As in the Kerr-Newman case, the
inversion radius depends not only on the black hole charge

1This is also a consistent truncation of ungauged supergravity
theory with maximal (both N ¼ 4 and N ¼ 8) supersymmetry.
Black hole solutions of STU supergravity are generating sol-
utions of the full maximally supersymmetric ungauged super-
gravity theories.
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and rotation parameters but also on the mode numbers ω
and m arising in the separation of variables. A new feature
that we find for the general four-charge black holes is that
after the inversion, the radial equation is not the same as the
original radial equation but, rather, it is the radial equation
for a transformed set of charge parameters. This is the
analogue, for the rotating case, of the mapping of the
charges (1.12) that was found for the static four-charge
black holes.
Another purpose of this paper is to investigate conformal

inversion in the most general setting of the eight-charge
static extremal STU supergravity black holes and the
analogous inversion of the Klein-Gordon radial equation
in the extremal eight-charge rotating backgrounds. The
goal is to establish whether these inversion transformations
again provide a mapping back into the solution space of the
eight-charge black holes.
It should be emphasized at this point that there exist

disjoint classes of static extremal black holes in STU
supergravity. The examples with four electric charges that
we discussed above are contained within the class of BPS
(Bogomol’nyi-Prasad-Sommerfield) extremal black
holes. These are typically supersymmetric, preserving
some fraction of the supersymmetry that is governed by
the number, and the pattern, of the nonvanishing charges.
These BPS black holes form the focus of our studies in
this paper. Our findings, which we describe in detail later,
suggest that the entire eight-charge static BPS family of
black holes maps into itself under conformal inversion.
We reach this conclusion by constructing explicitly the
general eight-charge static BPS extremal family of black
holes and studying the conditions that arise from requiring
that the family map into itself under conformal inversion.
Unlike the situation for the case of four electric charges
which was studied in [4], it does not seem to be possible in
the general case to give an elegant formula for the
mapping of the charges under conformal inversion,
analogous to that in Eq. (1.12). This is a consequence
of the fact that the system of conditions resulting from the
requirement of the existence of a conformal inversion
mapping is underdetermined. That is to say, there are now
fewer conditions than the number of unknowns (the eight
mapped charges), and so there is not a unique solution. We
have checked in many examples, and it appears that a
mapping of charges always exists.
We also study the general eight-charge rotating

extremal black holes. As in the four-charge specialization
described earlier, here too the massless Klein-Gordon
equation can be separated and the behavior of the radial
wave equation under inversion can be investigated. We
find that, as in the eight-charge static BPS extremal black
holes described above, although we can write down the
conditions for the inversion of the radial coordinate to give
rise again to a radial equation for a set of mapped charges,
it does not appear to be possible to give an elegant formula

for the mapped charges. Again, the reason is that the
system of conditions for invertability does not fully
constrain the mapped charges. As in the static case, we
may nevertheless argue that solutions for the mapped
charges will exist.
There also exists a class of extremal black holes in STU

supergravity that does not obey the BPS conditions. A
simple example that was investigated in [4] was the static
extremal Kaluza-Klein dyonic black hole, which in the
language of STU supergravity corresponds to the case
where just one of the four electromagnetic fields is turned
on and carries independent electric and magnetic charges,
with the other three electromagnetic fields being zero. It
was shown in [4] that this metric does not map into any
metric within the same family, under conformal inversion.
This does not, however, necessarily provide a counterex-
ample to the idea that the entire eight-charge family of non-
BPS extremal black holes might map into itself under
conformal inversion, since the conformal inversion of the
Kaluza-Klein dyon might in principle be an eight-charge
non-BPS extremal solution that did not lie within the
original Kaluza-Klein dyonic subset. However, owing to
the greater complexity of the general eight-charge non-BPS
extremal solutions, we shall not pursue this question further
in the present paper.

II. INVERSION SYMMETRY OF RADIAL
EQUATION FOR FOUR-CHARGE ROTATING

BLACK HOLES

Couch and Torrence observed that although there is no
conformal inversion symmetry of the extremal Kerr-
Newman metric (unlike the situation for the extremal
Reissner-Nordström solution), there is nevertheless an
inversion symmetry of the radial equation after one
separates variables in the massless scalar wave equation
in the Kerr-Newman geometry [1]. Here, we show that
there exists a generalization of this inversion symmetry
for the radial equation arising from the separation of
variables for the massless scalar wave equation in the
four-dimensional four-charge rotating black hole solu-
tions. The situation for the general four-charge case is
reminiscent of the situation found in [4] for the entire
metric of the four-charge extremal static black holes,
namely, that the inversion applied to a generic four-charge
case maps it into another case with different values of the
four charges. In the special case of pairwise-equal charges,
the inversion maps the radial equation into exactly the same
radial equation. A special case of this, when all four charges
are equal, reduces to the Kerr-Newman result found by
Couch and Torrence.
A convenient presentation of the rotating black holes in

four-dimensional STU supergravity carrying four indepen-
dent charges can be found in [8,9]. The metric can be
written as [9]:
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ds2 ¼ −
ρ2 − 2mr

W
ðdtþ Bð1ÞÞ2 þW

�
dr2

Δ
þ dθ2 þ Δsin2θdϕ̃2

ρ2 − 2mr

�
;

Bð1Þ ¼
2masin2θðrΠc − ðr − 2mÞΠsÞ

ρ2 − 2mr
dϕ̃; ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2mrþ a2;

W2 ¼ R1R2R3R4 þ a4cos4θ þ
�
2r2 þ 2mr

X
i

s2i þ 8m2ðΠc − ΠsÞΠs − 4m2
X
i<j<k

s2i s
2
js

2
k

�
a2cos2θ;

Ri ¼ rþ 2ms2i ; Πc ¼
Y
i

ci; Πs ¼
Y
i

si: ð2:1Þ

The four physical charges are given by qi ¼ 2msici ¼ m sinh 2δi. Extremality is achieved by takingm ¼ a, and the horizon
is then at r ¼ a. It is straightforward to separate variables in the massless wave equation □Ψ ¼ 0 in this background.2

Writing

Ψ ¼ e−iωtþimϕ̃Rðr̂ÞSðyÞ; ð2:2Þ

where we write y ¼ cos θ and define

r̂ ¼ r − a ð2:3Þ

(so that the horizon is located at r̂ ¼ 0), we find that R and S satisfy the equations

r̂2R00 þ 2r̂R0 þ ðH − λÞR ¼ 0; ð1 − y2ÞS00 − 2yS0 −
�

m2

1 − y2
þ a2ω2ð1 − y2Þ − λ

�
S ¼ 0; ð2:4Þ

where λ is the separation constant and

H ¼ ω2r̂2 þ 2aω2

�
2þ

X
i

s2i

�
r̂þ 2a2ω2

�
4þ 3

X
i

s2i þ 2
X
i<j

s2i s
2
j

�

þ
�
8a3ω2

�
1þ

X
i

s2i þ
X
i<j

s2i s
2
j þ

X
i<j<k

s2i s
2
js

2
k

�
− 4a2ωmðΠc − ΠsÞ

�
1

r̂

þ
�
a2m2 − 4a3ωmðΠc þ ΠsÞ þ 4a4ω2

�
1þ

X
i

s2i þ
X
i<j

s2i s
2
j þ

X
i<j<k

s2i s
2
js

2
k þ 2ΠsðΠc þ ΠsÞ

��
1

r̂2
: ð2:5Þ

A straightforward calculation then shows that writing H as Hðr̂; δiÞ, with si ¼ sinh δi, etc., then

Hðr̂; δiÞ ¼ H

�
β2

r̂
; δ̃i

�
; ð2:6Þ

where

β2 ¼ −
am
ω

þ 2a2ðΠc þ ΠsÞ; ð2:7Þ

and the redefined charge parameters δ̃i are related to the original parameters δi by the involution
δ̃i ¼ 1

