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A B S T R A C T

In this study, we estimate the generalization of the performance of previously proposed predictive models
for nutrient value prediction across different recipe datasets. For this purpose, we introduce a quantitative
indicator that determines the level of generalization of using the developed predictive model for new unseen
data not presented in the training process. On a predefined corpus of recipe embeddings from six publicly
available recipe datasets (i.e., projecting them in the same meta-feature vector space), we train predictive
models on one of the six recipe datasets and test the models on the rest of the datasets. In parallel, we define
and calculate generalizability indexes which are numbers that indicate how generalizable a predictive model
is i.e., how well will a predictive model learned on one dataset perform on another one not involved in the
training. The evaluation results prove the validity of these indexes — their relation with the accuracy of the
predictions. Further, we define three sampling techniques for selecting representative data instances that will
cover all parts from the feature space uniformly (involving data from all datasets) and further will improve
the generalization of a predictive model. We train predictive models with these generalized datasets and test
them on instances from the six recipe datasets that are not selected and included in the generalized datasets.
The results from the evaluation of these predictive models show improvement compared to the results from
the predictive models trained on one recipe dataset and tested on the others separately.
1. Introduction

In the recent decade, Artificial Intelligence (AI) and Machine Learn-
ing (ML) are actively leaning towards data-centric solutions — which
is the systematical engineering of data required for building an AI/ML
system. By definition, to build an AI/ML system, a selected problem
needs to be defined, relevant and quality data obtained, a suitable
algorithm chosen, and finally, the system trained and tested on the
data. Until recently, most efforts have been put into the improvement
of algorithms, while the process of obtaining and preparing data has
mostly been understood as a no-brainer and a very simple task. How-
ever, in an age where data is at the core of every decision-making
process, a shift from model- and architecture-focused AI/ML to data-
focused one is more than obvious (Ng, 2022). Considering the recent
literature (Strickland, 2022), the data-centric movement is slowly but
surely moving the research focus towards the improvement of the data
in terms of quality.

In this study, we focus on the generalization of an approach for nu-
trient prediction, explained in detail in our previous studies (Ispirova,
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Eftimov, & Koroušić Seljak, 2020, 2021; Ispirova, Eftimov, & Seljak,
2022), by doing landscape analysis to define the level of generalization
between different datasets and improving the quality of data involved
in the learning process. Most common in practice, predictive models
are learned in a supervised fashion by using ML and are usually
evaluated within the same dataset by using techniques (e.g., cross-fold
validation) to test the robustness of the results. In our case, the term
generalization refers to a predictive model’s ability to react to new data,
i.e. the model’s ability to adapt properly to previously unseen data.
Nowadays, generalization is crucial since the world is dynamic and
changing, and having a model that is learned from static data cannot
always provide good predictive results for new unseen data instances.
Key techniques of achieving generalization lie in the meta-level, such
as transfer learning, continual learning, and meta-learning. These are
methods that aim to leverage prior knowledge or experience from
related tasks or domains to improve the performance or adaptation
of a model on a new task or domain. Chen, Shui, and Marchand
(2021) provide a data-dependent bound for meta-learning. In another
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Fig. 1. Flowchart of a classical ML pipeline.
study, Guiroy, Pal, Mordido, and Chandar (2022) propose an activation-
based early-stopping for meta-learning. While in Yao et al. (2021)
introduce a task augmentation method for meta-learning. These papers
show that meta-level techniques improve generalization in changing
environments.

Our contribution: Therefore, to explore the generalizability of a
predictive model we explore how a predictive model trained on a
single dataset performs on other datasets. Using six recipe datasets
and their recipe embeddings (i.e., representations learned from the
textual descriptions of the ingredients combined with their quantities)
from the predefined corpora presented in Ispirova et al. (2022), we
train predictive models for predicting five nutrient values: fat, protein,
saturated fat, sugars, and sodium. The predictive models are trained
separately for each one of the datasets and then tested on the rest of
the five recipe datasets. As generalization in ML is highly related to
the distribution of the training data (Chung, Haas, Upfal, & Kraska,
2018; Miller et al., 2021), we introduce a generalizability index that
defines the level of generalizability of a predictive model, i.e., indicates
how well will the transferring of a predictive model learned on one
dataset perform on another dataset. This index takes into account the
similarity between the distributions of the data instances in the feature
space (i.e., the distributions of the recipe embeddings of the instances
across the defined clusters in the feature space) from the training data
(one dataset) and the data that consists of new unseen data instances
(another dataset). To test the validity of the generalizability indexes,
predictive models are learned on each of the six recipe datasets for
each of the five nutrients and then the models are tested on the rest of
the datasets, separately. From the evaluation results, we prove that the
defined generalizability index is consistent with the results. Consistency
in this sense means – the higher the generalizability index, the higher
the predictive accuracies.

2. Related work

A classical supervised learning prediction task involves several steps
(presented in Fig. 1): (i) pre-processing data, (ii) feature extraction,
(iii) training a predictive model, and (iv) evaluating the performance of
the model. When dealing with textual data the second part is learning
textual representations or known as text embeddings that define the
features used as input data to train an ML model.

After obtaining the textual embeddings for our data, we can train
predictive models that provide good solutions when the model is
tweaked for the problem in hand, but the problem is that they are
often over-fitted and cannot be generalized. The main issue is related
to the representativeness of the training data (Binol et al., 2020; Cenikj
et al., 2022; Eftimov et al., 2022; Huan et al., 2021; Killamsetty,
Sivasubramanian, Ramakrishnan, & Iyer, 2021) and opens a lot of
questions related to the selection of the data involved in the training
process to increase the generalization of a predictive model for new
unseen instances.

The work presented in Huan et al. (2021), Killamsetty et al. (2021)
is in the direction of active learning, where the analysis of selecting
the instances is task-oriented (e.g., classification and regression) and
depends on the ML model performance. In this case, the selection of
2

the instances is performed with some sampling technique that can
also involve clustering to improve the performance of the ML model.
In Huan et al. (2021), a classical multidimensional scaling technique
has been used to select images that are used to train deep convolutional
neural networks (CNNs) to create an efficient framework to identify
rosacea lesions. Recently, a few similar studies have been published
focusing on selecting diverse enough data instances that lead to robust
and reproducible statistical outcomes in benchmarking studies (Cenikj
et al., 2022; Eftimov et al., 2022). In Eftimov et al. (2022), a new
pipeline for landscape analysis of time-series machine learning datasets
has been proposed. It allows us to select a diverse portfolio of bench-
mark datasets by analyzing the distributions of the time-series data
instance meta-representations that are coming from different data sets
and the selection leads to a reproducible statistical outcome. This
kind of generalization is also mentioned in a study for selecting the
representative benchmark set for single-objective optimization algo-
rithms (Cenikj et al., 2022). However, in many domains, and many
types of data, as well as the Food and Nutrition domain, and recipe
data, this problem, is open, and not dealt with.

