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Chinese medicine, Qijudihuang
pill, mediates cholesterol
metabolism and regulates gut
microbiota in high-fat diet-fed
mice, implications for age-
related macular degeneration

Yanqun Cao1†, Khalid S. Ibrahim2,3†, Xing Li1†, Aileen Wong2,
Yi Wu4, Xu-Dong Yu1, Xinzhi Zhou2, Zhoujin Tan4, Zhiming He1,
John A. Craft2* and Xinhua Shu1,2,5*

1Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China, 2Department of Biological and
Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom, 3Department of
Biology, Faculty of Science, University of Zakho, Zakho, Iraq, 4School of Traditional Chinese Medicine,
Hunan University of Chinese Medicine, Changsha, Hunan, China, 5Department of Vision Science ,
Glasgow Caledonian University, Glasgow, United Kingdom
Background: Traditional Chinese Medicines have been used for thousands of years

but without any sound empirical basis. One such preparation is the Qijudihuang pill

(QP), amixture of eight herbs, that has been used in China for the treatment of various

conditions including age-related macular degeneration (AMD), the most common

cause of blindness in the aged population. In order to explain the mechanism behind

the effect of QP, we used an AMDmodel of high-fat diet (HFD) fedmice to investigate

cholesterol homeostasis, oxidative stress, inflammation and gut microbiota.

Methods:Mice were randomly divided into three groups, one group was fed with

control diet (CD), the other two groups were fed with high-fat-diet (HFD). One

HFD group was treated with QP, both CD and the other HFD groups were treated

with vehicles. Tissue samples were collected after the treatment. Cholesterol

levels in retina, retinal pigment epithelium (RPE), liver and serum were

determined using a commercial kit. The expression of enzymes involved in

cholesterol metabolism, inflammation and oxidative stress was measured with

qRT-PCR. Gut microbiota was analyzed using 16S rRNA sequencing.

Results: In the majority of the lipid determinations, analytes were elevated by HFD

but this was reversed byQP. Cholesterol metabolism including the enzymes of bile

acid (BA) formationwas suppressed byHFD but again this was reversed byQP. BAs

play amajor role in signaling between host andmicrobiome and this is disrupted by

HFD resulting in major changes in the composition of colonic bacterial

communities. Associated with these changes are predictions of the metabolic

pathway complexity and abundance of individual pathways. These concerned

substrate breakdowns, energy production and the biosynthesis of pro-

inflammatory factors but were changed back to control characteristics by QP.

Conclusion: We propose that the ability of QP to reverse these HFD-induced

effects is related tomechanisms acting to lower cholesterol level, oxidative stress

and inflammation, and to modulate gut microbiota.

KEYWORDS

traditional Chinese medicine, Qijudihuang pill, age-related macular degeneration,
cholesterol, oxidative stress, inflammation, gut microbiota
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GRAPHICAL ABSTRACT
1 Introduction

Age-related macular degeneration (AMD) is an incurable visual

disorder, which is the third highest cause of blindness in developed

countries, with only cataracts and glaucoma as more prevalent eye

diseases. Approximately 200 million individuals aged over 50 years

are estimated to be affected (1). AMD is chronic in nature and

worsens as it progresses from the early and intermediate stages to the

late stage. Late AMD is subdivided into dry and wet forms. The dry

form is most common and is characterized by the presence of

abnormal deposits (drusen) underneath the retinal pigment

epithelial (RPE) layer and RPE atrophy. Wet AMD is usually the

cause of severe symptoms, such as vision loss, and can cause

symptoms to develop in a much shorter timeframe, normally weeks

to months. Wet AMD is defined by chronic neovascularization, when

new blood vessels, induced by vascular endothelial growth factor

(VEGF), grow under the RPE layer and break into the Bruch’s
Frontiers in Immunology 02
membrane, resulting in bleeding and sudden loss of vision (2).