2
ðδ1 þ δ2 þ δ3 þ δ4Þ − δi, i.e.,

2The massless wave equation is separable also in the nonextremal case, m ≠ a, as shown in [10].
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δ̃1 ¼
1

2
ðδ2 þ δ3 þ δ4 − δ1Þ; δ̃2 ¼

1

2
ðδ1 þ δ3 þ δ4 − δ2Þ;

δ̃3 ¼
1

2
ðδ1 þ δ2 þ δ4 − δ3Þ; δ̃4 ¼

1

2
ðδ1 þ δ2 þ δ3 − δ4Þ:

ð2:8Þ

Let us now define a (dimensionless) coordinate x ¼ β=r̂.
Viewing the radial function R as now being a function
PðxÞ, we see that it satisfies

x2∂2
xPðxÞ þ fðx; δiÞPðxÞ ¼ 0; ð2:9Þ

where

fðx; δiÞ ¼
1

x2

�
H

�
β

x
; δi

�
− λ

�

¼ β2ω2 þ β2ω2

x4
þ CþðδiÞ

x
þ C−ðδiÞ

x3
þ C0ðδiÞ − λ

x2
;

ð2:10Þ

with

CþðδiÞ¼4aβω2ðΠc−ΠsÞ; C−ðδiÞ¼aβω2
X
i

cosh2δi;

C0ðδiÞ¼a2ω2

�
2þ1

2

X
i<j

ðcosh2ðδi−δjÞþcosh2ðδiþδjÞÞ
�
:

ð2:11Þ

One can easily verify that β and C0 are invariant under
δi → δ̃i, while

CþðδiÞ ¼ C−ðδ̃iÞ; C−ðδiÞ ¼ Cþðδ̃iÞ: ð2:12Þ

It follows that

f

�
1

x
; δi

�
¼ x4fðx; δ̃iÞ; ð2:13Þ

and so if Pðx; δiÞ is a solution of (2.9) then defining

x̃ ¼ 1

x
; P̃ðx̃Þ ¼ 1

x
PðxÞ; ð2:14Þ

the function P̃ðx̃Þ will solve the tilded equation

x̃2∂2
x̃P̃ðx̃Þ þ fðx̃; δ̃iÞP̃ðx̃Þ ¼ 0: ð2:15Þ

Thus a solution PðxÞ of the radial equation with charge
parameters δi maps into a solution of the inverted radial
equation with charge parameters δ̃i given by (2.8).
Note that in the specialization to pairwise-equal charges,

such as δ3 ¼ δ1 and δ4 ¼ δ2, one has

δ̃1 ¼ δ̃3 ¼ δ2; δ̃2 ¼ δ̃4 ¼ δ1; ð2:16Þ

and so in this case Hðx; δiÞ ¼ Hð1x ; δiÞ (since the function
H is symmetrical in the charge parameters). The constant β
in this pairwise-equal case is given by

β2 ¼ −
am
ω

þ 2a2ðcosh2 δ1 cosh2 δ2 þ sinh2 δ1 sinh2 δ2Þ:
ð2:17Þ

Thus in this case, and in its further specialization to δ1 ¼ δ2
(all charges equal, i.e., the Kerr-Newman solution studied
by Couch and Torrence), the inversion is an actual
symmetry of the radial equation.

A. Conformal inversion in the static limit

It is interesting to look at the limit where the extremal
four-charge metric (2.1) (withm ¼ a) reduces to the metric
of extremal four-charge static black holes, first obtained as
a BPS black hole solution in [7]. Since the physical charges
in the extremal rotating metric are given by qi ¼ a sinh 2δi,
one must send the charge parameters δi to infinity at the
same time as sending the rotation parameter a to zero, so as
to hold the qi finite, and so one has

qi ¼
a
2
e2δi ð2:18Þ

fixed, and the metric becomes

ds2 ¼ −
�Y

i

Hi

�
−1
2

dt2 þ
�Y

i

Hi

�1
2ðdr2 þ r2dΩ2Þ

ð2:19Þ

in the extremal static limit, where Hi ¼ 1þ qir−1. After
the inversion, and using (2.8), one has

q̃i ¼
a
2
e2δ̃i ¼ a

2
eδ1þδ2þδ3þδ4−2δi ; ð2:20Þ

and hence

q̃i ¼
Q2

qi
; Q4 ≡Y

i

qi: ð2:21Þ

This is precisely the relation between untilded and tilded
charges that was found in [4] (and which we summarized in
the Introduction) for the four-charge static metrics and the
conformally related inverted metrics. In that case, the
transformation mapped the entire metric into another metric
within the same four-charge class. Thus the inversion
symmetry (up to charge transformations) of the radial
equation in the rotating case, which we exhibited above,
becomes an inversion symmetry (up to charge transforma-
tions) of the entire metric in the static limit.

GENERALIZED COUCH-TORRENCE SYMMETRY FOR ROTATING … PHYS. REV. D 102, 086007 (2020)

086007-5



III. INVERSION SYMMETRY OF RADIAL
EQUATION FOR PAIRWISE EQUAL

DYONIC STU BLACK HOLES

The generalization of the Couch-Torrence inversion
symmetry of the separated radial equation to the general
case of the eight-charge dyonic rotating extremal black
holes of STU supergravity is rather complicated, and we
shall not present it here. It becomes much more manageable
in special cases, such as the case with four electric charges,
which we discussed previously. Another case that is
relatively straightforward is when the field strengths of
STU supergravity are set equal in pairs, with each of the
two remaining independent fields carrying independent
electric and magnetic charges.
From the paper [11] of Chow and Compère, after

separating variables in the massless Klein-Gordon equation
for the eight-charge rotating STU black holes, the radial
equation takes the form

∂rðR∂rPðrÞÞ þHPðrÞ ¼ 0;

H ¼ ω2W2
r − 2aωkLr þ a2k2

R
þ λ; ð3:1Þ

where R ¼ r2 − 2mrþ a2 − n2, the separation constant is
λ, and the factorized solutions are taken to have the form
Ψ ¼ e−iωtþikφPðrÞSðθÞ. (We follow [11] and use k rather
than m for the azimuthal quantum number, since m is used
here to denote the black-hole mass parameter.) The con-
stant n is given by

n ¼ −m
ν1
ν2

ð3:2Þ

(this is the condition for the physical NUT (Newman-Unti-
Tamborino) charge N ¼ mν1 þ nν2 to be zero), and the
functions Wr and Lr in the extremal case are given by

W2
r ¼ ρ4 þ 4Mρ2ðρþmÞ þ L2

r ;

Lr ¼ 2a2
�
ν2
m
ρþ ðν2 þ 2DÞ

�
; ð3:3Þ

where we have defined

ρ ¼ r −m; ð3:4Þ
and the quantities ν1, ν2, and D are given, in the pairwise-
equal case, by

ν1 ¼ −
1

2
sinh 2δ1 sinh 2γ1 −

1

2
sinh 2δ2 sinh 2γ2;

ν2 ¼
1

2
cosh 2δ1 cosh 2γ2 þ

1

2
cosh 2δ2 cosh 2γ1;

D ¼ 1

4
ðcosh 2δ1 cosh 2γ2 − 1Þðcosh 2δ2 cosh 2γ1 − 1Þ

þ 1

4
sinh 2δ1 sinh 2δ2 sinh 2γ1 sinh 2γ2: ð3:5Þ

The physical massM, given in general byM ¼ mμ1 þ nμ2
[11], is given in the pairwise-equal case byM ¼ mν2 − nν1
(since then μ1 ¼ ν2 and μ2 ¼ −ν1). The four physical
electric and magnetic charges ðQ1; Q2; P1; P2Þ carried by
the two independent field strengths F1 and F2 are given in
terms of the boost parameters ðδ1; δ2; γ1; γ2Þ by [11]

Q1 ¼
1

2
m sinh 2δ1 cosh 2γ2 þ

1

2
n cosh 2δ1 sinh 2γ1;

Q2 ¼
1

2
m sinh 2δ2 cosh 2γ1 þ

1

2
n cosh 2δ2 sinh 2γ2;

