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Abstract

This thesis describes the development and evaluation of two novel deep learning

applications that tackle two cancers that affect the lungs. The first, lung cancer,

is the largest cause of cancer-related deaths in the United Kingdom. It accounts

for more than 1 in 5 cancer deaths; around 35,000 people every year. Lung cancer

is curable providing it is detected very early. Computed tomography (CT) X-ray

imaging has been shown to be effective for screening. However, the resulting 3D

medical images are laborious for humans to read, and widespread adoption would

put a huge strain on already stretched radiology departments. I developed a novel

deep learning based approach for the automatic detection of lung nodules, potential

early lung cancer, that has potential to reduce human workloads. It was evaluated

on two independent datasets, and achieves performance competitive with published

state-of-the-art tools, with average sensitivity of 84% to 92% at 8 false positives

per scan. I developed a related invention which allows hierarchical relationships to

be leveraged to improve the performance of CAD tools like this for detection and

segmentation tasks.

The second cancer is malignant pleural mesothelioma. It is very different from

lung cancer: rather than growing within the lung, mesothelioma grows around the

outside of the lung in the pleural cavity, like the rind on an orange. It is a rare

cancer, caused by exposure to asbestos fibres. It can take decades from exposure

to symptoms developing. In Glasgow many mesothelioma patients worked in the

ship-building industry, which relied heavily on asbestos. Although asbestos has

been banned in the UK since 1999, its presence in buildings and equipment built

before then mean that mesothelioma will remain a problem for years to come. Sadly,

asbestos is still being mined and many countries, including the United States, have

still not instigated a complete ban. For mesothelioma the main challenge is not

detection, but accurate measurement —- without the ability to measure tumour

size it is difficult to evaluate potential treatments. We therefore developed a fully

automated volumetric assessment of malignant pleural mesothelioma. Performance

of the algorithm is shown on a multi-centre test set, where volumetric predictions

are highly correlated with an expert annotator (r=0.851, p<0.0001). Region overlap



scores between the automated method and an expert annotator exceed those for

inter-annotator agreement across a subset of cases. Dice overlap scores of 0.64 and

0.55, by cross-validation and independent testing respectively, were achieved. Future

work will progress this algorithm towards clinical deployment for the automated

assessment of longitudinal tumour development.
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Ŷ predicted label

FP False Positive

TP True Positive

FPR False Positive Rate

List of Acronyms

MPM Malignant Pleural Mesothelioma

LND Lung Nodule Detection

DL Deep Learning

ML Machine Learning

NN Neural Network

CNN Convolutional Neural Network

LOA Limits of Agreement

CI Confidence Interval

CAD Computer Assisted Detection

AUC Area Under the Curve

ROC Reciever Operating Characetristic

FROC Free-response Reciever Operating Characteristic
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Chapter 1

Introduction

This thesis describes the development of Deep Learning (DL) based algorithms

to detect and quantify two types cancers which affect the lungs from computed

tomography (CT) images: lung nodules and malignant plural mesothelioma (MPM).

This chapter will provide the reader with an introduction to the anatomy of the lungs

(Section 1.1), an introduction to medical imaging modalities, including CT imaging

(Section 1.2). The chapter presents an overview of DL techniques (on which both of

the presented algorithms are based), providing examples of a DL technology which

has been approved and deployed in clinical practice (Section 1.4 and 1.3). Finally,

the chapter concludes with an overview of the contributions presented in this thesis.
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1.1 The Lung and Cancer

This thesis concerns algorithms for two types cancer which affect the lungs. This

section provides an introduction to the anatomy of the lungs to provide underlying

anatomical context, and an introduction to lung cancer.

1.1.1 The Lung

Due to the position of the heart in the body, our lungs are not symmetrical. This

asymmetry is shown in figure 1.1, where the left lung is usually constructed of two

lobes, and the right lung usually has three. These lobes are separated by thin fissures.

Variation in the number of lobes is reasonably common among individuals, and it

is important for professionals to be capable of distinguishing variations which are

normal from those variations which arise from disease.

Figure 1.1: The anatomy of the lungs, with annotated structures.
Image taken from [1]

The two lungs themselves are separated by a structure called the mediastinum,

and the lung surface which faces this structure is referred to as the mediastinal

surface. To facilitate contraction and expansion of the lungs, each reside within a

lining with a smooth surface called the pleura. This lining usually contains a small

amount of fluid, which is secreted by capillaries and cleared by the lymphatic system.

An excess in this fluid is referred to pleural effusion, which results with increased

pressure on the lungs, difficulty breathing and in extreme cases leads to lung collapse.
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This can occur in later stage cancers.

The alveoli are small clusters of sacks within the lungs where oxygen exchange

occurs, supplied by thin tubes called bronchioles which join to form larger bronchi,

eventually reaching the trachia which exit the lung.

The lungs are responsible for oxygenating the blood and removing carbon dioxide,

and for the reason the role of arteries and veins are reversed with respect to elsewhere

in the body — here the pulmonary veins carry oxygenated blood from the periphery

of the lungs to the heart for circulation, and arteries carry the de-oxygenated blood

into the lungs.

1.1.2 Lung Cancer

Lung cancer is the leading cause of cancer mortality worldwide [2, 3], and accounts

for almost 30% of annual cancer related deaths in Scotland [4]. Lung cancer can be

divided into two categories: small cell lung cancer (SCLC) and non-small cell lung

cancer (NSCLC), where the majority (85%) of cases are NSCLC [5]. These cancer

types differ in biology, and generally NSCLC tumours are comprised of larger cells

and are slower growing with respect to SCLC.

To guide the provision of treatment, tumours are graded by either a number

staging system or the Tumour Node Metastasis (TNM) staging system [6, 4]. These

staging systems aim to summarise how large the tumour is and whether the tumour

has spread beyond its original site. The TNM provides a more detailed description.