There is no effective treatment for dry AMD, though antioxidants

have shown subtle benefits (3).In contrast, anti-VEGF therapy is

effective for wet AMD; however, many patients experience incomplete

responses, including persistent exudation, hemorrhage, and ongoing

lesion fibrosis (4). AMD is a complex disease, associated with

environmental and genetic risk factors, and multiple signaling

pathways are involved (5).

Cholesterol plays a critical role in the maintenance of cellular

structure and function and is associated with various disorders,

including AMD (6). Cholesterol has been reported to enrich drusen

and form sub-RPE crystals in patients with wet AMD, implicating

dysregulation of cholesterol trafficking and metabolism (7, 8). Many

studies have demonstrated that cholesterol metabolism and

transport genes, apolipoprotein E (APOE), hepatic lipase (LIPC),

CETP (cholesteryl ester transfer protein), and ATP Binding

Cassette Subfamily A Member 1 (ABCA1) are associated with
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AMD pathogenesis and progression (9, 10). Knockout of cholesterol

efflux-related genes (e.g., Apoe and Abca1) and cholesterol

metabolism genes such as Cyp27a1 and Cyp46a1 cause retinal

pathology in mice (11–14). We also found that the translocator

protein, TSPO, mediated RPE cholesterol efflux, and loss of TSPO

caused intracellular accumulation of cholesterol in human and

mouse RPE cells (15, 16). High intake of dietary cholesterol has

been reported to be associated with an increase in the risk of

developing AMD (17–19). A high cholesterol-containing diet

causes AMD pathological features in rabbits (20). All these

findings suggest cholesterol is involved in AMD pathogenesis and

that lowering cholesterol is a therapeutic strategy for patients

with AMD.

Traditional Chinese Medicine has been used to treat both dry

and wet AMD for thousands of years in China (2). Over 196

prescriptions have been described for treating AMD, among them,

Qijudihuang pill (QP), which is regularly prescribed to patients with

AMD. QP also shows therapeutic effects in other ocular disorders,

such as diabetic retinopathy, retinitis pigmentosa, glaucoma, and

dry eye disease (21, 22). QP is made of eight medicinal herbs,

namely, Fructus lycii, Moutan Cortex, Dioscoreae Rhizoma, Corni

Fructus, Poria, Alismatis Rhizoma, Flos Chrysanthemi Indici, and

Rehmanniae Radix Praeparata. Using a network pharmacology

approach, over 134 active compounds have been identified in QP

and 72 candidate targets predicted, some of which were reported to

have a role in retinal disorders (21). However, the underlying

protective mechanisms of QP against ocular diseases, particularly

AMD, are not explored.

In the present study, we treated high-fat diet-fed mice with QP

and investigated changes in cholesterol metabolism, expression of

antioxidant and inflammation genes, and gut microbiome.
2 Materials and methods

2.1 Preparation of the Chinese
medicine QP

For the preparation of QP, 12g of Fructus lycii, 10g of Moutan

Cortex, 15g of Dioscoreae Rhizoma, 15g of Corni Fructus, 10g of

Poria, 10g of Alismatis Rhizoma, 12g of Flos Chrysanthemi Indici,

and 30g of Rehmanniae Radix Praeparata were pulverized together,

put in 75ml distilled water, and boiled for 30 minutes with low heat.

The liquid decoction was collected; the remaining material was

again put in 75ml water and boiled for 30 minutes with low heat,

and the decoction was collected. Both decoctions were mixed and

concentrated to reach a final concentration of 1.10g/ml, and this

was kept at 4°C.
2.2 Animal treatment

All animal work was approved by the local animal welfare

committee and followed the UK Home Office Animal Research

guidance (Project License PP235815). Four-week-old male C57BL/

6J mice were randomly allocated into three groups (eight animals/
Frontiers in Immunology 03
group). One group was fed with a control diet (CD) and the other

two groups were fed for 13 weeks with a high-fat diet (HFD, 78.75%

control diet to which 10% lard, 10% corn oil, 1% cholesterol, and

0.25% sodium cholate were added). The body weights of the mice

were monitored weekly. After 13 weeks, the CD group and one

HFD group were intra-gastrically treated daily with either

physiological saline (0.4ml/animal) (CD group) or with the QP

decoction (HFD+QP) at a dose of 14.69g/kg, which was calculated

based on the clinical application (HFD group). After 30 days of

treatment, animals were sacrificed and samples were collected.
2.3 Cholesterol measurement