P1 ¼
1

2
m sinh 2γ1 cosh 2δ1 −

1

2
n cosh 2γ2 sinh 2δ1;

P2 ¼
1

2
m sinh 2γ2 cosh 2δ2 −

1

2
n cosh 2γ1 sinh 2δ2: ð3:6Þ

Viewing H, defined in (3.1), as a function of ρ, we find

HðρÞ ¼ ω2

�
ρ2 þ β4

ρ2

�
þ 4ν2a2ω2

m

�
ρþ β2

ρ

�

þ 4ν2a2ω2

�
1þ a2ν2

m2

�
þ λ; ð3:7Þ

where

β2 ¼ 2a2ðν2 þ 2DÞ − ak
ω

;

¼ a2ð1þ cosh 2δ1 cosh 2δ2 cosh 2γ1 cosh 2γ2

þ sinh 2δ1 sinh 2δ2 sinh 2γ1 sinh 2γ2Þ −
ak
ω

: ð3:8Þ

Thus the function H has the inversion symmetry

HðρÞ ¼ H

�
β2

ρ

�
: ð3:9Þ

This implies an inversion symmetry of the radial equation,
namely, that if we define ρ̃ ¼ β2ρ−1, then the original radial
equation (3.1) implies the inverted equation

∂ ρ̃ðρ̃2∂ ρ̃P̃ðρ̃ÞÞ þHðρ̃ÞP̃ðρ̃Þ ¼ 0 ð3:10Þ

where

P̃ðρ̃Þ ¼ ρ

β
PðρÞ ¼ β

ρ̃
P

�
β

ρ̃

�
: ð3:11Þ

Note that as in the case of the pairwise-equal specialization
of the four electric charge black holes discussed previously,
the inversion is an actual symmetry in this pairwise-equal
dyonic charge case. One can easily verify that if the
magnetic charges are set to zero, the inversion here reduces
to the previous pairwise-equal result, with the radius of
inversion β reducing from (3.8) to (2.17).
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A. Conformal inversion symmetry for static
pairwise-equal dyonic black holes

The static limit of the extremal rotating dyonic black
holes with pairwise-equal charges is achieved by sendingm
(and hence n and a) to zero while sending the boost
parameters to infinity, so as to keep the physical charges in
(3.6) finite and nonzero. This can be done by sending

m → 4m̄e−4λ; δi → δi þ λ; γi → γi þ λ; ð3:12Þ

and taking the limit λ → ∞. The metric given in [11]
becomes static, with

ds2 ¼−
r2

W
dt2þW

r2
ðdr2þ r2dΩ2Þ;

W ¼ r2þ 2Mrþ 2ðm̄2þ n̄2Þe2ðδ1þδ2þγ1þγ2Þ;

n̄¼ m̄
coshðδ1− δ2þ γ1− γ2Þ
coshðδ1− δ2 − γ1þ γ2Þ

;

M¼ m̄eδ1þδ2þγ1þγ2

×
cosh2ðδ1− δ2þ γ1− γ2Þþ cosh2ðδ1− δ2− γ1þ γ2Þ

coshðδ1− δ2− γ1þ γ2Þ
:

ð3:13Þ

The electric and magnetic charges in the static limit are
given by3

Q1 ¼
m̄e2δ1 ½e2δ1ðe4γ1 þ e4γ2Þ þ 2e2δ2þ2γ1þ2γ2 �

2ðe2δ1þ2γ2 þ e2δ2þ2γ1Þ ;

Q2 ¼
m̄e2δ2 ½e2δ2ðe4γ1 þ e4γ2Þ þ 2e2δ1þ2γ1þ2γ2 �

2ðe2δ1þ2γ2 þ e2δ2þ2γ1Þ ;

P1 ¼
m̄e2δ1þ2δ2ðe4γ1 − e4γ2Þ
2ðe2δ1þ2γ2 þ e2δ2þ2γ1Þ ;

P2 ¼
m̄e2δ1þ2δ2ðe4γ2 − e4γ1Þ
2ðe2δ1þ2γ2 þ e2δ2þ2γ1Þ : ð3:15Þ

A straightforward calculation shows that if we perform
the inversion

r ¼ α2

r̃
; α2 ¼ 2ðm̄2 þ n̄2Þe2ðδ1þδ2þγ1þγ2Þ; ð3:16Þ

then W ¼ WðrÞ satisfies

WðrÞ ¼ α2

r̃2
Wðr̃Þ; ð3:17Þ

and therefore the metric obeys the conformal inversion
symmetry

ds2 ¼ α2

r̃2
ds̃2; ð3:18Þ

where ds̃2 is the same as the original metric ds2 given in
(3.13), only now written with r̃ in place of r.

IV. CONFORMAL INVERSION FOR
EIGHT-CHARGE EXTREMAL
STATIC STU BLACK HOLES

The most general black hole solution in STU super-
gravity carries eight independent charges, namely an
electric and a magnetic charge for each of the four
electromagnetic fields. The theory has an SLð2;RÞ3 global
symmetry, which can be thought of as SLð2;RÞ1 which is
an electric/magnetic S-duality; SLð2; RÞ2, which acts on
the two-torus when one views the STU supergravity as the
T2 reduction of the six-dimensional string; and SLð2; RÞ3,
which exchanges Kaluza-Klein and winding fields. The
Uð1Þ3 compact subgroup of the SLð2;RÞ3 rotates the
various charges, while keeping fixed the asymptotic values
of the scalar fields. Thus one can always employ the three-
parameter Uð1Þ3 subgroup to reduce an arbitrary eight-
charge black hole to a canonical form in which there are
only 5 ¼ 8 − 3 nonvanishing charge parameters.
This reduction to a five-parameter canonical form was

employed in [12] in the case of the static BPS extremal
STU black holes, in order to construct a solution with five
independent charge parameters. They carry charges ðQ;PÞ
of the form (after changing to a duality frame that matches
the choice in our previous discussions)

ðQ1; 0Þ; ðQ2; 0Þ; ðQ3; pÞ; ðQ4;−pÞ: ð4:1Þ

For our present purposes it will be more convenient to
reintroduce the redundancy of the additional three param-
eters, so that we can present the static extremal black holes
in a symmetrical form with eight independent charge
parameters: four electric and four magnetic. In order to
do this we shall construct explicitly the action of the
SLð2;RÞ3 global symmetry on the STU supergravity fields
and the charges, and then make use of the Uð1Þ3 compact
subgroup in order to derive the general eight-charge
solution from the five-parameter solution presented in
[12]. Because these steps are a little involved, we relegate
them to Appendixes A and B.
The upshot from these calculations is that the metric of

the general eight-charge static extremal black hole is

3Note that P2 ¼ −P1 in the static limit. Although this might
appear not to be a generic pairwise-equal dyonic configuration, it
actually is, once one takes into account that there is an S-duality
of the pairwise-equal STU supergravity under which ðQ1; P1Þ
and ðQ2; P2Þ can both be rotated under�

Qi

Pi

�
→

�
cos θ sin θ
− sin θ cos θ

��
Qi

Pi

�
: ð3:14Þ
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ds2 ¼ −
r2ffiffiffiffi
V

p dt2 þ
ffiffiffiffi
V

p

r2
ðdr2 þ r2dΩ2Þ;

V ¼ r4 þ αr3 þ βr2 þ γrþ Δ; ð4:2Þ

where the coefficients α, β, γ, and Δ are obtained in
Eqs. (B8) in Appendix B, and which for convenience we
reproduce here:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X

i

Qi

�
2

þ
�X

i

Pi

�
2

s
;

β ¼
X
i<j

ðQiQj þ PiPjÞ;

γ ¼ 1

α

�
4Δþ 1

2
β2 −

1

2

X
i<j

ðP2
i P

2
j þQ2

i Q
2
j þ PijQijÞ

− 3
Y
i

Pi − 3
Y
i

Qi

�
;