It is less commonly used. The number staging system is comprised of four main

stages:

• stage I indicates the cancer has not spread, and remains small;

• stage II indicates that the cancer has not spread, but has grown;

• stage III indicates that the cancer may have spread to the lymph nodes or

surrounding tissue;

• stage IV indicates that the cancer has spread to at least one other site.

For tracking tumour development longitudinally, the clinically standard mea-

surement is called the RECIST (Response Evaluation Criteria in Solid Tumours)

scoring system [7]. Based on the assumption that tumours are spherical, their volume
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can be approximated by measuring the tumour diameter. Although tumours often

start as spherical when their growth is unimpinged, spatial variations in a number

of biological factors result in late stage tumours which are often irregular in shape

[8]. Crucially, the RECIST score is a measurement of disease progression, and

diameter measurements are compared longitudinally to asses whether the cancer has

progressed. This is achieved by using thresholds to classify the measurement into

four categories: disease progression, no change, partial response to treatment, and

disappearance of all known disease.

1.1.3 Disease Treatment

The importance of early detection derives from the fact that early-stage disease is

more treatable. Treatment is comprised of three main options: surgery, radiotherapy

and chemotherapy.

Surgical intervention is the standard of care for early stage cancer in those fit

enough to undergo such a procedure [9]. Surgery is less common for SCLC due to its

quicker onset and increased likelihood to spread with respect to NSCLC. Surgery

can involve either the removal of a small portion of diseased lung (for particularly

early disease), the removal of a lobe of the lung, or the removal of an entire lung.

Radiotherapy is the process of destroying cells using ionising radiation, and is

another common treatment for lung cancer, either as a palliative measure (to ease

symptoms) or to attempt to remove disease. This process involves radiotherapy

planning, where the location of the tumour within the body is used to assess how

tumour may be targeted to minimise damage to surrounding structures. As with

surgical intervention, there are a number of practical considerations to assess whether

the patient and disease characteristics are suitable for such an intervention.

Chemotherapy, generally speaking, is used as an adjuvant treatment. It can be

deployed prior to surgery, to shrink the tumour ahead of resection; after surgery,

to ensure that disease does not return; or combined with radiotherapy, to increase

efficacy of treatment. It may also be deployed for palliative care, to ease disease

symptoms. There are a wide range of pharmaceutical options available, and NICE

(National Institute for Heath and Care Excellence) offer a wide range of clinical care
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guidelines for the treatment of lung cancer [10], which depend on the specifics of

the case. Treatment efficacy can depend on the mutational status of genes. For

example, for late stage non-squamous carcinoma, where the tumour exhibits a specific

mutation (named T790M) in a specific gene (named EGFR) the drug Osimertinib is

indicated as the optimal treatment. The pharmacological landscape is increasingly

complex as new drugs are found, with novel mechanisms of action, the efficacy of

which depends on the biological nature of the disease.

In order for lung cancer to be detected non-invasively, and longitudinally tracked

over the course of development, medical imaging techniques are routinely used.
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1.2 Medical Imaging

When you can measure what you are speaking about, and express it in

numbers, you know something about it, when you cannot express it in

numbers, your knowledge is of a meager and unsatisfactory kind; it may

be the beginning of knowledge, but you have scarcely, in your thoughts

advanced to the stage of science. — Lord Kelvin

Medical imaging is measurement of the human body to inform diagnosis, treatment

and understanding. In this section we introduce X-ray, Computed Tomography and

Magnetic Resonance imaging.

1.2.1 X-Ray Imaging

Figure 1.2: An example X-ray image of the chest.

X-rays are electromagnetic waves which reside in the wavelength range of 10

picometers to 10 nanometers. X-rays can penetrate much deeper into biological
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tissue than natural light, and have been used for imaging since the late 19th century.

To generate images using X-rays, an X-ray source and X-ray detector are required.

In the early days of X-ray imaging, it was considered that this form of electromag-

netic radiation was no more dangerous than natural light, however X-ray photons

are many thousands of times more energetic. At certain exposure levels they can

cause lasting damage to biological material, and those who were regularly exposed to

this radiation developed cancer and other health issues later in life. Now, minimising

radiation dose is an important factor in medical imaging involving X-rays.

X-ray images are projection images and are 2-dimensional, resulting in a level

of ambiguity in discerning overlapping image features. This is shown in figure 1.2,

where the complex and overlapping vasculature surrounding the heart is impossible

to disambiguate by this single view. They are also uncalibrated images, and units of

intensity are only meaningful with respect to other regions in the image. Despite

these limitations, the modality is the most common modality for medical imaging

due to the low cost and simplicity of the image acquisition process. A level of

disambiguation can be achieved by taking multiple images from multiple angles, and

this is the foundation of CT imaging, where many hundreds of cross-sectional X-ray

measurements are integrated.

1.2.2 Computed Tomography Imaging

Computed Tomography (CT) imaging uses a motorised X-ray source and detector

pair to collect 3-Dimensional images. The source and detector array are mounted in

a circular gantry, and are rotated around the subject to be imaged. This allows X-ray

absorption to be measured as a function of angle in a ’sinogram’. Each sinogram

acquired can be converted into a CT slice by solving a set of equations in a process

called back projection. In order to generate a full 3-D image, the subject must be

moved through the gantry as multiple slices are acquired.

Example CT images are shown in 1.4, provided for the axial, sagittal and coronal

planes. As 3-D volumes are generated slice-wise, the axial resolution typically differs

from that achieved in the sagittal and coronal planes. Typically, modern scanners

may provide an axial resolution of 0.5 - 0.8 mm per voxel. Resolution in the sagittal

and coronal planes is usually lower than that achieved in the axial plane, and both

slice thickness and slice spacing can be varied. These parameters will be selected

21



Figure 1.3: An example dummy object and corresponding sinogram.
The horizontal axis of the sinogram relates to position on detector, and
the vertical axis shows angle of acquisition. Image taken from [11].

by the radiographer based on the nature of the examination being undertaken.

The radiographer will try to minimise radiation dose, whilst allowing for sufficient

resolution.