Cholesterol was extracted from untreated, HFD, and HFD QP-

treated serum, liver, retina, RPE/choroid with hexane: isopropanol

(3:2, v/v). The extract was centrifuged, and the organic fraction

was transferred into a new tube and dried under nitrogen gas. The

dry lipid was dissolved in a cholesterol-working buffer and the

total cholesterol was measured using an Amplex Red Cholesterol

Assay kit (Thermo Fisher Scientific, UK) guided by the

manufacturer’s protocol.
2.4 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from untreated, HFD, and HFD QP-

treated mouse liver, retina, and RPE/choroid using TRIzol Reagent

(Thermo Fisher Scientific, UK) based on the manufacturer’s

protocol. CDNA was synthesized and targeted mRNA was

detected using kits from Thermo Fisher Scientific, UK following

the manufacturer’s instructions. Primers used for qRT-PCR are

listed in Table S1.
2.5 Isolation of bacterial DNA and
metagenomic sequencing

Mouse cecum samples were collected and bacterial DNA was

extracted using the QIAamp DNA Stool Mini Kit (QIAGEN, UK)

based on the manufacturer’s instructions. Purified DNA from

individual animals was used for PCR amplification and

sequencing of 16S rRNA genes on an Illumina Nova-Seq with 2 x

300 base paired-end reads. Universal primers of the 16S rRNA

genes were used to amplify the hypervariable regions, V3-V4 (V3F

(338F) and V4R (806R)).
2.6 Sequence determination of the gut
microbiome based on 16S rRNA amplicons

Sequences were processed with QIIME2 as described previously

(23), except for using 230 as the truncation length in DADA2 (24).

Reads and metadata have been submitted to the Sequence Read

Archive (SRA) with Accession Number PRJNA1005835. The
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potential, functional metagenome was analyzed with the stand-alone

version of PICRUSt2 (25). Raw abundance data was normalized for

each pathway to generate Relative Abundance prior to analysis with

ANOVA and Tukey’s post hoc correction to indicate significance

between the three groups. This was conducted in R (v4.2.1) using the

rstatix package, and results were plotted with ggplot2. The

hierarchical clustering and heatmaps of the predicted proportion

MetaCyc pathways and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) orthologues (KO) metagenomes were visualized

by the SRplot tool (https://www.bioinformatics.com.cn/srplot).
2.7 Statistical analysis

Data on body weight, cholesterol level, and gene expression was

analyzed using PRISM software (version 9) with one-way or two-

way ANOVA followed by an appropriate post hoc test. Data was

displayed as mean ± SD. 16S rRNA amplicon data was analyzed

using Statistical Analysis of Metagenomic Profiles (STAMP) (26) by

heatmap to explore the relationship between groups through

ANOVA statistical test with Tukey-Kramer post hoc test after

multiple test corrections. Statistical analysis of the abundance of

taxa was conducted with Linear Discriminant Analysis (LDA) Effect

Size (LEfSe) (27) using a Galaxy computational tool with settings of

LDA at 3. LEfSe determines the features (genes, organisms, clades,

and operational taxonomic units) of biologically relevant groupings.