Δ ¼
Y
i

Qi þ
Y
i

Pi þ
1

2

X
i<j

PiQiPjQj −
1

4

X
i

P2
i Q

2
i :

ð4:3Þ

In the expression for γ, we have defined Pij ¼ PiPj þ
ðQk PkÞ=ðPiPjÞ and Qij ¼ QiQj þ ðQk QkÞ=ðQiQjÞ (so
P12 ¼ P1P2 þ P3P4, etc.).
If the radial coordinate of the metric (4.2) is subjected to

the inversion

r → r̃ ¼
ffiffiffiffi
Δ

p

r
; ð4:4Þ

then the conformally rescaled metric ds̃2, defined by

ds2 ¼
ffiffiffiffi
Δ

p

r̃2
ds̃2; ds̃2 ¼ −

r̃2ffiffiffiffi
Ṽ

p dt2 þ
ffiffiffiffi
Ṽ

p

r̃2
ðdr̃2 þ r̃2dΩ2Þ;

ð4:5Þ

where Ṽ ¼ r̃4 þ α̃r̃3 þ β̃r̃2 þ γ̃ r̃þΔ̃, will be in the same
class of black hole metrics provided that there exists a
mapping of the charges such that

α̃ ¼ γffiffiffiffi
Δ

p ; β̃ ¼ β; γ̃ ¼ α
ffiffiffiffi
Δ

p
; Δ̃ ¼ Δ: ð4:6Þ

These four equations constitute the conditions that the eight
mapped charges Q̃i and P̃i must satisfy, if the conformally
inverted metric is to be interpretable as again being
contained within the eight-charge family of static BPS
extremal black holes.
Note that the inversion of the inversion will give back the

original metric, up to a constant scale factor that we can
always set to unity by normalization. The inversion will

then be an involution, and the third equation in (4.6) is
automatically satisfied if the first and the fourth are
satisfied. Thus we can choose to view the four conditions
(4.6) as instead being described by the first, second, and
fourth equations in (4.6), together with the normalization
condition for the inversion to be an involution.
As one can easily verify, in the special case of the

solution with just four electric charges, the expressions
(4.3) reduce to

α ¼
X
i

Qi; β ¼
X
i<j

QiQj;

γ ¼
X
i<j<k

QiQjQk; Δ ¼
Y
i

Qi; ð4:7Þ

and Eqs. (4.6) are indeed all satisfied if the charges are
mapped according to the rule (1.12).
For the general eight-charge case, we have not succeeded

in finding an elegant formula for a mapping of the charges
that satisfies the conditions in (4.6). However, we can see
simply by counting the number of conditions, and compar-
ing with the number of unknowns, that we can expect that a
solution will always exist. If we include the normalization
choice that the inverse of the inverse gives back exactly the
original metric then, as indicated in the discussion above,
we have a total of four conditions to be satisfied. In the case
of the solutions with four electric charges, this meant that
the number of conditions was equal to the number of
unknowns (the four mapped charge parameters Q̃i, where it
was assumed also that the magnetic charges remained zero
after the mapping). Thus, in the four-charge case it turned
out that there was a unique solution for the mapping of the
charges, up to permutations, as given in (1.12).
In the general eight-charge case we still have just four

conditions to be satisfied, but we now have eight unknowns
(the mapped electric and magnetic charges Q̃i and P̃i).
Thus we can expect that not merely will a solution exist for
the mapped charges but that there will in fact be a 4 ¼ 8 − 4
parameter family of possible solutions. This perhaps
accounts for the difficulty in finding an elegant solution
in this case for the mapping of the charges. Unless there
exists a criterion for characterizing what constitutes an
“elegant” solution, it may not in general be possible to do
more than just give the rule “find the four-parameter family
of solutions for the mapped charges Q̃i and P̃i that solve the
four conditions (4.6).”
One way of giving a slightly more constructive descrip-

tion of the mapping of the charges is to consider the set of
transformations under the SLð2;RÞ3 global symmetry of
the STU theory (see Appendix A). We know that these
transformations, implemented as in Eq. (A24), leave the
quartic polynomial Δ defined in the (4.3) invariant, which
is precisely what is required by the final equation in (4.6).
The other quantities α, β, and γ defined in (4.3) are not
invariant under SLð2;RÞ3, although they are invariant
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under the Uð1Þ3 compact subgroup. Thus we may view the
six-dimensional coset SLð2;RÞ3=Uð1Þ3 as parametrizing
candidate transformations of the eight original untilded
charges to give the eight tilded charges that obey the
remaining three conditions in (4.6).
A relatively simple possibility is to restrict the three

SLð2;RÞ matrices

�
ai bi
ci di

�
ð4:8Þ

to be diagonal,

�ai 0

0 1
ai

�
ð4:9Þ

for i ¼ 1, 2, and 3. This then leaves just the three
undetermined parameters ai to be solved, by requiring
the remaining equations (the first three) in Eq. (4.6) to be
satisfied. Provided that there exist real such solutions for
the ai, then the problem of finding the mapping of charges
under the conformal inversion is solved, in the sense that it
is reduced to solving three equations for three unknowns.
As a first example, we may consider the four-charge case

where the magnetic charges are all zero, which was studied
in [4] and is described in the Introduction of the present
paper. The mapped charges Q̃i are given in terms of the
original charges Qi by (1.12), and as can easily be checked
from the formulas in Appendix A, they are produced by
means of the SLð2;RÞ3 transformations with the restricted
form (4.9) where

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q2

Q3Q4

s
; a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q3

Q2Q4

s
; a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q4

Q2Q3

s
:

ð4:10Þ

As another example, we may consider the special case of
pairwise-equal charges; without loss of generality we
choose the case where the gauge fields labeled 1 and 3
are set equal, and likewise the gauge fields labeled 2 and 4.
Thus we have

Q1 ¼Q3; Q2¼Q4; P3¼P1; P4 ¼P2: ð4:11Þ

The SLð2;RÞ3 global symmetry of the full STU super-
gravity, described in Appendix A, reduces to just the
SLð2;RÞ2 symmetry. In this case the coefficients α, β, γ,
and Δ in (4.3) become

α ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1 þ P2Þ2 þ ðQ1 þQ2Þ2

q
; β ¼ 1

4
α2 þ 2

ffiffiffiffi
Δ

p
;

γ ¼ α
ffiffiffiffi
Δ

p
; Δ ¼ ðP1P2 þQ1Q2Þ2; ð4:12Þ

and so the metric function V becomes the perfect square

V ¼
�
r2 þ αr

2
þ

ffiffiffiffi
Δ

p �
2

: ð4:13Þ

After the inversion (4.4) and conformal scaling (4.5), the
charge transformation conditions (4.6) reduce simply to

α̃ ¼ α; Δ̃ ¼ Δ: ð4:14Þ

As we mentioned previously, the conformal inversion is
actually a symmetry in this pairwise-equal case, and
correspondingly, as can be seen from (4.14), one solution
for the transformed (tilded) charges is simply to take them
to be equal to the original charges. However, it is interesting
to note that we can also find other solutions to the
conditions (4.14) in which the charges are nontrivially
transformed. One way to do this is by taking a diagonal
SLð2;RÞ2 transformation with

b2 ¼ 0; c2 ¼ 0; d2 ¼
1

a2
: ð4:15Þ

From the transformation (A24) we therefore find that
Eqs. (4.14) are satisfied if a2 is chosen so that

a22 ¼
Q2

1 þ P2
2

Q2
2 þ P2

1

: ð4:16Þ

The transformed charges are given explicitly by

Q̃1 ¼
Q1

a2
; Q̃2 ¼ a2Q2; P̃1 ¼ a2P1; P̃2 ¼

P2

a2
:

ð4:17Þ

Another, inequivalent, way of solving (4.14) in this
pairwise-equal example is to use instead a different non-
compact SLð2;RÞ2 transformation, where