Images generated by conventional back projection can be prone to blurring, and

filtering is applied as a component of the image reconstruction process. The filtering

is performed on the sinogram prior to back projection. Filtering kernels are chosen

based on the type of examination being undertaken. A sharper (but grainier) image

may aid in the analysis of bone fractures, and images with a smoother appearance are

more appropriate for the analysis of soft tissues. The image reconstruction kernels

are often proprietary to the scanner manufacturer, and reconstruction kernel is one

example of how CT image characteristics can differ between scanners.

Hounsfield units (H.U.) are universally used to express CT imaging intensities.

The units are calibrated such that 0 H.U. pertains to the radio-density of water and

-1000 H.U. pertains to the radio-density of air. Intravenous contrast agent, with

a high radio-density, may be used during imaging to highlight regions which may

ordinarily be difficult to delineate from their surroundings, or to make functional

measurements of tissues based on the uptake of contrast agent.

1.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a method of acquiring 3-D images which does

not depend on X-rays. The method uses strong magnetic fields and radio-frequency
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Figure 1.4: Example axial views of CT images from nine patients,
centered on the lungs, from the publicly available LIDC-IDRI dataset.

radiation to to spatially characterise hydrogen atoms within the body. MRI is readily

applied in measurements of soft tissues, where good contrast can be achieved between

similar density structures such as fat and muscle.

Though MRI has a number of advantages with respect to other imaging techniques,

its use is not as wide-spread as CT imaging, even for tasks where MRI would lead to

less ambiguous diagnosis. MRI scanners are less common, and the imaging process

is longer in duration with respect to CT, and thus more demanding for the patient.

The interpretation of medical images for diagnosis and to inform treatment requires

significant expertise. The process of making measurements on such images can

also be time consuming, and many automated and semi-automated tools have been

developed to assist with the interpretation of medical images.
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1.3 Medical Image Analysis

Whilst the theoretical and mathematical foundation for computer assisted bio-imaging

has long been conceived, they are only beginning to bare fruit in the context of

routine patient care. Historically the blocking factor has been technological, namely

the compute required to perform such analysis at scale. Since the turn of the century,

the blocking factor has become the digitisation of the medical field, or the lack

thereof. Increased digitisation promises a harmonised medical experience, where a

patients records can be seamlessly transposed between medical professionals and

departments. Decisions and measurements may be recorded, stored, analysed and

shared in an efficient manner.

This harmonisation requires development of significant infrastructure. Medical

tools, systems, protocols and records remain largely disparate, with significant

variation between local institutions. Only with this harmonisation can automated

analysis become routine.

Another complex consideration is moral and legal in nature. Since the turn of the

century we have witnessed a technological revolution. Many of the largest companies

of the 21st century deal in data — a resource which is freely given, and used in

ways which are not widely understood. Adverts, news articles and information can

be targeted, and data is traded between private institutions in ways which have

far-reaching and complex implications for society. The legal structures regarding

this new digital age have taken time to emerge, and perhaps there is no data more

personal and important than that data which pertains to ones health. As such, a

complex landscape of data governance and regulation is symbiotically evolving as

new technological capabilities are fully realised. Whilst such legislation is important,

it acts to temper radical innovation. Start-up companies embarking to revolutionise

healthcare are faced with a complex and ever-changing legal landscape which reduces

the emergence of disruptive technologies.

For medical images, digitisation has progressed further than for other modalities

of medical data. Picture Archiving and Communication systems (PACs) are widely

used to store images in a standard Digital Imaging and Communications in Medicine

(DICOM) format. The task of data harmonisation began early for this domain, and

there is a fertile ground for the deployment of automated tools.
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1.3.1 Role of Automated Medical Imaging Tools

Whilst new data-driven technologies revolutionise many aspects of modern life, there

is pervasive hype and reactive contention surrounding how this will impact our

collective future. Self-driving goods vehicles, automated farming technologies and

drone delivery systems may make many vocations redundant. Within the last decade,

many radiologists have become concerned that artificial intelligence (AI) will take

their profession.

Whilst the distant future remains unclear, current technologies cannot be the sole

carriers of responsibility for patient analysis and the resultant decisions. One concern

may be that this insertion of technology may act to divorce the sacred relationship

between doctor and patient. However, AI (as with other forms of digitisation) is

likely to provide the greatest benefits where used to facilitate analysis which would

otherwise be too tedious, expensive or time-consuming to be routine. Designing

algorithms for problems of this nature ensures that the contribution of technology is

additive, rather than a substitute for elements in the patient care pathway.

For example, if an individual receives a CT scan of the lung, it is feasible that this

could be retrieved from PACs automatically, and screened for a number of incidental

findings for review which may have otherwise been missed. Rather than replace the

role of a radiologist in this setting, it has empowered clinicians with information

which would otherwise be unavailable.

1.3.2 The need for regulatory approval of clinical applica-

tions

The deployment of AI in medical practice for image analysis requires software to

pass the same level of validation as other medical devices. According to the Data

Science Institute [12], the American Food and Drugs agency have currently approved

201 medical algorithms for radiology or other imaging derived tasks. Most of these

algorithms target a specific body area and modality of imaging. For example, Siemens

have achieved FDA approval for a Lung Computer Assisted Detection (CAD) tool

for lung nodule detection from CT. Some algorithms can be used across multiple

modalities, for example SubtlePET is an FDA approved noise reduction algorithm

for use on PET, CT and MR imaging.

As with any new technology, the approval processes have been (and continue to
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be) subject to update to allow new technologies to come to market. For example,

emerging AI technologies may learn dynamically during deployment based on new

data. This would result in algorithms which may change behaviour (and performance)

after each new update, and updates may occur more frequently than for non-AI tools.

Previously, the FDA has approved algorithms which are ’locked’, and if an update is

required which modifies the existing risks associated with the software, additional

approval must be sought. Currently, the FDA is re-imagining this product life-cycle

approach to facilitate the more dynamic technologies based on AI.