Wilcox test of two groups’ comparison (non-parametric) of

(Bacteroidetes/Firmicutes ratio) with differences between at least

two groups used SRplot online. A p-value of < 0.05 was

considered significant.
3 Results

3.1 QP treatment did not affect
body weight

During the 13-week initial feeding period, the body weight of

the three groups continuously increased. Compared to the control

group fed with a normal diet, animals fed with a high-fat diet had a

significant increase in body weight from as early as 1 week of feeding

that diet (Figure S1A). After the subsequent 30-day treatment with

QP, the treated animals had similar body weight to the untreated

HFD group, suggesting QP did not affect body weight (Figure S1B).
3.2 QP lowered systemic and local
cholesterol level

High-fat diet causes cholesterol accumulation in tissues and

organs of animals and humans (23, 28). In the present study, we

further confirmed animals fed with a high-fat diet had a

significantly higher level of cholesterol in serum, liver, retina, and

RPE/choroid. QP administration reversed the high-fat diet–induced

effect on cholesterol levels in serum, liver, retina, and RPE/choroid

(Figure 1). We also examined the expression of cholesterol
Frontiers in Immunology 04
homeostasis genes in the liver, RPE/choroid, and retina and

found that cholesterol trafficking genes (Abca1 and Abcg1),

cholesterol metabolism gene (Cyp27a1), and cholesterol

transporting/metabolism-regulating gene (Nr1h3, encoding

LXRa) had a significant decrease in expression in liver, RPE/

choroid, and retina, compared to that of the control animals. QP

treatment significantly increased the expression of these genes,

compared to that of animals fed with a high-fat diet only.

Expression of Cyp46a1 was markedly downregulated in liver and

RPE/choroid of high-fat diet-fed animals, compared to that of

control animals, and QP treatment increased its expression,

compared to that of animals fed with high-fat diet alone.

However, expression of Cyp46a1 was upregulated in the retina of

high-fat diet-fed animals, but not changed in QP-treated animals.

The cholesterol synthesis regulator, SCREBP2, had a significant

increase in expression in the three tissues of animals fed with a high-

fat diet, compared to control animals, whereas QP treatment

significantly downregulated the expression of SCREBP2 in the

three tissues compared to animals fed with high-fat diets

(Figures 2, S2).
3.3 QP modulated expression of
antioxidant and inflammation genes

It is well-documented that a high-fat diet induces oxidative

stress and inflammation (29). In the present study, we found that

the expression of antioxidant genes (Catalase, Gpx1, and Sod1) was

markedly downregulated in RPE/choroid and retina of HFD

animals compared to that of CD animals but QP treatment

reversed this HFD-induced effect (Figure 3). Conversely,

expression of pro-inflammatory cytokines (Il-1b and Tnfa) in

RPE/choroid, retina, and liver of HFD mice was markedly

upregulated compared to that of CD mice, and QP treatment

significantly alleviated expression of the two cytokines in RPE/

choroid, retina, and liver in the HFD+QP group (Figure 4).
3.4 Metagenomic analysis of
gut microbiota

Sequence read numbers and the numbers of non-chimeric,

joined reads are shown in Table S2. Raw read numbers varied

between 79700-114311, and after joining and elimination of

chimeras, a range of 64.6-91.4% of input survived. Taxonomic

profiles of the organisms present in each sample were obtained

via QIIME2 packages with reference to the Green Genes database

at 97% identity (Figure S3, Table S3). A total of 238 taxa from

8 phyla (Actinobacteria, Bacteroides, Firmicutes, Proteobacteria,

Cyanobacteria, Fusobacteria, TM7, and Verrucomicrobia) from

120 genera with 97 identified species and 56 unclassified species

are detailed in Table S3. Clear differences in bacterial communities

between the groups were apparent by diversity analysis (Figure 5).

Beta diversity indicated a clear separation of microbial communities

between CD and HFD as well as between CD and HFD+QP but

with some indication of the movement of HFD+QP towards CD.
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This is further shown in Emperor plots with alternative metrics of

determination (Figure S3). Additionally, heat maps and hierarchical

clustering show a separation between the CD and both high-fat

groups (Figure S4). The ratio of Bacteroidetes compared to

Firmicutes was markedly increased by the HFD compared to

control but this ratio was much reduced in the HFD+QP group

(Figure S4C).