�
a2 b2
c2 d2

�
¼

�
cosh δ2 sinh δ2
sinh δ2 cosh δ2

�
: ð4:18Þ

From the transformation (A24) we now find that
Eqs. (4.14) are satisfied if

tanh δ2 ¼
2ðP1Q1 − P2Q2Þ

P2
1 þ P2

2 þQ2
1 þQ2

2

: ð4:19Þ

The transformations of the charges in this case correspond
to a different way of solving the constraint equations (4.14).
This reflects the fact that the constraints provide an
undetermined system of equations. In this pairwise-equal
specialization, we have the two constraint equations (4.14)
and the four unknowns ðQ̃1; Q̃2; P̃1; P̃2Þ. The general
solution would give a family of transformed charges
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characterized by two continuous parameters. We have
exhibited above two discrete members within this family,
in addition to the “trivial” member where the charges are
untransformed.
In the four-charge and the pairwise-equal examples

above, it was possible to present explicit expressions for
solutions to the constraint equations. As mentioned pre-
viously, this does not appear to be possible in the general
case with eight independent charges. For example, we can
always look for solutions for the transformed charges by
considering the subset of SLð2;RÞ3 transformations
described by (4.9). The fourth constraint in (4.6) is
automatically satisfied because Δ is invariant under
SLð2;RÞ3, and so the remaining three constraints in
(4.6) will imply a discrete set of solutions for the three
unknowns ða1; a2; a3Þ. The three equations are polyno-
mials in the ai parameters, but seemingly they are of too
high a degree to be explicitly solvable. Of course, for any
specified set of eight original charges one can compute
numerically the corresponding ai parameter values that
satisfy the constraints, and so in this sense the problem is
fully solvable. There is, however, one obstacle that can
arise, namely, that it might happen that all of the solutions
for the ai parameters turn out to be complex. We have
looked at numerous examples of “randomly chosen” sets of
original charges ðQ1; Q2; Q3; Q4; P1; P2; P3; P4Þ, and we
find that sometimes real solutions for the ai exist, while
sometimes only complex solutions exist.
Another option would be to consider the subset of

SLð2;RÞ3 transformations where each of the three
SLð2;RÞ elements in the product is of the same form as
the SLð2;RÞ2 element (4.18), giving three parameters
ðδ1; δ2; δ3Þ in all. Again, the remaining first three equations
in (4.6) would give three equations for the three unknowns
ðδ1; δ2; δ3Þ, guaranteeing that solutions would exist. For a
given initial choice for the eight charges, it might be that
while only complex solutions arose for the three ai
parameters in the previous construction, there could be
real solutions for the three δi parameters in the latter
construction. Faute de mieux, one could always, of course,
consider the most general possibility of simply viewing the
four conditions in (4.6) as providing four equations for
eight unknowns. It is still not entirely obvious whether any
purely real solutions for the transformed charges must
necessarily exist, but with such a large solution space it is
perhaps likely.4

V. INVERSION SYMMETRY OF RADIAL
EQUATION FOR EIGHT-CHARGE ROTATING

BLACK HOLES

We use the expressions and notation given in the paper
[11] by Chow and Compère. It can be seen that the metric
will be extremal if a2 ¼ m2 þ n2, and then the radial
function R will be given by R ¼ ðr −mÞ2. We define a
new radial coordinate ρ ¼ r −m that vanishes on the
horizon. The separation of variables for a solution ψ
of □ψ ¼ 0 is carried out in [11] by writing ψ ¼
e−iωtþikφΦrðrÞΦuðuÞ. Their separated equations for ΦrðrÞ
and ΦuðuÞ are presented in Eq. (9.17) of [11]:

Φ−1
r

d
dr

�
R
dΦr

dr

�
þ ω2W2

r − 2aωkLr þ a2k2

R
þ Ccc ¼ 0;

Φ−1
u

d
du

�
U
dΦu

du

�
−
ω2W2

u þ 2aωkLu þ a2k2

U
− Ccc ¼ 0:

ð5:1Þ

[We have renamed their separation constant as Ccc rather
than C, since they already use C for the quantity defined in
Eq. (5.5) of [11].] The functions Wr, Lr, Wu, and Lu are
given in [11] (in fact, Lu ¼ 0 when, as in our case, we
choose the physical NUT parameter N to be zero).
Equations (5.1) are not quite in the form we want, because
the constant term in the potential in the equation for ΦuðuÞ
has dependence on the charge parameters δi and γi. Since
we already know from our results in Sec. II for the
generalized Couch-Torrence symmetry of the radial equa-
tion for the four-charge solutions that the charge parameters
are transformed in the inversion symmetry, we must ensure
first in the present eight-charge discussion that the angular
equation for Φu should be independent of the charge
transformations. This is easily achieved, by exploiting
the fact that there is always an arbitrariness to shift the
separation constant by an additive constant. It is straight-
forward to see from the definitions in [11] that if we
define ū ¼ u − n and Ccc ¼ −λþ 4ω2½nðnμ1 −mμ2Þ þ
ðm2 þ n2ÞC�, then the angular equation becomes

Φ−1
u

d
dū

�
U
dΦu

dū

�
− ω2U þ a2k2

U
þ λ ¼ 0; ð5:2Þ

with U ¼ a2 − ū2, and this is completely independent of
the charge parameters.
The radial equation now takes the form

Φ−1
r

d
dρ

�
ρ2

dΦr

dρ

�
þHðρÞ − λ ¼ 0; ð5:3Þ

where HðρÞ is given by

4The mapped charges should also, like the original ones, be
non-negative, since otherwise the conformally inverted metric
ds̃2 defined in (4.5) would have naked singularities outside the
horizon at r ¼ 0. In the examples we found, when the charges
come out to be real they are also non-negative. It should be noted
also that for the BPS extremal black holes to be regular, without
naked singularities, the quartic invariant Δ should be positive
(see, for example, [13]).
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HðρÞ ¼ ω2

�
ρ2 þ

�
2a2ðν2 þ 2DÞ − ak

ω

�
2

ρ−2
�

þ 4ω2

�
Mρþ a2ν2

m

�
2a2ðν2 þ 2DÞ − ak

ω

�
ρ−1

�
þ 4ω2a2ðμ1 þ Cþ ν21 þ ν22Þ; ð5:4Þ

and the various quantities ν1, ν2, μ1, C, D, and M are
defined in [11].
We may now seek an inversion symmetry of the radial

equation. Thus we transform to a new radial coordinate ρ̃
such that

ρ ¼ β2

ρ̃
; ð5:5Þ

where β is a constant to be determined, and test to see
whether

HðρÞ ¼ H̃ðρ̃Þ; ð5:6Þ

where the function H̃ is the same in form as the function H
given in (5.4), but using redefined charge parameters.5 Thus
we have

HðρÞ¼ω2

�
β4ρ̃−2þ

�
2a2ðν2þ2DÞ−ak

ω

�
2

β−4ρ̃2
�

þ4ω2

�
Mβ2ρ̃−1þa2ν2

m

�
2a2ðν2þ2DÞ−ak

ω

�
β−2ρ̃

�
þ4ω2a2ðμ1þCþν21þν22Þ: ð5:7Þ

Assuming that β is universal, that is to say, that it is
invariant under the transformation of the charge parameters,
we then have, by comparing the various powers of ρ or ρ̃ in
the proposed relation (5.6) that

ρ−2∶ β4 ¼
�
2a2ðν2 þ 2DÞ − ak

ω

�
2

;

ρ2∶ β4 ¼
�
2ã2ðν̃2 þ 2D̃Þ − ãk

ω

�
2

;

ρ−1∶ M̃β2 ¼ a2ν2
m

�
2a2ðν2 þ 2DÞ − ak

ω

�
;

ρ∶ Mβ2 ¼ ã2ν̃2
m̃

�
2ã2ðν̃2 þ 2D̃Þ − ãk

ω

�
;