Key measures and strategies used to assess and enhance the gen-
eralizability of machine learning models are: cross-validation, holdout
validation, data augmentation, regularization, hyper-parameter tuning,
transfer learning, ensemble methods, domain adaptation, outlier de-
tection and handling, bias and fairness analysis and adequate data
representation.

In Maleki et al. (2022) the authors discuss three methodological
pitfalls that can lead to over-fitting and poor generalization of machine
learning models. The first pitfall is using a small training dataset. The
second pitfall is using a biased training dataset. The third pitfall is
using a non-representative training dataset. The paper proposes a set
of quantitative metrics for evaluating the generalizability of machine
learning models:

• Holdout error: This is the error rate of the model on a held-out
test dataset. A high holdout error indicates that the model is not
generalizing well to new data.

• Variance: This is a measure of how much the model’s predictions
vary across different training datasets. A high variance indicates
that the model is over-fitting to the training data.

• Bias: This is a measure of how much the model’s predictions are
biased towards the training data. A high bias indicates that the
model is not capturing the true distribution of the data.

These metrics can be used to identify and avoid the three methodolog-
ical pitfalls.

In a separate study, Zhou et al. (2020) introduced an innovative
approach to segmenting manipulated images. The method commences
by generating a pool of candidate segments through random sampling
of the image. Subsequently, these candidate segments undergo a re-
finement process involving iterative merging and splitting, resulting in
a set of finely segmented regions. Notably, this method demonstrates
exceptional accuracy in segmenting manipulated images, even when
the manipulations are subtle. The effectiveness of the technique lies

in its ability to rank candidate segments based on their likelihood of
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manipulation, with the highest-ranked candidates undergoing rigorous
refinement until a certain level of segment homogeneity is achieved.

In this study, we are focusing on generalization of ML predic-
tive models using domain adaptation, presented in previous stud-
ies (Ispirova et al., 2021, 2022), and adequate data representation using
a quantitative indicator which we call generalizability index, presented
in this study. It is important to emphasize that our focus is not on
addressing the issue of over-fitting, which can be a part of the modeling
approach. Instead, we aim to highlight that a model trained on one
dataset can be applicable to a new dataset if their distributions in the
feature space are similar.

3. Landscape analysis to define the level of generalization be-
tween different datasets

Next, we are going to explain the steps required to define the gen-
eralizability level of a predictive model to new unseen data instances
that are not included in the training data. The general pipeline for the
methodology — Measuring Generalization of Nutrient Value Prediction
across Different Recipe Datasets (MsGEN), consists of the following
steps:

1. Select a representation learning (RL) method and generate rep-
resentations for the data instances from all datasets, treating
them as one dataset in order to bring them to the same shared
meta-feature vector space.

2. Select a dimensionality reduction technique and reduce the rep-
resentations of the instances to a lower number of dimensions
with enough explainable variance.

3. Select a clustering algorithm and cluster the reduced represen-
tations of the instances in order to identify groups of similar
instances across all datasets based on their meta-representations.

4. Calculate how many instances from each dataset are there in
each cluster.

5. Define generalizability index, which is an indicator of how
generalizable a predictive model is i.e. how a predictive model
trained on one dataset will perform on the dataset in question.

To define the generalizability index let us assume that there are 𝑛
datasets available. 𝐷𝑖 represents the 𝑖th dataset from the 𝑛 datasets.
𝑅𝑖 is the representation of the 𝐷𝑖 dataset using the learned meta-
representation further reduced with a dimensionality reduction tech-
nique. 𝑅 is the dataset with the learned meta-representations of the
data instances from all 𝑛 datasets (i.e., all 𝑅𝑖 datasets are merged
together), again, reduced with a dimensionality reduction technique to
a fixed number of dimensions.

Having the shared meta-representation space, the 𝑅 dataset is fur-
ther clustered into 𝑘 clusters by applying a clustering algorithm. Next,
the generalizability index between each pair of datasets (𝐷𝑖, 𝐷𝑗), where
𝐷𝑖 can be assumed as a dataset used for training the ML model and 𝐷𝑗
as the dataset used for testing, is defined as:

𝐺𝑖𝑗 = 1 −
𝑐=𝑘
∑

𝑐=0

|

|

|

|

|

|

(
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#𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖

−
#𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑗
#𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑗
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|
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. (1)

Here, 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑖 and 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑗 are the number of instances that
belong to the 𝑐th cluster for each dataset, 𝐷𝑖 and 𝐷𝑗 , respectively.
#𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑖 and #𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑗 denote the overall number of instances
present in the datasets 𝐷𝑖 and 𝐷𝑗 , respectively. The idea behind the
generalizability index is the similarity between the number of instances
that are distributed across the clusters. The formulation of the index
is a symmetrical function, which means that 𝐺𝑖𝑗 = 𝐺𝑗𝑖. To define all
possible learning scenarios (i.e., if more datasets are available), no
matter which dataset is used for training and which for testing, we can
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define a generalizability matrix such as:

𝐷1 ... 𝐷𝑖 ... 𝐷𝑛
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𝐺11 ... 𝐺1𝑖 ... 𝐺1𝑛 𝐷1
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮
𝐺𝑖1 ... 𝐺𝑖𝑖 ... 𝐺𝑖𝑛 𝐷𝑖
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮

𝐺𝑛1 ... 𝐺𝑛𝑖 ... 𝐺𝑛𝑛 𝐷𝑛

(2)

We need to point out here that because of the symmetric property of the
index definition, it is enough to calculate the upper- or lower-triangular
part of this matrix.

4. Results

Next, we are going to provide the details about the data involved
in this study, the experimental setup — including the RL method
for generating the embeddings, and all hyper-parameters used for the
predictive models. Finally, we are going to present the results of the
generalization of the predictive models, followed by a discussion.