The differential abundances of taxa comparing the three

experimental groups were determined using the Linear

Discriminant Analysis (LDA) Effect Size (LEfSe) and Plot

Cladogram (Figure 6). Mice fed with HFD showed profound

changes in the abundance of taxa compared to taxa in mice given

CD. Some taxa were present at significantly higher levels while

others were present at much lower levels than found in CD. This is

apparent in Figure 6 where 13 taxa are differentially increased in

HFD mice while 19 are decreased. The pattern of changes and

identity of taxa are shown in Figure S5 with the accompanying table.

In contrast, HFD+QP had only two taxa with increased abundance

(f_Aerococacceae and g_Clostridium) and these were also found

when comparing HFD to CD. There was also a smaller list of taxa

reduced in HFD+QP (13) of which 8 were common to the other CD

comparison while 5 were unique. The complexities of the

community changes became more apparent when comparing

differential abundance in HFD to HFD+QP. In this case, the

number of taxa with increased abundance in HFD was three

(each of which was seen in the comparison to CD) and only one
Frontiers in Immunology 05
with reduced abundance relative to HFD+QP, again a taxa seen in

CD (s_indistinctus).
3.5 Analysis of potential metabolic
activities by the gut microbiome

We used PICRUSt2 to provide insights into the potential

metabolic pathways of the bacterial communities within each of

the experimental groups. Analysis with PCoA revealed separation

between each of the groups but with a clear movement of the HFD

+QP towards CD (Figure 7A). Of the 415 MetaCyc pathways, 127

were significantly different between CD and HFD. In 55 of these

pathways, there was no significant difference between CD and HFD

+QP (Table S4). In some pathways (30), HFD increased pathway

abundance from CD (Figure 7B) and this was reversed back to CD

by the QP treatment, and in other cases (9) HFD suppressed

abundance and this was increased back to CD by QP (Figure 7C).

The pathway changes were further studied by consideration of

the Superclass ontologies specified by each of the MetaCyc

classifications (Table S5). Of the 46 pathways elevated by HFD

and reversed by QP, 19 were described by Superclass classification

as “Biosynthesis”, 23 as “Degradation/Utilization/Assimilation”,

and 4 as “Generation of Precursor Metabolites and Energy”. Of

the “Biosynthesis” pathways, nine were involved with “Cofactor,

Carrier, and Vitamin Biosynthesis”, mainly with compounds used
FIGURE 1

Effect of QP treatment on cholesterol level in serum, liver, RPE, and retina. Data was analyzed using one-way ANOVA followed by Tukey’s multiple
comparisons test and presented as mean ± SD. HFD, high-fat diet-fed group; QP, Qijudihuang pill; RPE, retinal pigment epithelial cells. *p<0.05;
**p<0.01; ***p<0.001; ****p<0.0001; ns, no significance. Eight samples/group.
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in Electron Transport Chains, specifically menaquinones. Synthesis

of lipopolysaccharides (LPS) and the phenolic siderophore,

enterobactin were also notable. In the class “Degradation/

Utilization/Assimilation”, “Aromatic Compound Degradation”

(five) as well as “C1 Compound Utilization and Assimilation”

(three), and “Carboxylic Acid Degradation” (three) along with

degradation of amino acids and carbohydrates were represented.

Of the other Superclass classifications, all representatives were

described by the Superclass term “Generation of Precursor

Metabolites and Energy”. Of the nine pathways decreased in HFD

but reversed by QP all but one were described by “Biosynthesis”, the

other being “Degradation/Utilization/Assimilation”. The

representatives in “Biosynthesis” were involved in “Nucleoside

and Nucleotide Biosynthesis” (three) or “Sugar Biosynthesis”
Frontiers in Immunology 06
(two). The example in Degradation was also involved in

Purine metabolism.
4 Discussion

Although QP has been used to treat AMD in China for a long

period, the underlying functional mechanism has not been investigated.