ρ0∶ μ1 þ Cþ ν21 þ ν22 ¼ μ̃1 þ C̃þ ν̃21 þ ν̃22: ð5:8Þ

From the first two equations in (5.8) we have

β2 ¼ 2a2ðν2 þ 2DÞ − ak
ω

¼ 2ã2ðν̃2 þ 2D̃Þ − ãk
ω

: ð5:9Þ

Since we are assuming ω does not transform, and since this
relation should hold for all frequencies ω, it follows that

ã ¼ a; ν̃2 þ 2D̃ ¼ ν2 þ 2D: ð5:10Þ

(Note that we are not making any assumption about m or n
being invariant under the transformation.) The third and
fourth equations in (5.8) then imply

M̃ ¼ a2ν2
m

; M ¼ a2ν̃2
m̃

: ð5:11Þ

From [11], M ¼ mμ1 þ nμ2, and since we must set n ¼
−mν1=ν2 so that the physical NUT charge N ¼ mν1 þ nν2
is zero, we have

M ¼ m
ν2

ðμ1ν2 − μ2ν1Þ; ð5:12Þ

together with the transformed version where all quantities
are tilded. Equations (5.11) therefore imply

a2ν2ν̃2 ¼ mm̃ðμ1ν2 − μ2ν2Þ ¼ mm̃ðμ̃1ν̃2 − μ̃2ν̃2Þ; ð5:13Þ

and hence

μ1ν2 − μ2ν2 ¼ μ̃1ν̃2 − μ̃2ν̃2: ð5:14Þ

Collecting the results so far, we see from the last
equation in (5.8), from (5.10), and from (5.14) that the
three quantities

X1 ≡ μ1 þ Cþ ν21 þ ν22; X2 ≡ ν2 þ 2D;

X3 ≡ μ1ν2 − μ2ν2 ð5:15Þ

should all be invariant under the transformation of the
charge parameters that accompanies the inversion (5.5). A
natural guess for the inversion transformation, which would
reduce to the known four-charge case γi ¼ 0 discussed in
Sec. II (and its duality partner where instead δi ¼ 0) and
would also reduce to the known pairwise-equal dyonic case
discussed in Sec. III, is to try

δ̃i ¼ −δi þ
1

2

X
j

δj; γ̃i ¼ −γi þ
1

2

X
j

γj: ð5:16Þ

One can, in fact, verify that the three quantities X1, X2, and
X3 defined in (5.15) are indeed invariant under (5.16).
However, there is one further condition contained in the set
of Eqs. (5.8), since until now we just extracted the one
condition (5.14) from the third and fourth equations in
(5.8). The remaining condition can be found by noting that

5This, at least, is what we found for the four-charge rotating
solutions in Sec. II; the potential in the radial equation was related
under inversion to a potential of the same form but with redefined
charge parameters.
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the extremality condition a2 ¼ m2 þ n2 implies a2 ¼
m2ð1þ ν21=ν

2
2Þ (and its tilded version), and using this in

the third and fourth equations of (5.8) leads to

ðν21 þ ν22Þðν̃21 þ ν̃22Þ ¼ X2
3: ð5:17Þ

Straightforward calculation reveals that while this is indeed
consistent with (5.16) in the four-charge specialization or in
the pairwise-equal specialization (as it must be, since those
cases were already fully verified), it is not consistent in the
general eight-charge case. Thus the transformation of the δi
and γi charge parameters in the general case must be more
complicated than the guess in (5.16). However, since the
number of conditions that must be satisfied in order to
achieve HðρÞ ¼ H̃ðρ̃Þ is smaller than the number of
unknown transformed charge parameters ðδ̃i; γ̃iÞ, we can
conclude that it must be possible to solve for such ðδ̃i; γ̃iÞ,
even if we cannot present the solution in a universal and
elegant form.

VI. CONCLUDING REMARKS

Studies of general rotating black holes in maximally
supersymmetric ungauged supergravity theories (often
referred to as STU black holes) revealed their numerous
intriguing properties which often stem from, and provide an
intriguing generalization of, properties of Kerr-Newman
black holes in Einstein-Maxwell gravity. Furthermore, the
extremal black holes of that type are endowed with further
enhanced symmetry properties, again generalizing those of
extremal Kerr-Newman black holes. For example, there
has been substantial progress in recent studies of the
Aretakis charge for both extremal Reissner-Nordström
black holes [5,6] and extremal Kerr black holes [14] as
well as recent generalizations to extremal static four-charge
black holes [4] and rotating ones [15] in STU supergravity.
Furthermore, in [15] Aretakis charges for five-dimensional
extremal STU black holes were derived, while generaliza-
tions to related conserved charges of extremal static
p-branes were given in [16].
In this paper we focused principally on another type of

symmetry, namely the Couch-Torrence symmetry of the
radial part of the massless Klein-Gordon equation for
extremal rotating STU black holes. This symmetry [1]
was originally obtained for the radial equation of the
extremal Reissner-Nordström metric under the conformal
inversion transformation. The generalization of the sym-
metry to extremal rotating black holes, such as Kerr-
Newman ones, is possible due to the separability of the
massless Klein-Gordon equation in these backgrounds,
where the inversion transformation of the radial equation
depends not only on the black hole charge and the rotation
parameters, but also on the mode eigenvalues for energy ω
and azimuthal angular momentum m.

In the present paper we further generalized this sym-
metry from the extremal static four-charge black holes [4]
to the extremal rotating four-charge black holes in STU
supergravity. We showed that in this case the radial
equation for the separable massless Klein-Gordon equation
indeed exhibits an inversion symmetry, where again the
inversion radius depends not only on the black hole charges
and rotation parameter, but also on the mode eigenvalues ω
andm. However, unlike in the Kerr-Newman case, after the
transformation the radial equation is different from the
original one, in the sense that it is the radial equation for a
transformed set of the four charge parameters. This is a
natural generalization of the properties of the static four-
charge STU extremal black holes, where a given black hole
is mapped under conformal inversion to another member of
the four-charge family with a transformed set of electric
charges [4].
We also investigated the conformal inversion symmetry

for the most general extremal BPS black holes in STU
supergravity, specified by eight charges, in both the static
and the rotating cases. For the static eight-charge case,
which corresponds to BPS solutions, we showed that the
entire family of black holes maps into itself under con-
formal inversion. However, unlike in the four-charge
solutions, we were unable to give an elegant formula for
the mapping of the eight charges under conformal inver-
sion. This is related to the fact that the number of equations
comprising the conditions for conformal inversion invari-
ance is less than the number of unknowns (the eight
mapped charges), and thus there is no unique solution.
In the case of extremal eight-charge rotating solutions,

just as in the four-charge case, the massless Klein-Gordon
equation is separable and the behavior of the radial wave
equation under inversion can be investigating along the
same lines. However, just as in the static case, the inversion
symmetry conditions are underdetermined; i.e., they do not
fully constrain the mapped charges.6 We have provided a
systematic procedure, which employs the action of the
coset generators of

Q
3
i¼1 SLð2;RÞi=Uð1Þi on the eight

charges, in order to solve the constraints (4.6) for the
mapped charges. Further investigations of these trans-
formations are in order.
The generalization of the Couch-Torrence symmetry to

general extremal rotating black holes of STU supergravity
demonstrates the existence of another symmetry of general
asymptotically flat black holes, extending the symmetries
of black holes in Einstein-Maxwell gravity. In spite of the
significantly more complicated field content and the
structure of the Lagrangian, which results in significantly
more complicated metrics for the black holes, it is