Figure 1.5: A figure from the ’Proposed Regulatory Framework
for Modifications to Artificial Intelligence/Machience Learning Based
Software as a Medical Device (SaMD)’ discussion paper by the FDA.
[13]

At the heart of approving and marketing any Software as a Medical Device

(SaMD) is rigorous software evaluation. Figure 1.5 shows the 3 components to an

FDA evaluation. A valid clinical association is required to assess whether the software

adequately match the stated clinical problem. An analytical validation is required, to

determine whether the software is shown as numerically accurate by the provision of

statistics. And finally, a clinical validation is required. When the software is deployed

in its clinical environment, the clinical evaluation intends to ascertain whether it

achieves its purpose. For example, it is possible that a poorly packaged tool with

a bad interface may hinder any clinician, regardless of the numerical numerical

performance of the underlying algorithm.

One algorithm for which there exists a detailed public record of the approval

details is the HeartFlow algorithm, which provides the opportunity for a specific case

study of a DL based technology which has been deployed at scale in clinical practice.

HeartFlow Algorithm

Clinical Problem: Coronary heart disease occurs when the flow of blood to the

heart is blocked or reduced, and can be caused by a build up of calcified plaques in
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the arteries. The gold-standard diagnostic measurement is called Fractional Flow

Reserve (FFR), where the pressure in the arteries measured using a catheter and a

small probe in a procedure called invasive coronary angiography [14]. HeartFlow use

CT imaging, image analysis and simulation to automatically estimate the pressure

in the blood vessels surrounding the heart in a non-invasive manner. This involves

analysing a CT image of the coronary vasculature using deep learning to generate

a 3D segmentation of the blood vessels. Computational fluid dynamics are are

calculated based on this segmentation, which estimates the pressure at all locations

within the arteries. HeartFlow provide these capabilities using cloud computing.

Validation: The National Institute for Healthcare Excellence (NICE) document

the dialogue between HeartFlow and the external approval committee while seeking

regulatory approval [15]. Initially, HeartFlow conducted a literature survey across 22

published studies on the diagnostic capabilities of existing diagnostic tests for coronary

heart disease for benchmarking their method. In light of concerns around the specific

deployment of the algorithm within the care pathway, the review committee also

conducted their own survey to contribute to the meta-analysis between a HeartFlow

trail [14] and several other non-invasive comparators at the per-patient and per-vessel

level of analysis. Following this, reviews were performed of the clinical effectiveness

evidence before approval was granted.

Impact: In the report by the National Institute for Health and Care Excellence

(NICE) [15], the HeartFlow algorithm reduces false positives by as much as 50%.

It provides an estimated saving to the NHS for £391 per patient relative to other

noninvasive tests (based on SPECT, MRI or ECHO imaging), and has been already

used on around 15,000 patients in the U.K. The report estimates that this will save

the NHS £9.1m each year.

Many existing medical image analysis tools depend on pipelines with manually

engineered features. AI (or deep learning) approaches involve automatically extracting

these features directly from the data.
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1.4 Deep Learning

Deep learning, machine learning (ML) and artificial intelligence (AI) are all terms

which describe a class of algorithms which are automatically fit to a distribution of

data. Early Neural Networks (NNs) were used to recognise handwritten digits in 1990

[16]. The number of publications around AI has risen from 596 in 2010 to 12, 422 in

2019 [17], an uptake which can largely be attributed to advancements in computer

hardware [18]. The development of these techniques continues to have significant

impact on the modern world: changing the way we consume media, removing human

drivers from cars, improving the accuracy of targeted advertisement and more. This

impact is recent, but the fundamental concepts of deep learning were in place as

early as the 1950s, starting with the Perception [19].

1.4.1 The Perceptron and Neural Networks

A perceptron is an artificial neuron which has multiple inputs and a single output.

The perceptron takes inputs (x1, x2, x3...), and performs a weighted sum (with weights

w1, w2, w3...) of the inputs with an added bias (b). The output of the perceptron is

described as:

output =

0
∑

j wjxj + b ≤ 0

1
∑

j wjxj + b > 0.

(1.1)

A detailed description of the perceptron is provided by Nielsen [20]. In isolation,

a single perceptron can (given suitable weights and biases) perform the operation of a

NAND gate, an operation which is universal — combinations of NAND gates can be

used to compute all other (AND, OR and NOT) operations. When many perceptrons

are combined in “layers” to create a NN (as shown in Figure 1.6) more complex

functions can be approximated. NNs are universal approximators of continuous

functions [21] — in theory any function can be modelled by fitting a NN. This theory

holds provided there are a sufficient number of perceptrons and layers in the NN for

the function to be approximated.

This is the basis of neural networks. The number of perceptrons (or neurons) in

modern networks is large, and manually tuning the weights and biases (jointly termed

free parameters) is unfeasible. The free parameters are automatically optimised using
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Figure 1.6: A deep network of perceptrons. The inputs (left) are
processed by the perceptrons (shown as circles), to generate an output
(right). The network has four layers: an input layer, two hidden layers
and an output layer.

a method called back-propagation [20].

To optimise the free parameters, matched inputs and ’ground truth’ are required.

Ground truth is a term for the correct output — the output which the neural

network is optimised to produce given the corresponding input. Based on comparing

the output of the neural network with the ground truth using an error function,

an error is calculated. This is a single scalar value which summarises network

performance as measured by the ground truth. The process of back-propagation

involves differentiating the error with respect to the free parameters of the network.

This differential is used to alter the free parameters of the network to reduce the

error. Specifically, the error is calculated over one batch of training data, this is

back-propagated to provide a direction in which to tune the free parameters of the

network, and a perturbation of the parameters is applied in this direction. The

magnitude of the perturbation is set by the learning rate, which may be tuned

manually or automatically. There are a number of common error functions which

may be suitable, dependent on the the nature of the task. Examples of these are

listed in Table 1.1.