In the current study, we treated a high-fat diet-fed mouse model of

AMD and found QP decreased HFD-induced elevated levels of

cholesterol in the RPE/choroid, retina, liver, and serum, upregulated

expression of antioxidant genes, and suppressed expression of pro-

inflammatory genes in the RPE/choroid and retinas of high-fat diet-fed

animals, as well as modulated gut microbial composition.
A

B

FIGURE 2

Effect of QP on expression of cholesterol homeostasis genes in RPE/choroid (A) and in the retina (B). Data was analyzed using one-way ANOVA
followed by Tukey’s multiple comparisons test and presented as mean ± SD. HFD, high-fat diet-fed group; QP, Qijudihuang pill; RPE, retinal pigment
epithelial cells. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, no significance. Eight samples/group.
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Cholesterol accumulates in the drusen of patients with AMD

and can be enzymatically or non-enzymatically oxidized into

oxysterols (6). Loss of oxysterol-producing enzymes or cholesterol

transporters causes retinal degeneration in rodents. HFD

exacerbates AMD pathological features in Apoe (involved in

cholesterol efflux) knockout mice (31). HFD has also been shown

to induce oxidative stress, inflammation, and dysbiosis, resulting in

accelerated photoreceptor degeneration in rd10 mice (a retinitis

pigmentosa mouse model) (32). In the present study, we also

demonstrated that feeding with HFD caused increased cholesterol

levels, decreased expression of antioxidant genes, and upregulated

expression of inflammatory mediators in examined tissues and

that these effects were reversed by QP treatment. Network

pharmacology predicted that QP contains multiple active

compounds and potential protein targets, of which the top ones

are involved in inflammation (22). Therefore, it is supposed

that there are multiple signaling pathways associated with

QP’s protective effect in HFD-fed mice, which requires

further investigation.

Excess cholesterol in the retina and RPE is reversibly

transported back to the liver and converted to bile acids,

principally by mitochondrial Cyp27A1 (33) and Cyp7A1 (34)

located in the endoplasmic reticulum. The products are
Frontiers in Immunology 07
conjugated by taurine or glycine prior to transport into the gall

bladder and their release into the duodenum is stimulated by

feeding. The majority of the secreted BA is reabsorbed following

deconjugation in the ileum to complete the BA enterohepatic

circulation, while a small proportion arrives in the colon (35).

Gut bacteria metabolize bile acids by a wide variety of reactions

including deconjugation, re-conjugation, dihydroxylation, and

oxidation (36, 37). The diversity of gut bacteria and their

metabolic capacity to act on BAs determines effects on host

systems via a multitude of BA-activated signal receptors that

regulate hepatic cholesterol metabolism by affecting the

expression of enzymes causing their formation, including the two

Cyps (37).

When mice are provided with a high-fat diet there are multiple

effects on cholesterol metabolism, including conversion to bile

acids. These alter the spectrum of bacteria in the gut, and thus

the signaling through bile acids, to affect the host including on the

gut-brain axis (38). Indeed, HFD causes widespread changes in

microbiota communities, leading to dysbiosis associated with

obesity, type 2 diabetes, and AMD as well as a number of other

health-compromising conditions (39–41). Those effects were

observed in this study at the phylum level with the frequently

observed increase of the ratio of Bacteroidetes compared to
A

B

C

FIGURE 3

Effect of QP treatment on expression of antioxidant genes in RPE (A), retina (B), and liver (C). Data was analyzed using one-way ANOVA followed by
Tukey’s multiple comparisons test and presented as mean ± SD. HFD, high-fat diet-fed group; QP, Qijudihuang pill; RPE, retinal pigment epithelial
cells. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001; ns, no significance; Eight samples/group, three repeats.
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Firmicutes. The changes can also be seen in terms of beta diversity

with the PCoA revealing a clear separation between the CD and

HFD groups. Furthermore, analysis with the LEfSe tool revealed an

HFD-associated increase in abundance of a variety of taxa

previously commented on by ourselves and others (23, 42–44). At

the same time, other taxa were decreased by this diet. For instance,

Anaerotruncus was increased and has been associated with HCC

and non-alcoholic steatohepatitis (45), whereas beneficial f-S27-4

was decreased (23, 43).