6In the extremal eight-charge rotating case there is also
another, non-BPS, branch. The extremal Kaluza-Klein dyon is
a particular example of that type, which by itself does not possess
the inversion symmetry, but should be mapped on to an orbit of
the eight-charge non-BPS branch.
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interesting that the conformal inversion symmetry of the
radial part of the massless Klein-Gordon equation persists
in its generalized form.
We expect that a generalization of the Couch-Torrence

symmetry may persist also for general extremal black holes
of STU supergravity in five dimensions. Again the sepa-
rability of the massless Klein-Gordon equation will play an
important role. We defer further consideration of this case
to future work.
We would like to conclude by emphasizing that our

analysis focused on conformal inversion transformations
for extremal BPS black holes in STU supergravity for
which the asymptotic values of the scalar fields were set to
zero. It would, of course, be interesting to study conformal
inversion transformations for such black holes with non-
zero asymptotic values of the scalar fields. This explicit
dependence on the asymptotic scalar fields is currently
being investigated [17]. Such generalizations of the black
hole solutions would in turn allow for generalizations of the
Couch-Torrence transformations that could also involve
scalar field transformations. Furthermore, one would be
able to address other types of inversion transformations,
including those studied in [18].
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APPENDIX A: BOSONIC LAGRANGIAN OF STU
SUPERGRAVITY IN SYMMETRICAL FORM

Here, we present the bosonic sector of the STU super-
gravity Lagrangian in a form where the four field strengths
enter symmetrically. We take the Lagrangian as given in
Appendix B of [19], except that the field strengths called
Fþ in that paper will be called F− here, to match
conveniently with the conventions of Freedman and Van
Proeyen [20].
In the notation of [20], but written in the language of

differential forms, their Eq. (4.66) becomes

LðFÞ ¼ −
1

2
fRAB � FA ∧ FB þ i

2
fIAB � F̃A ∧ FB; ðA1Þ

where fRAB and fIAB denote the real and imaginary parts of
fAB (i.e., fAB ¼ fRAB þ ifIAB). Now F̃≡ −i � F, and �2 ¼
−1 in four-dimensional spacetime when acting on 2-forms,
so �F̃ ¼ i F; hence we have

LðFÞ ¼ −
1

2
fRAB � FA ∧ FB −

1

2
fIABF

A ∧ FB: ðA2Þ

Note that the field strengths FA are simply the exterior
derivatives of potentials, FA ¼ dAA. Note also that fAB is
symmetric in A and B.
As in [20] we define F� ¼ 1

2
ðF � F̃Þ, and hence

F� ¼ 1

2
ðF ∓ i � FÞ; �F� ¼ �iF�: ðA3Þ

Noting that for any 2-forms X and Y we have

1

2
XμνYμν � 1 ¼ �X ∧ Y ¼ �Y ∧ X; ðA4Þ

we see that the wedge product of any self-dual 2-form with
any anti-self-dual 2-form is zero:

Fþ ∧ F− ¼ −i � Fþ ∧ F− ¼ −i � F− ∧ Fþ ¼ −F− ∧ Fþ

¼ −Fþ ∧ F−; ðA5Þ

hence Fþ ∧ F− ¼ 0. From (A3) we have

F ¼ Fþ þ F−; �F ¼ iðFþ − F−Þ: ðA6Þ

From the above, it follows that the Lagrangian (A2) can be
written as

LðFÞ ¼ i
2
fABF−A ∧ F−B −

i
2
f̄ABFþA ∧ FþB; ðA7Þ

and hence

LðFÞ ¼ −
1

2
fAB � F−A ∧ F−B −

1

2
f̄AB � FþA ∧ FþB:

ðA8Þ

In this form, we can compare with Eq. (B.7) in [19] (with
the understanding that the roles of þ and − superscripts on
F are exchanged as mentioned previously), and hence read
off from (B.9) of [19] that the matrix f, with components
fAB, is given by

f ¼ 1

W

0
BBB@

e−λ1 eφ1β1 eφ2β2 eφ3β3

eφ1β1 e−λ2α2α3 −e−φ3α3β3 −e−φ2α2β2

eφ2β2 −e−φ3α3β3 e−λ3α1α3 −e−φ1α1β1

eφ3β3 −e−φ2α2β2 −e−φ1α1β1 e−λ4α1α2

1
CCCA;

ðA9Þ

where
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λ1 ¼ −φ1 − φ2 − φ3; λ2 ¼ −φ1 þ φ2 þ φ3; λ3 ¼ φ1 − φ2 þ φ3; λ4 ¼ φ1 þ φ2 − φ3;

αi ¼ 1þ e2φiχ2i ;

β1 ¼ eφ2þφ3χ2χ3 þ ieφ1χ1; β2 ¼ eφ1þφ3χ1χ3 þ ieφ2χ2; β3 ¼ eφ1þφ2χ1χ2 þ ieφ3χ3;

W ¼ 1þ
X
i

e2φiχ2i − 2ieφ1þφ2þφ3χ1χ2χ3: ðA10Þ

The field equations following from (A2) are dGA ¼ 0,
where the 2-forms GA are read off from varying LðFÞ with
respect to FA:

δLðFÞ ¼ GAδFA ¼ −fRAB � FB − fIABF
B; ðA11Þ

and so

GA ¼ −fRAB � FB − fIABF
B: ðA12Þ

It then follows that G�
A ≡ 1

2
ðGA ∓ i �GAÞ are given by

G−
A ¼ ifABF−B; Gþ

A ¼ −if�ABFþB: ðA13Þ

Note that the Bianchi identities dFA ¼ 0 and the field
equations dGA ¼ 0 can be written as

dℑð�F�Þ ¼ 0; dℑð�G�Þ ¼ 0 ðA14Þ
(ℜ and ℑ denote the real and imaginary parts.)
The Bianchi equations and equations of motion are

invariant under the transformations

�
F�

G�

�
→

�
F�0

G�0

�
¼ S

�
F�

G�

�
;

hence

�
F

G

�
→

�
F0

G0

�
¼ S

�
F

G

�
; ðA15Þ

where

S ¼
�
A B

C D

�
; ðA16Þ

where A, B, C, and D are real constant 4 × 4 matrices,
provided that the scalar fields transform appropriately: We
have

G−0 ¼ ðCþ iDfÞF− ¼ ðCþ iDfÞðAþ iBfÞ−1F−0:

ðA17Þ

Since the transformed fields must also obey (A13), this
implies that the scalar matrix f must transform according
to [20]

if0 ¼ ðCþ iDfÞðAþ iBfÞ−1: ðA18Þ

It is important that f0, like f, must be symmetric, and so this
implies that the matrices A, B, C, and D must obey the
relations

ATC − CTA ¼ 0; BTD −DTB ¼ 0; ATD − CTB ¼ l:

ðA19Þ

These are precisely the conditions for the matrix S defined
in (A16) to be an element of Spð8;RÞ, obeying [20]

STΩS ¼ Ω; where Ω ¼
�

0 l4
−l4 0

�
: ðA20Þ

The scalar field Lagrangian is

Lðφ; χÞ ¼ −
1

2

X
i

ð�dφi ∧ dφi þ e2φi � dχi ∧ dχiÞ;

ðA21Þ

and this is invariant under the SLð2;RÞ1 × SLð2;RÞ2 ×
SLð2;RÞ3, where the three SLð2;RÞ act in the standard
way:

τi → τ0i ¼
aiτi þ bi
ciτi þ di

; ðA22Þ

with aidi − bici ¼ 1 for each i, and

τi ¼ χi þ ie−φi : ðA23Þ

Thus the entire STU supergravity theory is invariant under
the intersection of the Spð8;RÞ symmetry of the field-
strength sector and the SLð2;RÞ1 × SLð2;RÞ2 × SLð2;RÞ3
symmetry of the scalar sector. That is to say, the theory
(at the level of the equations of motion) is invariant
under SLð2;RÞ1 × SLð2;RÞ2 × SLð2;RÞ3.
To see how the field strengths and their duals transform

under the SLð2;RÞ1 × SLð2;RÞ2 × SLð2;RÞ3 symmetry,
we just have to work out the A, B, C, and D matrices
for which the transformation (A18) of the scalar field
matrix matches with the SLð2;RÞ1×SLð2;RÞ2×SLð2;RÞ3
transformations (A22). After some algebra, we find
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A ¼

0
BBB@

a1a2a3 −a1b2b3 −b1a2b3 −b1b2a3
−a1c2c3 a1d2d3 b1c2d3 b1d2c3
−c1a2c3 c1b2d3 d1a2d3 d1b2c3
−c1c2a3 c1d2b3 d1c2b3 d1d2a3