4.1. Data

We have selected six publicly available recipe datasets. More details
about each of the datasets are presented below:

1. Recipe1M (Marin et al., 2019) – it contains 51,500 recipes and
the following data for each: recipe title (short textual description
of the recipe), structured list of ingredients, recipe instruction,
nutrient content of ingredients (quantity in grams of fat, protein,
saturates, sodium, and sugar per 100 grams of the ingredient
for each ingredient), quantity of each ingredient, units of mea-
surement per each ingredient (household measurement system),
weight in grams per each ingredient, nutrient content (quantity
in grams of fat, protein, salt, saturates, and sugars per 100 grams
of the recipe), and FSA traffic light labels per 100 grams.

2. Indian recipes (Indian Recipes Dataset, 2020, 2022) – it con-
tains 6871 recipes and the following data for each: recipe URL,
continuous raw text with ingredients, quantities with units of
measurement in Hindi, and recipe instruction.

3. Epicurious (Epicurious Recipes Dataset, 2017; Epicurious web-
site, 2022) – it contains 20,103 recipes and the following details
for each: recipe title, recipe URL, continuous raw text with in-
gredients, quantities with units of measurement, calorie content,
and nutritional values for protein, fat, and sodium.

4. Salad recipes (Salad Recipes Dataset, 2017) – it contains 82,243
recipes and the following details for each: recipe title, recipe in-
struction, continuous raw text with ingredients, quantities with
units of measurement.

5. Yummly28k (Anon, 2022; Herranz, 2017; Min et al., 2016) –
contains 27,639 recipes and the following data for each: recipe
title, raw continuous text with ingredients, detailed nutrient
information — nutrient values for 94 nutrients.

6. RecipeBox (Lee, 2020) – contains 39,802 recipes and the fol-
lowing data for each: recipe title, continuous raw text with
ingredients, quantities with units of measurement, and recipe
instructions.

4.2. Evaluation pipeline

To evaluate the generalizability of a predictive model, i.e., the cor-
relation between the generalizability index and the predictive model’s
performance, we used the MsGEN pipeline presented in Fig. 2.

The pipeline consists of several steps:
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Fig. 2. Flowchart of the methodology.
• Pre-process the datasets and normalize them to the same format.
We are not going to provide details here. For readers that are
interested in this step, please check (Ispirova et al., 2022).

• Calculate the embeddings/vector representations for the data in-
stances and bring them to the same meta-feature vector space. For
this study, we did not perform this step from scratch, but we have
utilized a predefined published corpus of ingredient embeddings
presented in Ispirova et al. (2022). We need to mention here
that the predefined corpus of ingredient embeddings is avail-
able in different formats depending on the textual RL method
used (e.g., Word2Vec (Mikolov, Chen, Corrado, & Dean, 2013;
Mikolov, Sutskever, Chen, Corrado, & Dean, 2013); GloVe (Pen-
nington, Socher, & Manning, 2014); Doc2Vec (Devlin, Chang,
Lee, & Toutanova, 2018; Le & Mikolov, 2014)) as well as its
hyper-parameters. Further, we used the ingredient embeddings to
generate the embeddings/representations for the recipes in each
dataset. For each recipe, its embedding is calculated by fusing
the embeddings of its ingredients with a domain-specific heuristic
defined in Ispirova et al. (2021).

• Perform predictive modeling by training predictive models on a
single dataset and test the models on all the remaining datasets.
In our case, we trained single-target regression models for each of
the five nutrients: fat, protein, saturated fat, sugars, and sodium.
The models were trained using different regression algorithms
such as Linear, Lasso, Ridge, ElasticNet, Decision Tree, Random
Forest, and Multilayer Perceptron Neural Network regression.
Different regression models using the above-mentioned methods
were trained for all the variants of the embeddings that exist in
the predefined corpus. In each learning scenario that is a com-
bination of embeddings learned by a particular RL method and
one of the above-mentioned regression methods, hyper-parameter
tuning is performed for the selected regression model by apply-
ing GridSearchCV and RandomizedSearchCV from the scikit-learn
library in Python (Pedregosa et al., 2011). Finally, for each sce-
nario, we select the best hyper-parameters, train the model on a
single dataset, and further evaluate that model on the other five
datasets.

• The regression models were evaluated by calculating a domain-
specific accuracy. For each nutrient prediction of each data in-
stance, we calculate if the error (the difference between the actual
and the predicted nutrient value) is in the tolerance level for
the specific nutrient. These tolerance levels are defined by the
European Commission Health and Consumers Directorate General
in 2012 (European commission health and consumers directorate-
general, 2012), with the aim of providing advised recommenda-
tions for the calculation of the acceptable differences between
quantities of nutrients on the label declarations of food prod-
ucts and the ones established in Regulation EU 1169/2011. This
allows us to calculate how accurate our predictions are. More de-
tails about the tolerance levels and the domain-specific accuracy
measure are presented in Ispirova et al. (2020, 2021).

• Select the best-performing RL method based on the domain-
specific accuracy across all regression models and all datasets.
For this purpose, we designate the settings of the embedding
4

algorithms that yielded the top five accuracies for each dataset
and each target and select one that appears most frequently. In
total, with the above-explained combinations of learning scenar-
ios, we ended up with 3660 models trained: 1440 Word2Vec,
720 GloVe, 1440 Doc2Vec, and 60 BERT models. The chosen
datasets of embeddings are the embeddings generated with the
Wor2Vec embedding algorithm and the following parameters: di-
mension 100, sliding window 3, architecture 𝐶𝐵𝑂𝑊 , and merging
heuristic 𝑎𝑣𝑒𝑟𝑎𝑔𝑒.

• Perform dimensionality reduction of the selected embeddings. We
selected the Principal Component Analysis (PCA (Wold, Esbensen,
& Geladi, 1987)) dimensionality reduction technique as it is one
of the most commonly used ones. PCA tries to preserve the global
properties (eigenvectors with high variance) while it may lose
low-variance deviations between neighbors. We used the first
three puritanical components to project the original embedding.
The explained variance was around 80%. In addition, we can
easily visualize the data in 3D.

• Perform clustering of the reduced embeddings. In this step, we
use the 𝑘-means (MacQueen, 1967) algorithm.

• Determine the percentage of data instances from each dataset in
each cluster.

• Calculate the generalizability indices to analyze the generalizabil-
ity of the predictive models between different datasets.