One objective of this project was to ascertain whether QP has an

effect on gut microbiome and thus whether the observed changes

play a mechanistic contribution to potential therapeutic effects.

Even while the HFD was continued, QP, at least in part, reversed the

effects observed with HFD alone. Thus, the spectrum of phyla
Frontiers in Immunology 08
reverted more towards that seen in CD as illustrated by a decrease of

Bacteroidetes/Firmicutes, a movement of the HFD+QP group

towards CD in PCoA plots, and a more restricted change in

abundances of taxa in LEfSe, both for those that increased and

those that decreased in abundance. The number and identity of taxa

that were either increased or decreased in HFD+QP vs. CD were

significantly diminished compared to when HFD alone was

compared to CD.

Changes in the composition of microbial communities will have

effects on global metabolic capacity and thus on interaction with the

host. We examined the extent and nature of such potential changes

with PICRUSt2. On a global scale, using diversity measures, clear

changes induced by HFD and partially reversed by QP were

apparent in PCoA plots, changes that closely parallel those seen
A

B

FIGURE 4

Effect of QP treatment on expression of IL-1b (A) and TNFa (B) in RPE, retina, and liver. Data was analyzed using one-way ANOVA followed by
Tukey’s multiple comparisons test and presented as mean ± SD. HFD, high-fat diet-fed group; QP, Qijudihuang pill; RPE, retinal pigment epithelial
cells. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001; ns, no significance. Eight samples/group, three repeats.
A B

FIGURE 5

Beta diversity of bacterial communities in the three groups of mice by (A) Jaccard and (B) Bray-Curtis metrics as shown by Emperor plots. Six
samples/group.
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when considering taxa alone. In terms of individual pathways

increased by HFD, those generating pro-inflammatory effectors

were notable. These included the synthesis of enterobactin,

polymixin B, and lipopolysaccharide, each of which was increased

by HFD but reversed when QP was included in the diet. We propose

that the increase of IL-1B and TNF-a in the liver, RPE/choroid, and

retina are also associated with these changes occurring in the gut

microbiota due to HFDs. Likewise, we propose that the decrease of

anti-oxidative enzymes catalase, GPX, and SOD1 is a response to

changes in the abundance of bacterial taxa, their associated

metabolic capacity, and nature. For instance, Enterobactin is a

siderophore and derivative of 2,3 dihydroxy N-benzoylserine

lactone that chelates primarily ferric iron and is produced by
Frontiers in Immunology 09
Gram-negative bacteria (46). Since iron is a requirement of host

and microbes, an imbalance of iron uptake will impair host systems,

and enterobactin has been shown to promote bacterial colonization

(30) and interfere with host immune responses (47). Polymixins are

microbially-produced antibiotics that illustrate two effects of the

HFD. The production of polymixin antibiotics in the gut provides

one mechanism leading to the remodeling of bacterial communities

and indeed the original interest in these compounds arose as they

provided a prospect for the treatment of multidrug-resistant

organisms (48). Aligning with this mechanism of remodeling are

bacteria, such as Pseudomonas, that have resistance to polymixin

(49). However, the drugs also produced marked nephrotoxicity,

illustrating the second point that the change of bacterial
A B

D

E

F

C

FIGURE 6

Differential abundance of bacteria in gut microbiome showing pairwise comparison of abundance using the LEfSe method. The figure shows
features that are differentially abundant scaled with their effect size (A, C, E), and those differences are mapped to associated taxonomic trees (B, D,
F). Effect size is indicated by the LDA score with the green colors showing taxa more abundant in HFD compared to the control group (A) and more
abundant in HFD+QP compared to control (C) and HFD+QP relative to HFD (F). Negative LDA scores are shown in red indicating higher abundance
in the comparison partner (B Control, D Control, and F HFD). The parallel, taxonomic representations utilize the same colors: red most abundant,
green least abundant, and yellow indicates organisms without significant difference.
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communities results in the formation of toxic compounds, causing

harm to the host. The mode of action of polymixins is thought to be

by interaction with phospholipids, causing membrane disruption

including macrophages, and stimulating the production of IL-1b
(50). An alternative theory suggests that polymixins induce

oxidative stress caused by the formation of reactive oxygen

species (51), which resonates with altered oxidative resistance in

RPE. Resistant bacteria occur in Escherichia, Klebsiella, Salmonella,

Shigella, Enterobacter, and Citrobacter (48), and have altered LPS

structures that block the interaction with antibiotics (52). Other

possible contributors to intestinal inflammation are changes to
Frontiers in Immunology 10
purinogenic pathways as found in inflammatory bowel disease