1
CCCA; B ¼

0
BBB@

b1b2b3 −b1a2a3 −a1b2a3 −a1a2b3
−b1d2d3 b1c2c3 a1d2c3 a1c2d3
−d1b2d3 d1a2c3 c1b2c3 c1a2d3
−d1d2b3 d1c2a3 c1d2a3 c1c2b3

1
CCCA;

C ¼

0
BBB@

c1c2c3 −c1d2d3 −d1c2d3 −d1d2c3
−c1a2a3 c1b2b3 d1a2b3 d1b2a3
−a1c2a3 a1d2b3 b1c2b3 b1d2a3
−a1a2c3 a1b2d3 b1a2d3 b1b2c3

1
CCCA; D ¼

0
BBB@

d1d2d3 −d1c2c3 −c1d2c3 −c1c2d3
−d1b2b3 d1a2a3 c1b2a3 c1a2b3
−b1d2b3 b1c2a3 a1d2a3 a1c2b3
−b1b2d3 b1a2c3 a1b2c3 a1a2d3

1
CCCA:

Note that SLð2;RÞ3 transformation matrix S factorizes into
the (commuting) product of factors, S ¼ S1S2S3, where Si
is the transformation matrix for the ith SLð2;RÞ, which can
be written in the form (A16) for very simple 4 × 4 blocks
Ai, Bi, Ci, andDi. These can be read off from the general A,
B, C, and D matrices above by setting aj ¼ 1, bj ¼ 0,
cj ¼ 0, and dj ¼ 1 for the two values of j that are not equal
to i. For example,

A1 ¼

0
BBB@
a1 0 0 0

0 a1 0 0

0 0 d1 0

0 0 0 d1

1
CCCA; B1 ¼

0
BBB@

0 −b1 0 0

−b1 0 0 0

0 0 0 c1
0 0 c1 0

1
CCCA;

C1 ¼

0
BBB@

0 −c1 0 0

−c1 0 0 0

0 0 0 b1
0 0 b1 0

1
CCCA; D1 ¼

0
BBB@
d1 0 0 0

0 d1 0 0

0 0 a1 0

0 0 0 a1

1
CCCA:

The magnetic and electric charges transform according
to

�
P0

Q0

�
¼ S

�
P

Q

�
; ðA24Þ

where

P ¼

0
BBB@

P1

P2

P3

P4

1
CCCA; Q ¼

0
BBB@

Q1

Q2

Q3

Q4

1
CCCA: ðA25Þ

The Uð1Þ3 compact subgroup of the full SLð2;RÞ3 sym-
metry group corresponds to taking

�
ai bi
ci di

�
¼

�
cos θi sin θi
− sin θi cos θi

�
: ðA26Þ

APPENDIX B: EIGHT-CHARGE STATIC
BLACK HOLE

The five-charge static black hole constructed in [12] has
metric given by

ds2 ¼ −
r2ffiffiffiffi
V

p dt2 þ
ffiffiffiffi
V

p

r2
ðdr2 þ r2dΩ2Þ; ðB1Þ

where

V ¼ ðrþQ1ÞðrþQ2ÞðrþQ3ÞðrþQ4Þ

− p2

�
rþ 1

2
ðQ3 þQ4Þ

�
2

¼ r4 þ αr3 þ βr2 þ γrþ Δ; ðB2Þ
with

α ¼
X
i

Qi; β ¼
X
i<j

QiQj − p2;

γ ¼
X
i<j<k

QiQjQk − p2ðQ3 þQ4Þ;

Δ ¼
Y
i

Qi −
1

4
p2ðQ3 þQ4Þ2: ðB3Þ

These five-charge black holes correspond to restricting the
charges Pi and Qi of a general eight-charge static BPS
extremal STU black hole by specializing the magnetic
charges to

P1 ¼ 0; P2 ¼ 0; P3 ¼ p; P4 ¼ −p ðB4Þ
as in (4.1). To obtain the expressions for the coefficients α,
β, γ, and Δ for the general case with eight independent
charges, we may act on the restricted five-charge solution
with the Uð1Þ3 compact subgroup of the SLð2; RÞ3 global
symmetry. The eight parameters of the general solution
then correspond to the original five charge parameters plus
the three parameters of the Uð1Þ3 rotations. Conversely, we
can determine the threeUð1Þ3 rotation angles θ1, θ2, and θ3
such that the acting on a general eight-charge configuration
as in (A24) gives primed charges that are subject to the five-
charge specialization in (B4), where we restrict to theUð1Þ3
subgroup as defined in (A26). Defining
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θ� ¼ θ2 � θ3; ðB5Þ

we find

tan θþ ¼ ðP1 þ P2Þ − ðQ1 þQ2Þ tan θ1
ðQ3 þQ4Þ þ ðP3 þ P4Þ tan θ1

; tan θ− ¼ ðP1 − P2Þ þ ðQ1 −Q2Þ tan θ1
ðQ3 −Q4Þ − ðP3 − P4Þ tan θ1

;

tan 2θ1 ¼
2ðP3 þ P4ÞðQ1 þQ2Þ − 2ðP1 þ P2ÞðQ3 þQ4Þ

ðP1 þ P2 þ P3 þ P4ÞðP1 þ P2 − P3 − P4Þ þ ðQ1 þQ2 þQ3 þQ4ÞðQ1 þQ2 −Q3 −Q4Þ
: ðB6Þ

It is also helpful to note that

tanðθ1 þ θ2 þ θ3Þ ¼
P1 þ P2 þ P3 þ P4

Q1 þQ2 þQ3 þQ4

: ðB7Þ

After some algebra, we can now read off the general expressions for the coefficients in (B3) for the general eight-charge
solutions. We find

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X

i

Qi

�
2

þ
�X

i

Pi

�
2

s
;

β ¼
X
i<j

ðQiQj þ PiPjÞ;

γ ¼ 1

α

�
4Δþ 1

2
β2 −

1

2

X
i<j

ðP2
i P

2
j þQ2

i Q
2
j þ PijQijÞ − 3

Y
i

Pi − 3
Y
i

Qi

�
;

Δ ¼
Y
i

Qi þ
Y
i

Pi þ
1

2

X
i<j

PiQiPjQj −
1

4

X
i

P2
i Q

2
i : ðB8Þ

In the expression for γ, we have defined Pij ¼ PiPj þ
ðQk PkÞ=ðPiPjÞ and Qij ¼ QiQj þ ðQk QkÞ=ðQiQjÞ (so
P12 ¼ P1P2 þ P3P4, etc.).
Note that Δ in (B8) is the standard quartic invariant, and

it is invariant under the full SLð2; RÞ3 global symmetry
group of the STU theory. The coefficients α, β, and γ in
(B8) are only invariant under the Uð1Þ3 subgroup. This can
be understood from the fact that the solutions have been
chosen so that the scalar fields all go to zero at infinity.
Only the Uð1Þ3 subgroup of SLð2; RÞ3 has the property of
preserving this asymptotic condition on the scalars.
If the radial coordinate of the static metric is subjected to

the inversion

r → r̃ ¼
ffiffiffiffi
Δ

p

r
; ðB9Þ

then the conformally rescaled metric ds̃2, defined by

ds2 ¼
ffiffiffiffi
Δ

p

r̃2
ds̃2; ds̃2 ¼ −

r̃2ffiffiffiffi
Ṽ

p dt2 þ
ffiffiffiffi
Ṽ

p

r̃2
ðdr̃2 þ r̃2dΩ2Þ;

ðB10Þ

where Ṽ ¼ r̃4 þ α̃r̃3 þ β̃r̃2 þ γ̃ r̃þΔ̃, will be in the same
class of black hole metrics provided that there exists a
mapping of the charges such that

α̃ ¼ γffiffiffiffi
Δ

p ; β̃ ¼ β; γ̃ ¼ α
ffiffiffiffi
Δ

p
; Δ̃ ¼ Δ:

ðB11Þ
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