4.3. Landscape analysis results

4.3.1. Dimensionality reduction
The high-dimensional vector representations of the recipes from all

six recipe datasets using the selected combination of RL method and its
settings, undergo a PCA dimensionality reduction and are transformed
from 100 dimensions into three dimensions. The distributions of the
reduced three-dimensional vectors of the recipe embeddings from the
six datasets in the same vector (meta-feature) space are presented
in Fig. 3, for each dataset separately. From this figure, we can see
how each of the datasets is distributed in the feature space, and how
different their distributions are. Fig. 4 presents the distribution of the
reduced embeddings for each dataset together in the same feature
space. From this figure, it is very noticeable how the Salad recipe
dataset is more widely distributed compared to the rest of the datasets.

4.3.2. Clustering
After reducing the 100-dimensional embeddings to 3-dimensional

embeddings, the embeddings are clustered with the 𝑘-means clustering
method using the 𝑠𝑘𝑙𝑒𝑎𝑟𝑛 library in Python (Pedregosa et al., 2011).
The number of clusters is chosen using the silhouette analysis method
(which assesses the quality of clustering), and comparing the average
silhouette scores for various values of 𝑘 – the numbers of clusters. In
other words, it establishes how well each object fits within its cluster
– a high average silhouette width indicates good clustering, i.e. more
separated clusters. The optimal number of clusters 𝑘 is the one that
maximizes the average silhouette over a range of the chosen possible
values (Kaufman & Rousseeuw, 1990).

In our study, we fixed the number of clusters from 3 to 12, and for
each one, we calculate the average silhouette value. Fig. 5 presents the
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Fig. 3. Reduced recipe embeddings for all six datasets obtained with the Word2Vec algorithm (architecture: CBOW, dimension: 100, sliding window: 3 merging heuristic: average)
presented separately in the same feature space.
Fig. 4. Reduced recipe embeddings for all six datasets obtained with the Word2Vec algorithm (architecture: CBOW, dimension: 100, sliding window: 3 merging heuristic: average)
presented together in the same feature space.
Table 1
Number of instances in each cluster.
Cluster 0 1 2 3 4 5 6 7
Number of instances 44,576 9,363 33,971 24,751 7,387 32,274 1,966 65,477
Table 2
Generalizability matrix.

Indian recipes Recipe1M Epicurious Salad recipes Yumml28K Recipe box

Indian recipes 1.00 0.38 0.31 0.34 0.61 0.43
Recipe1M 0.38 1.00 0.87 0.08 0.73 0.85
Epicurious 0.31 0.87 1.00 0.07 0.66 0.84
Salad recipes 0.34 0.08 0.07 1.00 0.15 0.19
Yummly28K 0.61 0.73 0.66 0.15 1.00 0.76
Recipe box 0.43 0.85 0.84 0.19 0.76 1.00
curve of the average silhouette for values of the number of clusters 𝑘
from 3 to 12. From it, it follows that the maximum silhouette score
is achieved for 𝑘 = 8, which is around 0.585. This indicates that in
our case the clusters will have good separation. Fig. 6 presents the
clustering results.

Table 1 presents the number of instances (i.e., recipes) that belong
to each cluster, while Figs. 7 and 8 present two heat maps depicting
5

percentages of each dataset per cluster and the number of instances
per cluster from each dataset respectively.

Next, we calculate the generalizability indexes between all pairs of
datasets according to the distributions of each dataset across the clus-
ters by using Eq. (1) and generate the generalizability matrix (presented
in Table 2).

To analyze the correlation between the generalizability indices and
the performance of the predictive models, we evaluate the predictive
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Table 3
Results from the predictive models trained on each one of the recipe datasets separately and tested on the rest obtained with the Word2Vec embeddings merged with the domain
heuristic. Max is the maximum accuracy obtained, and Average is the average accuracy obtained.

Train dataset Test dataset Fat Protein Saturated fat Sugars Sodium

Max Average Max Average Max Average Max Average Max Average

Indian recipes

Recipe1M 32.36 26.22 25.39 19.80 70.30 61.58 28.62 18.35 35.98 32.62
Epicurious 31.53 26.22 26.06 20.76 72.72 65.31 31.85 19.63 37.69 30.77
Salad recipes 3.32 3.02 22.72 13.53 45.81 29.05 12.54 4.89 24.25 21.57
Yummly28K 47.01 41.16 43.76 38.43 89.95 79.01 45.52 33.64 26.28 22.27
Recipe box 36.34 31.06 28.93 23.75 72.64 65.76 27.51 16.96 34.06 26.64

Recipe1M

Indian recipes 45.72 25.36 56.52 53.99 72.49 55.97 37.95 21.67 42.91 36.23
Epicurious 64.44 44.44 81.28 77.49 93.83 78.47 60.38 42.63 65.93 53.41
Salad recipes 17.32 14.21 53.83 47.41 46.26 23.38 12.44 12.10 27.90 22.49
Yummly28K 36.62 17.60 47.55 42.04 67.51 47.20 32.06 15.33 15.61 4.78
Recipe box 45.44 27.69 65.21 60.83 72.19 57.29 36.54 19.74 44.21 29.82

Epicurious

Indian recipes 59.83 56.07 57.81 55.29 86.52 84.92 61.38 51.69 95.83 83.99
Recipe1M 78.29 74.53 82.67 80.48 83.91 82.63 78.54 70.68 95.76 86.87
Salad recipes 29.24 20.47 58.83 52.69 61.54 57.23 41.68 27.79 88.98 79.53
Yummly28K 54.67 48.08 48.36 44.49 85.16 82.67 57.59 45.00 93.81 76.05
Recipe box 57.56 54.41 67.39 65.28 83.86 82.47 52.55 44.94 96.28 89.06

Salad recipes

Indian recipes 74.82 72.87 83.51 81.42 90.11 88.37 69.83 67.85 99.87 99.87
Recipe1M 34.00 31.59 46.14 35.84 51.98 50.96 33.51 30.13 67.80 67.68
Epicurious 32.05 28.30 41.99 33.02 54.56 53.69 34.42 29.65 67.93 67.85
Yummly28K 32.02 26.79 25.81 18.74 56.23 55.32 33.13 24.78 68.03 67.29
Recipe box 30.14 25.88 30.14 22.58 55.72 54.88 28.39 18.47 68.07 67.19

Yummly28K

Indian recipes 60.86 56.62 65.70 64.74 88.59 86.48 68.33 65.37 99.12 92.37
Recipe1M 58.25 54.11 68.25 67.26 84.34 82.77 64.67 62.56 97.91 93.42
Epicurious 59.56 55.23 67.50 66.66 86.02 84.90 66.36 63.93 98.05 94.62
Salad recipes 30.42 21.30 42.36 40.21 68.40 64.10 50.35 43.95 98.38 84.88
Recipe box 78.67 74.99 86.97 86.19 86.6 85.24 83.4 81.24 98.08 95.26