The network structure in Figure 1.6 is called a dense network — a single neuron

is connected to every neuron in the subsequent layer. Such a structure may be

appropriate when the input is small, however when the input is large (e.g. some

hundreds of thousands of pixels in an image), and the task is complex (requiring more

layers), a dense network is computationally intensive. Another network structure is

commonly used for the processing of images.
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Name Error Function Description and Usage
Mean
Squared Er-
ror (MSE)

1
n

∑n
i=1(Yi − Ŷi)

2

Networks which output con-
tinuous variables (e.g. image
reconstruction).

Binary
Cross-
entropy

1
n

∑n
i=1 Yi log Ŷi +

(
1− Yi

)
log

(
1− Ŷi

) Networks optimised to clas-
sify an input as a binary
class.

Categorical
Cross-
entropy

1
n

∑n
i=1

∑C
c=1 Yi log Ŷi

Networks optimised to clas-
sify an input as a multiple
potential binary classes (the
number of classes defined as
C).

Table 1.1: A list of some common error functions, where Yi describes
the ground truth, Ŷi describes the output of the neural network and n
is the number of training examples in each batch.

1.4.2 Convolutional Neural Networks

When considering an image (or time series data), data points which are closer

together spatially (or temporally) are more related than those which are apart.

Global interaction of the data points in a single layer, as offered by a dense network

structure, is an inefficient way to deal with such data. Convolutional neural networks

(or CNNs) operate by sequentially filtering the input data with filters which are

optimised during the training process [22]. This offers a number of benefits in the

context of image analysis:

1. efficient computation — the filters are spatially localised, reducing the number

of calculations required;

2. spatial invariance — the same filters are used to analyse different regions of

the image;

3. parallelism — it is possible to parallelise and accelerate this process on modern

Graphics Processing Units (GPUs).

Figure 1.7 shows a schematic of a typical CNN. Spatially shared weights (or

kernels) are used to filter the input data. The kernel is applied at every location

on the input to produce an activation, which measures how closely the input data

matches the pattern captured in the kernel. When applied to the entire input, the

output of this processing is an activation map which spatially describes the presence

(or absence) of the pattern captured in the kernel.
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Figure 1.7: An example CNN with 9 layers. The first layers (left)
are convolutional, where shared weights are used for processing. The
final three layers are dense layers, where the spatial data is flattened
to a single dimension.

Typically, a layer of processing in a CNN may contain tens to thousands of

different kernels. Early layers contain filters which capture low-level information

e.g. textures and edges. Deeper into the network, the kernels are filtering activation

maps from earlier layers. These will detect the presence (or absence) of higher level

features (e.g. combinations of textures and edges). There are many more high level

features than low level features, and so the most successful CNN architectures have

more kernels at deeper layers. To account for this expansion in the number of feature

maps, this is often paired with a reduction of spatial resolution. This is performed

using pooling layers (where reduction is performed by a local maximum or averaging

operation), or by strided convolutional operations (where the kernel is applied at a

subset of locations).

CNNs have been readily applied to image classification, where images are reduced

to a single classification probability which describes the presence (or absence) of

certain objects within the image. The benefit of convolutional architectures can be

fully realised on image segmentation tasks.

1.4.3 Image Segmentation and the U-Net

In the field of computer vision, image segmentation is the process of delineating an

image into multiple segments. For example, in the context of automated vehicles,

these segments could describe the extent of the road or the area of the pavement.

Where previously we considered the assignment of a single global value to an image

(e.g. whether the pavement or road is present in the image), here we require a

classification assigned at the individual pixel level (or voxel level, where considering

a 3D image).

The same efficiency that convolutional methods offer to the image encoding

31



process can be leveraged for decoding, as popularised by the U-Net architecture in

the seminal 2015 paper by Ronneberger et al. [23].

Figure 1.8: An example of a U-Net architecture, where sequential
convolutional processing reduces an input image into an intermediate
embedding, which is decoded to an output which is has the same dimen-
sions as the input.

Figure 1.8 shows an example U-Net structure, where the input image is encoded

and decoded by sequential convolutional processing. Crucially, the output has the

same dimensionality as the input. Skip connections (which are not shown in this

diagram) propagate feature maps from the encoding layers directly to the decoding

layers, skipping the bottleneck. This allows high resolution features to be mainteined

during the encoding-decoding process.

U-Nets (and similar variants on this theme) are now ubiquitous in the field

of computer vision. To illustrate their strengths, it is useful to compare them to

the alternative of applying a fully convolutional processing with no dimensionality

reduction (pooling). In this case, a single pixel in the output predicted segmentation

can only be informed by a local region from the input image, the extent of which

depends on how many layers the CNN has. The number of layers determines the

extent to which information can be locally ’diffused’ by the CNN and allowed to

interact. This concept is called the ’receptive field’ of the network. Due to pooling

and up-sampling, U-Nets have a vastly increased receptive field, and it is common to

find architectures which can (in theory) take the entire image context into account

when classifying a single pixel.
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1.5 Contribution

This thesis concerns the development of DL algorithms for the measurement of two

types of lung pathology: lung nodules (Chapter 2) and mesothelioma (Chapter 3).

Lung Nodule Detection by Deep Learning: Lung nodules are abnormal

growths in the lung, which are often small and difficult for radiologists to identify from

CT images. I present the design, implementation and testing of a novel algorithm

for lung nodule detection. Though novel as a whole, the algorithm is based on

components of existing technologies (e.g. CNNs and the U-Net architecture). The

results of testing this algorithm showed that the most challenging nodules to segment

were those located at the boundaries of the lungs.

This led to my main technical contribution to lung nodule detection: an invention

which enables the utilisation of hierarchical spatial relationships to enhance DL

algorithm performance on segmentation and detection tasks. Prior to this, there was

no known approach to train DL algorithms to operate symbiotically together based

on spatial relationships. This invention was captured as a U.S. Patent [24], and is

presented in Section 2.5. Whilst the invention was conceived on the task of lung

nodule detection, it is more broadly applicable to the measurement of all structures

which abide by hierarchical spatial relationships.