(53). These pathways were found to be lowered by the HFD but

raised to control levels when QP was administered.

While the complex effects of HFD on bacteria and their

interaction with the host are starting to be understood, QP has

not been previously explored at the levels described here. We have

started to characterize the component chemicals present in the QP

plant extract (in preparation) and established the principle

components. How these might interact with the host and bacteria

demands future investigation but one possibility is that they act

with the promiscuous nuclear hormone receptor pregnane-X
A

B

C

FIGURE 7

Functional analysis of the metagenome using PICRUSt2 with MetaCyc pathways. Beta diversity of pathways (A) by Jaccard and Bray Curtis metrics
shown by PCoA. Relative Abundance of selected pathways that promote inflammation (B) or pathways of intermediary metabolism (C) affected by
HFD and reversed by QP. CD, control diet; HFD, high-fat diet; HFDQP, high-fat diet with QP treatment.
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receptor (PXR) located in the liver and gut enterocytes. PXR

regulates the expression of many Phase 1 and Phase 2 enzymes

and thus affects the metabolism of cholesterol to BAs, for instance,

the induction of SULT2A, which conjugates BAs prior to export,

and of Mrp2 and Oatp2, the export components (54).

TCM preparations have widely shown lipid-lowering function

in dyslipidemia (55, 56). For targeting cholesterol, TCM can inhibit

intestinal absorption of cholesterol, suppress endogenous

cholesterol synthesis, promote cholesterol reverse transport and

excretion, and regulate the expression of cholesterol homeostasis-

associated transcription factors (55, 56). Berberine, a major

functional compound of many medicinal herbs, has been shown

to lower blood cholesterol in atherogenic-diet-fed rats at least partly

via the inhibition of intestinal cholesterol absorption (57). TCM

Jiang-Zhi-Ning, containing four Chinese herbs, can significantly

lower cholesterol, triglyceride, and low-density lipoprotein-

cholesterol in hyperlipidemic rats, partly by inhibiting the

expression of 3-hydroxy-3-methylglutaryl-CoA reductase

(HMGCR), the rate-limiting enzyme for cholesterol synthesis

(58). TCM FufangZhenzhuTiaoZhi has been shown to decrease

plasma cholesterol in hyperlipidemic rats via downregulating

HMGCR expression and increasing expression and activity of 7-a
hydroxylase (CYP7A1, the rate-limiting enzyme for bile acid

synthesis) (59). In the present study, our data suggested that the

effect of QP in lowering cholesterol is possibly through the

promotion of cholesterol metabolism, transport, and excretion. It

will be worth investigating whether QP inhibits cholesterol

intestinal absorption and endogenous synthesis. Additionally,

there are reports about the hepatotoxicity of TCM and natural

products in animal models and human patients (60, 61), so it may

be necessary to examine whether there is any potential toxicity of

QP in animal models and patients with AMD.
5 Conclusion

This study aimed to investigate the relationship between HFD

and AMD and start to unravel the mechanisms whereby QP may

provide relief from the condition. HFD was shown to exacerbate

lipid accumulation in the RPE and retina and associated

inflammation and oxidative stress. Changes in the gut microbiota,

their metabolic capacity, and signaling between the host and

microbes will have contributed to these pathological conditions.

We propose that the ability of QP to reverse these effects is related to

mechanisms acting to lower cholesterol levels, oxidative stress, and

inflammation, and to modulate gut microbiota; and these will be

investigated in future studies.
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