Recipe box

Indian recipes 40.28 35.87 58.55 54.78 89.20 86.25 68.99 66.42 98.99 89.71
Recipe1M 63.39 56.87 83.81 80.53 86.33 83.86 86.62 84.38 98.12 91.19
Epicurious 41.45 35.20 67.13 64.25 87.69 85.15 66.34 64.41 98.20 92.59
Salad recipes 3.95 2.37 61.88 53.82 63.82 58.43 47.72 42.82 98.55 94.83
Yummly28K 25.10 21.64 47.92 42.69 88.76 84.32 71.51 67.20 98.55 85.31
Fig. 5. Curve of the average silhouette for values of the number of clusters 𝑘 from 3
to 12.

models trained on a single dataset and then evaluated on the other
five datasets, the results i.e., the domain-specific accuracies for each
nutrient separately are presented in Table 3. Since we are testing dif-
ferent regression models trained and tested with the same embeddings,
in this table we reported the maximum obtained accuracy for each
pair of datasets no matter which regression model lead to it, and
the averaged obtained accuracy that is the mean accuracy across all
regression models trained for that pair of datasets.

Using the generalizability matrix (Table 2) and the results from the
evaluation of the predictive models (Table 3), several findings can be
drawn and discussed:
6

• Model trained on the Indian recipes dataset – The general-
izability index of the Indian recipes dataset is the highest with
the Yummly28K recipes dataset. For the remaining datasets, the
generalizability indexes are lower. From the results presented
in Table 3 we can see that the models trained on the Indian
recipes dataset achieved the highest accuracy for all nutrients
when evaluating it on the Yummly28K recipe dataset. To support
this finding, Fig. 9 presents the distributions of the Indian recipes
dataset and the Yummly28K recipe dataset in the feature space.
From it, we can see that the samples form their underlying
distributions overlap in contrast to the distributions of the Indian
recipes dataset and the Recipe1M, Epicurious, and Recipe box
datasets (presented in Fig. 10). From Fig. 11 we can see that the
pattern of the distribution of the Salad recipes dataset matches the
distribution of the Indian recipes dataset but it overshadows it as
the Salad recipes dataset is significantly larger (around 13 times
larger) and its distribution is widely spread across the feature
space, therefore a model trained on the Indian recipes dataset
cannot cover the diversity of instances contained in the Salad
recipes dataset.

• Model trained on the Recipe1M dataset – For the Recipe1M
dataset, the highest generalizability index is achieved for the
Epicurious recipe dataset, followed by the Recipe box dataset,
and right after is the Yummly28K recipe dataset. From Fig. 12,
we can see how similar the distributions in the feature space of
the three datasets are, and from Fig. 13, we can observe why the
Yummly28K dataset has a slightly lower generalizability index —
there are two big chunks of instances from the dataset that are
not covered by the distribution of the other three datasets. Com-
paring the number of instances of the Recipe1M dataset and the
Yummly28K recipe dataset, we can see that the Recipe1M dataset
is almost twice the size of the Yummly28K dataset, meaning this
happens because the instances of the Yummly28K recipe dataset
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Fig. 6. Clustering into eight clusters of the reduced embedding produced with Word2Vec — architecture: CBOW, dimension: 100, sliding window: 3 merging heuristic: average.
Fig. 7. Percentage of instances of each dataset per cluster.

are distributed more widely in the feature space, and the distri-
bution of the instances of the Recipe1M dataset is denser in the
feature space. From the results presented in Table 3 we can ob-
serve that the models trained on the Recipe1M dataset, and tested
on these three datasets (Epicurious, Yummly28K, and Recipe box)
yield much higher accuracies in contrast to the testing on the
other two datasets (Indian recipes and Salad recipes).

• Model trained on the Epicurious recipe dataset – For the
Epicurious recipe dataset, we can observe that the highest gen-
eralizability index is obtained for the Recipe1M dataset, and the
second highest for the Recipe box dataset, which is expected from
the distributions in the feature space presented in Fig. 12. The
Yummly28K recipe dataset, again, has yielded a lower generaliz-
ability index (Fig. 13), which we can see also reflects the results
presented in Table 3.
7

Fig. 8. Number of instances from each dataset per cluster.

• Model trained on the Salad recipes dataset – For the Salad
recipes dataset, we can see that the results from calculating
the generalizability indexes are quite different. Very low val-
ues are obtained for the Recipe1M and the Epicurious datasets,
while slightly higher generalizability indexes are obtained for the
Yummly28K and the Recipe box datasets. The highest generaliz-
ability index is obtained for the Indian recipes dataset, and from
Fig. 11, as observed previously, we can see that this happens
because out of all of the datasets, the Salad recipes dataset has
the most similar distribution with the Indian recipes dataset. This
is also evident from the results presented in Table 3. If we observe
the heat map presented in Fig. 8, we can see that in the cluster
number 6, there are only instances from the Salad recipes dataset,
which therefore cannot be captured from any model trained on
the other five datasets (presented in Fig. 14). An interesting
observation from the heat map presented in Fig. 8 is that the
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Fig. 9. Distributions in the feature space of the Indian recipes dataset and the Yummly28K dataset.
Fig. 10. Distributions in the feature space of the Indian recipes, Recipe1M, Epicurious, and Recipe box datasets.
Fig. 11. Distributions in the feature space of the Indian recipes dataset and the Salad recipes dataset.
cluster number 7 is densely populated by instances from the
Recipe1M, Epicurious, Yummly28K, and the Recipe box datasets
(above 30% from each dataset). Whereas, from the percentage of
the remaining two datasets in the same cluster, we can see that
the Indian recipes and Salad recipes datasets have only 15.9% and
18.2% of their instances in the cluster number 7, respectively.
These two observations show why the generalizability indexes
of the Salad recipes dataset are so low for these four datasets,
and the highest generalizability index is achieved for the Indian
recipes dataset.
8