Mesothelioma Measurement by Deep Learning: Mesothelioma, unlike other

lung cancers, is not approximately spherical in shape. Rather, the cancer grows like

the rind on an orange around the lungs, making a complex shape which is difficult to

accurately delineate. To date, only semi-automated approaches have been conceived

to assist with the segmentation of mesothelioma, relying on varying amounts of user

input (e.g. manually placed seed points, or the manual delineation of neighbouring

structures). In Chapter 3, I present the first fully automated segmentation algorithm

for mesothelioma. The algorithm is based on a U-Net design, the specifics of which

were the result of extensive experimentation on my behalf. This contribution was

captured in two publications [25, 26]. Following the design, implementation and

multi-fold analysis by myself, the algorithm was independently clinically evaluated by

clinical collaborators. These results are presented in Section 3.7, and were published

in a clinical journal [27].
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Chapter 2

Lung Nodule Detection by Deep

Learning

Lung cancer accounts for the majority of cancer related deaths, and the ability to treat

the disease depends on how quickly the cancer is diagnosed. Lung nodule screening

is a component of routine care. The manual reading process is time consuming, and

radiologists benefit from automated tools which provide second-read capabilities. I

developed a novel algorithm for lung nodule detection which consisted of two stages,

and compared this algorithm with two publicly available high-performing benchmarks.

The evaluation was conducted in three parts: an LIDC-IDRI multi-fold analysis, and

LIDC-IDRI held-out test set analysis, and an independent NLST analysis. LUNA

CPM scores of 0.784, 0.807 and 0.684 were achieved for these analysis respectively.

Peak nodule sensitivities ranged from 84% to 91% across these analysis. The novel

algorithm was found to be equivalent in performance to the benchmarks, and also

competitive with other works cited in the literature. Following this work, I developed

an invention whereby hierarchical spatial relationships are leveraged to increase

algorithm performance, imposing the constraint that a detected lung nodule must

reside within a predicted lung segmentation. The invention involves combining the

results of two CNNs for different tasks during training, so that errors for one task

may be back-propagated into both CNNs. I demonstrated the utility of this approach

by showing a quantitative improvement on the task of lung nodule detection. For

lung segmentation, improvements in performance were observed where there were

pathological regions within the lung.
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2.1 Overview

This chapter describes the development of a novel algorithm for lung nodule detection.

An introduction to lung nodules is provided in Section 2.2. Section 2.3 describes

the algorithm developed for lung nodule detection, and introduces two independent

algorithms (DeepLung) which are used to benchmark the proposed algorithm across

multiple datasets. The results of the benchmarking analysis are presented in Section

2.4. Finally, an invention which aims to leverage hierarchical relationships to further

enable lung nodule detection is presented in Section 2.5.

2.2 Introduction

Lung nodules are an abnormal growth in the lung, which may be caused by infections

or scarring of lung tissue. According to the American Thoratic Society [28], the

majority (around 95%) are non-cancerous, and this may be determined by longitudinal

assessment of the growth or measurement by tissue biopsy. Many lung nodules may be

found incidentally in CT or X-ray images, however dedicated screening programmes

may be deployed for at-risk groups. Lung nodules precede lung cancer.

Early detection of lung cancer is extremely important as the outcomes of patients

diagnosed with lung cancer depend on cancer stage at diagnosis. Mithoowani et al.

[29] report that patients identified at stage IV disease have a five-year survival of

5.8%, which increases to 68.4% for those patients identified with stage I disease. In

the NELSON trial [30], the impact of screening was compared between two cohorts.

Among the unscreened cohort, only 13.5% of disease was identified at stage I. For

the screened cohort, this was increased to 59%, and as a result lung-cancer related

mortality was reduced by 24% for males, and 33% for females. Elsewhere, reductions

in mortality of 8% were found [31].

2.2.1 Lung Nodule Screening

Lung nodules may be small, and dedicated screening is a challenge requiring a

radiologist to carefully browse a CT image slice-by-slice. Many lung nodules are

bright in appearance, and clearly contrast the dark back-ground of the lung in CT.

However, ground glass opacities (GGOs) are lung nodules which are more subtle

in appearance, appearing in CT as similar to ground glass, and can be particularly
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challenging to identify. The nodules of most clinical concern are those which have a

mixed component, which can indicate that the nodule is in a stage of development.

The LIDC-IDRI (Lung Image Database Consortium and Image Database Resource

Initiative) reference database [32] provides an excellent resource of 1018 CT cases for

the development of CAD software. Each case was annotated by a two-phase (blinded

followed by subsequent review) annotation process by four expert radiologists. This

database contains 2669 marked lesions larger than 3 mm in diameter, however all

four radiologists only agree for 928 (34.7%) for these cases, which indicates a high

level of ambiguity in the annotation task, especially amongst the smaller nodule

sites.

Currently there are nine FDA approved algorithms for pulmonary nodule detection

[12]. Many of these offer a second read capability, whereby candidate sites are flagged

for review after the radiologist has completed their initial read of the CT volume.

There are significant technical challenges for CAD pipelines for lung nodule detection.

Primarily, lung nodules may be difficult to distinguish from pulmonary vasculature.

This is also a challenge for manual detection, and often requires the reader to leverage

3-D information by carefully browsing back and forth through axial slices, or by

utilising other views. This also is a major limitation of detecting nodules from

CT scans where the slice spacing is large — the ambiguity in this distinction may

increase with CT slice spacing, and images of thinner slices are now mandatory in

many screening programs.

Inevitably, the strategy to distinguish lung nodules from other tissue leverages

knowledge about the appearance of such structures. However, additional pathologies

(e.g. emphysema) may obscure or confound their appearance. Specifically for

the purposes of lung nodule screening this is a challenge, because the screening

population is likely to be generally unhealthier than the normal population. For

example, smokers, who are at higher risk of developing lung cancer are also at higher

risk of developing other conditions such as emphysema.