• Model trained on the Yummly28K recipe dataset – For the
Yummly28K recipe dataset, the highest generalizability index is
obtained for the Recipe box dataset, followed by the Recipe1M
dataset, the Epicurious recipe dataset, and then the Indian recipes
datasets. If we compare the distributions of instances in the
feature space of the Yummly28K recipe dataset and those of the
Recipe box, Recipe1M, Epicurious, and Indian recipes datasets,
we can see that all of these four datasets have overlapping with
the Yummly28K recipes dataset. The generalizability indices are
sorted the same as the number of instances per dataset. Since
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Fig. 12. Distributions in the feature space of the Recipe1M, Epicurious, and the Recipe box datasets.
Fig. 13. Distributions in the feature space of the Recipe1M, Epicurious, Recipe box and Yummly28K datasets.
the instances from the Yummly28K recipes dataset are distributed
farther apart (i.e. widely distributed) in the feature space, the
generalizability index is the highest for the Recipe box dataset,
because it has around 82,000 instances, therefore it is more
densely distributed and the Yummly28K dataset covers more
parts from the feature space and therefore more instances can be
represented. Next, is the generalizability index for the Recipe1M
dataset, because the Recipe1M dataset has around 55,000 in-
stances, much more densely distributed compared to the distri-
bution of the instances from the Yummly28K recipe dataset in
the feature space. Then follow the generalizability indexes of
0.66 and 0.61 for the Epicurious recipe dataset (with around
21,000 instances) and the Indian recipes dataset (with around
6700 instances). From the presented accuracies in Table 3 we can
observe how the above-made statements, i.e., how the obtained
generalizability indexes correspond with the performance of the
predictive models — a higher generalizability index implies a
higher accuracy.

• Model trained on the Recipe box dataset – For the Recipe
box dataset, the highest generalizability index is achieved for the
Recipe1M dataset and it is very comparable with the generaliz-
ability index for the Epicurious recipe dataset. Next, we have the
generalizability index for the Yummly28K recipe dataset. From
the presented accuracies of the predictive models, we can observe
the reliability of the generalizability indexes — the predictive
models trained on the Recipe box dataset performed best when
tested on the Recipe1M dataset, and second best when tested on
the Epicurious recipe dataset.

Table 4 presents the Pearson correlation coefficients calculated
between the generalizability indices and the performance of the ML
9

Table 4
Pearson correlation coefficients between the generalizability index and the average
accuracies.

Dataset Fat Protein Sugars Saturated fat Sodium

Indian 0.7126 0.9293 0.7924 0.6246 −0.4762
Recipe1M 0.6560 0.5376 0.5723 0.8026 0.2235
Epicurious 0.7926 0.5719 0.6892 0.7140 0.4935
Salad Recipes 0.8461 0.7434 0.7568 0.9207 0.8876
Yummly28K 0.9355 0.9181 0.8774 0.9385 0.9793
Recipe Box 0.7205 0.4145 0.8042 0.7711 −0.4348

models across different datasets for each target separately. Each row
in the table corresponds to the dataset on which the model is trained,
and each column corresponds to a nutrient target that is predicted by
the model. For instance, when training the model on the Indian dataset
and examining the correlation between the generalizability indices and
the model’s performance in predicting fat content on other datasets,
we utilize the generalizability indices from the first row of Table 2
excluding the first value (since there is no need for a self-calculated gen-
eralizability index). Additionally, we consider the model’s performance
(the average accuracies) obtained for predicting fat content on the other
five recipe datasets (listed in Table 3), which correspond to training on
the Indian recipes dataset and testing on the other five recipe datasets.
The results demonstrate high correlations (above 0.5) between the
generalizability indices and the model’s performance, indicating strong
associations. However, there are a few exceptions where sodium as the
prediction target does not exhibit such high correlations.
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Fig. 14. Distributions in the feature space of the instances belonging to cluster number 6 and the instances from the Indian recipes, Recipe1M, Epicurious, Yummly28K, and Recipe
box datasets.
.

Table 5
Number of instances from each cluster in the generalized training dataset selected with
stratified sampling from each cluster.

Cluster Number of instances

10% of the cluster 20/% of the cluster 30/% of the cluster

0 4,457 8,915 13,372
1 963 1,873 2,836
2 680 1,359 2,039
3 2,475 4,950 7,425
4 738 1,477 2,215
5 3,227 6,455 9,732
6 196 393 589
7 6,547 13,095 19,642

4.3.3. Selecting a more representative training dataset
Instead of training a model on a single dataset, in order to cover

more parts from the feature space that can improve the generaliza-
tion of the predictive models, we propose three different sampling
techniques for selecting data instances from each cluster that can be
from different datasets. The idea behind each sampling technique is
presented below:

• Stratified sampling from each cluster – Select 10%, 20% and
30% random data instances from each cluster (the number of
instances from each cluster for each percentage is presented in
Table 5). These percentages are selected as more than 30% will
lead to potential over-fitting of the predictive models. We repeat
these selections several times, each time resulting in different
samples. Then, predictive models are trained, with each of these
datasets as the training dataset.

• Stratified sampling around the centroids of each cluster –
Select 10%, 20%, and 30% of the instances in each cluster, this
time closest to the centroid of that cluster. The distance between
each data instance and the centroid of the cluster is calculated by
calculating the cosine distance between the reduced embeddings
of the instance and the centroid. Here, the sampling selects the
closest 10%, 20%, or 30% data instances to the cluster centroid.
As we are trying to select only the instances closest to the cluster
centroid, this is a one-time procedure.

• Uniform sampling around the centroids of each cluster –
Select the same number of data instances from each cluster.
The selection is performed by selecting the instances that are in
some 𝜖-neighborhood to the centroid of the cluster. This sampling
technique will allow us to approximate a uniform distribution
over the feature space.

In the case of the first sampling technique, stratified sampling from
each cluster, we train predictive models on the generated generalized
datasets and evaluated them on the rest of the instances, not included
in the training process. Comparing the results with the results presented
in Table 3 when the training has been performed on a single dataset, we
did not observe an increase, more so a slight decrease in the accuracy.
For example, the average accuracy presented of predictive models for
fat in a case when a single dataset is used for training is between
10
Table 6
Results from the evaluation on the models trained when using the generalized training
dataset obtained selected with stratified sampling around the centroids of each cluster

Generalized training dataset Target Average accuracy

10% closest to centroid of each cluster

Fat 71.23
Protein 79.39
Saturated fat 67.58
Sugars 64.23
Sodium 70.12

20% closest to centroid of each cluster

Fat 75.63
Protein 83.82
Saturated fat 73.54
Sugars 79.84
Sodium 76.99

30% closest to centroid of each cluster

Fat 78.76
Protein 87.45
Saturated fat 77.12
Sugars 83.36
Sodium 80.93

2.37% and 74.99%, while training predictive models on the generalized
datasets, the average accuracies were up no more than 50%. We need
to point out here that this kind of selection is biased towards the bigger
clusters, so we are, again, having problems such that some parts from
the feature space are over-represented and some are under-represented.

In the case of the second sampling technique, stratified sampling
around the cluster centroid, the obtained accuracies of the predictive
model trained on the generalized dataset and evaluated on the remain-
ing instances that are not selected are presented in Table 6. The average
accuracy is calculated over the obtained accuracies from models trained
with all the different regression methods mentioned. We can observe
that there is an increase in the average accuracies if we compare to the
accuracies presented in Table 3 when the training was performed on
each dataset separately and tested on the rest. We need to mention here,
that even if have an improvement in the performance of the predictive
modeling, we still have some bias presented in the selection since the
size of the clusters indicates the size of the sample instances selected
from it — the bigger the cluster the more instances selected from it.

In the case of the third sampling technique, uniform sampling
around each cluster centroid, we first perform empirical analysis to de-
tect from which 𝜖-neighborhood of the cluster centroid we can sample
instances that can lead us to approximate uniform distribution. For this
purpose, we calculate the cosine similarity of each data instance to the
centroid of the cluster to which belongs. After that, for each cluster,
we calculate the maximum and minimum cosine distances from each
cluster’s centroid to an instance belonging to the set cluster (presented
in Table 7).

From this table, if we would like to make a uniform sampling from
each cluster, we need to select the minimum distance (0.180) since
this will allow us to select the same number of instances from each
cluster, at the same time selecting all instances from the cluster with
the lowest distance (i.e., in our case the cluster number 6 that is also
the cluster with the lowest number of instances). This result indicates
that we should select 1966 instances from each cluster and we would
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Table 7
Maximum cosine distance from each cluster’s centroid to an instance belonging to the same cluster.
Cluster number 0 1 2 3 4 5 6 7
Maximum cosine distance 0.422 0.186 0.507 0.184 0.244 0.0.367 0.180 0.536
Table 8
Number of instances from each cluster for 𝜖 ≤ 0.186.
Cluster number 0 1 2 3 4 5 6 7
Number of instances 38,534 9,361 29,475 24,751 7,346 28,961 1,966 47,197
end up with a training dataset of 15,728 instances, which is only 7.16%
from the original corpus.

In order to have more data instances, we also select the second
and the third lowest distance (0.184 and 0.186 that correspond to
the cluster number 3 and the cluster number 1, respectively). In this
election, we are breaking the assumption to have the same number of
nstances from each cluster, since we should select 7387 (not possible to
erform it from the cluster number 6) and 9361 (not possible to perform
t from the cluster number 4 and the cluster number 6) from each
luster. However, we can include all instances from these clusters which
lso provides us guarantee that instances from the under-represented
lusters will never come in the test data and we care to have a uniform
istribution of the over-represented clusters.

When the selection is performed by selecting 7387 data instances
rom each cluster that are in the 𝜖-neighborhood with 𝜖 = 0.184 of the
entroids of the clusters (meaning the selected instances have a cosine
istance lower or equal to 0.184 to the centroid of the cluster they
elong to). With this selection, we ended up with a dataset of 53,675
nstances (this dataset includes all instances from the cluster number
), which is 24% from the corpus with recipe embeddings.

In case when the selection is performed with 9361 instances from
ach cluster, we ended up with a dataset of 65,531 instances which is
9.82% of the whole corpus. This selection includes all instances from
he cluster number 6 and the cluster number 4).

After determining the number of instances that should be selected
rom each cluster and which are in some 𝜖-neighborhood to the cen-
roids of the clusters, we repeated the sampling technique three times.

hen the number of instances was set to 9361, all instances from the
lusters with numbers 6, 4, and 1 were selected, while the represen-
ative instances from the other clusters were selected randomly from
he instances that have a cosine distance of 0.186 or lower to the
entroid of the cluster to which they belong to. In each repetition of
he selection, the predictive model is trained on the selected instances
nd evaluated on all the remaining instances from all clusters. For
omparison reasons, we decided to conduct the same experiments
ith the three lowest maximum cosine distances: 0.180, 0.184, and
.186. The results are presented in Table 9. We can see that there is
n improvement in accuracies for all target variables for 𝜖 = 0.186
n comparison to the previous two stratified sampling techniques of
electing the training dataset. We can also see how the accuracies
mproved when choosing 𝜖 = 0.186 rather than 0.184 or 0.180, which is
ue to the fact of the very low samples included in the training dataset
f 0.184 or 0.180 are chosen as the 𝜖 value. These results show that the
uality and the uniform representativeness of all parts of the feature
pace can lead to an increase in the power of a predictive model (see
able 8).

. Discussion

In this section, we provide an overview of the key findings and
imitations of our research. It is important to note that the general-
zability index, which measures the ability of a model to generalize,
as been calculated based on a landscape analysis solely in the feature
pace. This analysis does not take into account the target space that the
odel should predict. In ML, having a comprehensive representation
11
Table 9
Results from the evaluation on the models trained when using the
generalized training dataset obtained when using the instances in a
defined 𝜖 neighborhood of the centroids from each cluster.

Generalized
training dataset

Target Average accuracy

𝜖 = 0.180

Fat 44.23
Protein 55.73
Saturated fat 53.82
Sugars 57.31
Sodium 60.13

𝜖 = 0.184

Fat 85.17
Protein 81.34
Saturated fat 77.22
Sugars 82.91
Sodium 84.34

𝜖 = 0.186

Fat 88.24
Protein 96.53
Saturated fat 83.41
Sugars 91.32
Sodium 93.45

(a set of features) means that different combinations of feature values
lead to different target values that the model should predict. During
model training, the model learns from input data, which are instances
represented by their feature values. Sometimes, if certain areas of
the feature space are over-represented, the model may become biased
towards those areas.

We begin with the assumption that if two datasets have a similar
distribution in the feature space, a model trained on one dataset should
be able to generalize well to the other dataset, and vice versa. To assess
the similarity between datasets, we introduce a meta-representation
obtained from a clustering analysis. Initially, all instances from all
datasets are combined, clustered, and analyzed to determine which
parts of the feature space they cover. Subsequently, a meta-
representation is defined for each dataset, representing the distribution
of data instances within each cluster. This enables us to compare the
distribution of the datasets across the clusters in the feature space.

By comparing the generalizability index with the model’s testing
scores, we have identified high correlations between differences in
distribution and the model’s performance (as seen in Table 4).