2.2.2 Datasets and Challenges

To obtain fair comparison between automated approaches, lung nodule detection

was one of the first topics to be subjected to a Medical Imaging Grand Challenge

with the ANODE09 (Automated Nodule Detection) challenge in 2009 [33]. This
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was followed by the larger LUNA16 (Lung Nodule Analysis) challenge in 2016 [34],

based on a subset of the LIDC-IDRI dataset. Large datasets for lung screening trials

have also been published, leading to a selection of publicly available resources for

algorithm development. Here, the data resources leveraged for the presented work

are detailed.

The LIDC-IDRI Dataset

The LIDC-IDRI [32] dataset (mentioned in Section 2.2.1) represents a collaboration

between seven academic centres and eight medical imaging companies to assemble

a dataset of 1018 CT volumes. These volumes have been read by four expert

radiologists independently, to mark nodules ≤ 3 mm or other pathological sites with

coordinate locations. For the nodules identified as > 3 mm a segmentation of the

nodule was performed. In the subsequent annotation review phase, the radiologists

were allowed independently review their marks to provide a final opinion. In total,

the database contains 7371 nodules. For the large nodules, further annotation was

conducted by the readers to assess, via scoring, a number of features of these nodules.

Specifically, the readers were asked to assess whether the nodule appeared benign or

malignant, and to heuristically grade its appearance in terms of shape and structure.

LUNA Challenge Data

The dataset used for the LUNA challenge [34] is a subset of cases from the LIDC-IDRI

dataset. Specifically, 888 CT volumes were selected with a slice thickness ≤ 2.5 mm.

The evaluation for the challenge regards sites > 3 mm identified by two observers as

a positive case. For evaluation, no penalty was incurred for algorithms which flagged

small nodules, other pathological sites, or large nodules with low observer agreement

as positives. The challenge scoring is further detailed in Section 2.2.3.

NLST Dataset The National Lung Screening Trial (NLST) [35] aimed to compare

the efficacy of lung nodule detection by low-dose CT imaging and X-ray, and found

that lung cancer mortality was reduced by 15–20% for those patients who received

CT imaging. In total, 53,454 subjects were enrolled from 33 institutions who were

deemed high risk for developing lung cancer (based on age and smoking history).

These CT images are available by request, and as a component of the work presented

here, a selection of these images were annotated over a time-boxed duration of one
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month. Specifically, three contractors annotated 419 volumes, where 64 volumes were

annotated by two observers, and the remainder by one observer. Annotators were

provided with a protocol whereby a NLST findings report was used to identify lung

nodules in the images. These reports contain information regarding lobe, laterality,

type, size, and smoothness of each finding. Each nodule was segmented in the most

convenient plane for the annotator, where the axial plane was recommended but not

imposed. The NLST reports were limited to six findings, however for three cases

there were more then six nodules present in the images. These were additionally

located and segmented by the annotators. For one case, a false positive was found in

the NLST findings list and subsequently excluded. A selection of 79 negative cases

were also included in this dataset, which required no annotation, resulting in a total

dataset of 498 cases with nodules segmented for algorithm evaluation.

2.2.3 Evaluation Metrics

Pehrson et al. [36] conducted a systematic review of 41 articles which apply ML and

DL to the LIDC-IDRI dataset for the detection of lung nodules. They observe that

there is no consensus on the method of determining algorithm performance, which

raises challenges for comparison and benchmarking between methods. Generally

speaking, the user of a CAD detection tool for lung nodules is likely to be interested

in two primary performance metrics: sensitivity and specificity. Sensitivity, or true

positive rate (TPR), is defined as

TPR =
TP

TP + FN
, (2.1)

where TP describes the number of true positives, and FN describes the number of

false negatives. TPR describes the portion of positives which are correctly identified.

Specificity, or the true negative rate (TNR), is described as

TNR =
TN

TN+ FP
= 1− FPR, (2.2)

where TN describes the number of true negative cases, and FP describes the number

of false positive cases. This provides a measure of false alarms predicted by the

algorithm. For algorithms which predict a probability associated with a candidate

lung nodule site, a threshold must be applied to the algorithm output before assessing
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these metrics. This threshold selection process represents a trade-off — it is possible

to select a low threshold, which may provide high sensitivity at the expense of

providing an increased quantity of false positives. Conversely, a high threshold may

sacrifice sensitivity to reduce the number of false positive candidate sites. For this

reason, the two metrics are commonly displayed together in graphical form as an

ROC (Receiver Operating Characteristic) curve, and the area under this curve (AUC)

provides a metric which is agnostic to the choice of operating point.

An alternative to measuring the area under the ROC is to analyse the Free-

response Receiver Operating Characteristic (FROC). Rather than presenting speci-

ficity on the horizontal axis, the number of false positives at a given threshold is

shown. This makes for a more interpretable presentation, as the number of false

positive sites which are generated to attain a desired sensitivity can be clearly read.

To summarise this analysis, several lung nodule detection challenges have utilised a

target metric which is constructed at the average sensitivity across a discreet range

of false positive rates per scan.

The LUNA Challenge Performance Metric

The LUNA challenge assesses algorithm performance as the average sensitivity at

1
8
, 1

4
, 1

2
, 1, 2, 4, and 8 false positives per scan. This range is clinically derived —

CAD tools generally operate between 1 to 4 false positives per scan; some systems

allow the user to vary this operating point. In this work, we refer to this metric as

the LUNA CPM (Competition Metric). Due to the extensive level of annotation

available on the LUNA challenge dataset, their evaluation protocol only regards

candidates larger than 3mm which have been identified by at least two observers

as positive cases. The remaining candidates (including smaller nodules and other

pathological structures) are excluded from the evaluation. Specifically, they are not

considered false positives if they are detected by the algorithm.

2.2.4 Literature Survey and Existing Tools

Lung nodules are often a very small portion of the input images (if present at all).

This means there is an extreme spatial class imbalance — non-nodule sites greatly

exceed nodule sites in the CT images on a per-voxel basis. This presents challenges

for algorithm development. The vast majority of the time, it is accurate to predict
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non-nodule, and unless the class imbalance is addressed it is often the case that deep

learning based algorithms converge to a local optimum of predicting all candidate

sites as nodule negative.