Next, we provide points related to different steps in the proposed
methodology. The selection of feature embedding, specifically tex-
tual embeddings, is an important aspect of the proposed methodol-
ogy. In our previous studies, we evaluated various text representa-
tion methods, including word-level, sentence-level, and document-level
embeddings, such as Word2Vec, GloVe, and BERT. Ultimately, we
proposed an embedding method that combines word embeddings with
a domain-specific heuristic, which yielded improved accuracy in pre-
dicting macronutrients (Ispirova et al., 2021). In this study, we use
this heuristic to define the feature embeddings, ensuring that all data
instances from different datasets are brought into the same feature
vector space. The analysis is conducted using the embedding used for
training the model. However, we acknowledge that different embed-
ding methods can affect the model’s performance. If an alternative
embedding method is selected for model training, the proposed pipeline
can still be utilized to estimate the model’s generalizability with the
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new feature embedding method. While our focus is not on analyzing
the sensitivity of the pipeline to different embedding methods (which
will be addressed in future work), we present a methodology that can
be tested once the embedding method and modeling approach is fixed.

The generalizability index is further calculated based on a reduced
embedding obtained through PCA applied to the recipe text. We opted
for PCA as the dimensionality reduction technique based on its proven
effectiveness for K-means clustering. This choice was also based on
the fact that t-SNE primarily preserves local similarities, whereas PCA
retains the global structure of the data, which is crucial for effective
clustering. Our goal was to reduce the dimensions while still preserving
the general structure of the data in order to perform the clustering. In
our study, we ensure that the first three principal components are used,
resulting in a high explained variance (approximately 80%). This indi-
cates that the data distribution is not distorted by the dimensionality
reduction process. However, for other datasets, it may be necessary to
perform a pre-analysis to determine the appropriate number of princi-
pal components. The Cattell subjective scree test estimator (Cangelosi
& Goriely, 2007) can be used to assist in selecting the number of prin-
cipal components. Thus, as long as the feature embedding accurately
represents the underlying data distribution, the generalizability index
serves as a reliable measure of a model’s ability to generalize to unseen
data.

The clustering results obtained with K-means clustering were vali-
dated through a post hoc analysis, which demonstrated that the clusters
predominantly group recipes belonging to the same food groups. This
aspect has also been shown in our previous study, along with a sensi-
tivity analysis regarding the dimension of the generated embeddings.
While K-means clustering was chosen as the most commonly used
approach, it is worth noting that other clustering methods like Density-
based spatial clustering of applications with noise (DBSCAN) (Ester,
Kriegel, Sander, Xu, et al., 1996) may yield different results and impact
the values of the generalizability index. We acknowledge the impor-
tance of evaluating the index’s variability under different clustering
methods, and we plan to incorporate this analysis into future work to
provide a more comprehensive evaluation of the generalizability index
and its sensitivity to clustering and dimensionality reduction methods.

Last but not least, to demonstrate the impact of a nearly uniform
distribution of training data across the feature space on the model’s gen-
eralizability, we selectively chose a more representative dataset. This
selection aimed to reduce over- or under-represented areas, thereby
improving the predictive capabilities of the models and mitigating over-
fitting. In line with the principles of open science, our methodology
can be applied to evaluate the generalizability index when using new,
previously unseen datasets during the testing phase. By comparing the
distribution of the training dataset with that of the new dataset, the
index allows us to assess how well the pre-trained model performs on
the new data.

6. Conclusion

One crucial aspect when working in machine learning is how to
estimate if a learned predictive model will generalize its performance
on new data instances not included in the training dataset. This issue
is related to the quality and representatives of the data included in the
training dataset. For this purpose, we propose a novel meta-approach
for landscape analysis of the feature space. The approach project all
data instances at the same meta-feature vector space that allows us to
find which parts of the feature space are over- or under-represented.
This further points out spaces from the feature space where the predic-
tive models will be biased. We introduce a generalizability index that
based on the results of the landscape analysis can provide information
on how good a predictive model will be if we test it on new unseen
data instances. In addition, we have also proposed a sampling technique
that cares about selecting data instances such that all parts from the
feature space will approximately follow a uniform distribution. This
12
kind of selection of a training dataset improves the generalization of
a predictive model.

More specifically, we evaluated the approach on a use case of pre-
dicting nutrient values of recipes using their description. By calculat-
ing domain-specific recipe embeddings for six different heterogeneous
recipe datasets utilizing a predefined corpus of ingredient embeddings,
we project them to the same meta-feature vector space. Reducing
the high-dimensional vectors of the embeddings to three-dimensional
vectors using PCA allowed us to visualize their distributions in the
feature space and observe which of these datasets have similar dis-
tributions. Then, with the process of unsupervised ML — clustering,
we separated the feature space into eight different clusters. Observing
the distributions of the clusters, we could see how the datasets are
distributed across clusters. Having this, we proceeded with defining
a generalizability index, and a generalizability matrix for all pairs be-
tween the six datasets that indicated the generalizability of a predictive
model i.e. how successful the generalization of a predictive model
learned on one dataset to the other dataset not used in the training
will be. Although the Salad recipes dataset is the largest and has the
highest number of instances, it scored low generalizability indexes
due to its distribution in the feature space and in the clusters. While
the other datasets, specifically the Epicurious, Recipe1M, Yummly28K,
and Recipe box, scored high amongst each other due to their similar
distributions in the feature space. These two statements can be directly
seen through the results from the predictive modeling and evaluation
of the ML pipeline, presented in Table 3.

In addition, we introduce three sampling techniques for selecting a
representative training dataset that will improve the generalization of
a predictive model. The first technique involve randomly selecting a
given percentage of instances from each cluster, while the second one
involves the random selection of a given percentage of instances that
are close to the cluster centroid. Both sampling techniques improve the
generalization of a predictive model, however, the generated datasets
are still biased to some parts of the feature space, since bigger clusters
are represented with more instances. The third technique is randomly
sampling the same number of instances from each cluster in some
neighborhood to its centroid. This technique allows us uniform cover-
age of all parts from the feature space and improves the generalization
of the predictive model.

For future work, we are planning to perform sensitivity analysis
that will be involved evaluating different methods that are part of our
landscape analysis, especially, testing different clustering methods to
obtain the clusters of the feature space and different dimensionality
reduction techniques. Another direction is to estimate the threshold of
the generalizability index that can guarantee the generalization of a
predictive model on new unseen instances.
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