A selection of results from the LUNA16 challenge1 are summarised in Table

2.1, where LUNA CPM scores range from 0.608 to 0.951. Broadly speaking, these

results show that the most powerful approaches are CNNs. Many of the presented

approaches are two-stage in design, comprising candidate proposal and subsequent

prediction refinement. However, some caution should be used when regarding these

scores. LUNA scores are computed in a multi-fold fashion, and it is up to the

competitors to ensure they are using the data appropriately. For example, we have

observed that competitors can use the validation set to perform best model selection

and other hyper-parameter selection, ultimately degrading the repressiveness of the

analysis and inflating performance metrics.

1https://luna16.grand-challenge.org/Results/
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Whilst being a popular approach, DL methods do have their limitations in the

context of lung nodule detection. For example, Sourlous et al. [37] discuss how

different forms of bias may impact algorithm performance. Factors such as patient

race can easily be predicted by DL methods based on imaging, and this information

may be leveraged by an algorithm where instances of lung cancer have different

prevalence among different racial groups. This provides an example of how underlying

algorithm bias may be difficult to control for.

Since the LUNA16 challenge several alternate approaches have been published.

Nasrullah et al. [38] use 3-D CNNs on the task of lung nodule detection using the

LIDC-IDRI dataset. The use a MixNet architecture, which contains an encoder-

decoder structure with skip connections which use both concatenation and summation.

To reduce false positives, they include a second stage processing using a gradient

boosted machine (GBM) based on the extracted features and clinical bio-markers.

which provides a final classification. They report results as peak sensitivity over

the range of false positive rates defined in the LUNA challenge metric, and show

sensitivities reaching 94% at an FPR of 4 nodules per scan.
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2.3 Methods

2.3.1 In-house Two Stage Algorithm

I present a two-stage algorithm. The first stage generates candidate nodule sites

with high sensitivity, and the second stage further evaluates these candidate sites by

incorporating additional 3-D information.

Nodule Detector

The first stage of the algorithm is optimised to produce a segmentation of lung

nodules, and combines a 2-D U-Net with a VGG-Net [39] style encoder. The encoder

is initialised using pre-trained weights from the ImageNet challenge [40], whilst the

decoder is trained from a random initialisation. CT slices are rescaled to a size of

320 pixels squared. The three colour channels of VGG-Net are used to input three

adjacent CT slices, to provide 3-D context. The three consecutive CT slices are

resampled to a resolution of 1 × 1 × 2 mm. The first stage algorithm is shown

schematically in Figure 2.1.

Figure 2.1: A schematic diagram of the first stage algorithm, com-
posed of a ResNet style encoder, and a custom decoder. Skip connec-
tions are shown as black arrows.

Pooling is performed by the maximum pooling operation, and after each block

of processing there is a Dropout [41] and batch normalisation [42] processing (not

explicitly shown in Figure 2.1). To address the problem of class imbalance, the focal
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loss objective function presented by Lin et al. [43] is used, defined by the equation:

FL(pt) = −α(1− pt)
γ log(pt), (2.3)

where pt is defined as

pt =

p where y = 1

1− p elsewhere.

(2.4)

Here, y = 1 describes the case where the ground truth label is positive. There are

two hyperparameters associated with focal loss, α and γ, which are set to the default

values of 0.25 and 2 respectively. Focal loss may be considered as a departure from

the standard categorical cross-entropy loss, which has the deficiency in the case of

class imbalance that small loss contributions for the majority class may overwhelm

significant errors from the minority class. In other words, it is not worthwhile learning

how to identify the minority class if this degrades performance for the majority

class. In practice, the use of categorical cross-entropy for tasks with extreme class

imbalance may result in classifiers which only predict the majority class. Focal loss

addresses this issue by down-weighting loss contributions from examples which are

already well classified, and focusing on those cases which are incorrectly classified.

This method is similar, in a general sense, to the concept of curriculum learning [44],

where the strategy throughout training is to gradually expose the algorithm to more

difficult cases.

I chose the binary cross-entropy metric to select the best model based on the

internal validation data set results. A different function was chosen to guide this

process to reduce the effects of over-fitting to a single optimisation metric. For this

stage, the algorithm is designed to detect anything which is nodule-like in appearance

with high sensitivity, and so sites which are only identified by one radiologist in the

LIDC-IDRI data is used.

The first stage model is limited in terms of nodule specificity. The input images of

3 consecutive axial slices is often not a sufficient level of 3-D context to differentiate

true positives from false positives. Thus, the requirement to refine the prediction

based on a more extensive level of 3-D context underpins the design of the stage

2 algorithm. Typically, for a single volume, I set the threshold so that around 100

candidate sites are proposed to the stage 2 algorithm.
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Nodule Classifier

The second stage algorithm takes the candidate sites from stage one and further

classifies them as nodule or non-nodule. At this stage the definition of a nodule

in the ground truth is based on a consensus among at least two radiologists in the

LIDC-IDRI data, in-line with the LUNA challenge evaluation protocol. Thus, a much

higher specificity is encouraged in the training with respect to stage one. The network

takes in 48 × 48 × 48 voxel 3D blocks (at a resolution of 1 mm3), each centred on a

candidate, and classifies it as nodule or non-nodule. At training time these candidate

sites are based on the output of the first stage model on the validation cases (those

cases not used in first stage training). Due to the low specificity of the first-stage

model with respect to the second stage ground truth (which is due to the difference

in consensus level between stage one and stage two training data), there remains a

large class imbalance during second stage training. To lessen this imbalance, the first

stage model is also used to extract candidate sites on the data with which it was

trained. This additional extraction step contributes mostly positives to the second

stage training data, to better capture the variation in the ascetic characteristics

of true positive nodules in this set. Focal loss is used to address class imbalance,

and categorical cross-entropy is used as a validation metric for early stopping of

the training. During training, the class balance is set to a ratio of 20 negatives for

every positive candidate region. To measure algorithm performance on the internal

validation set, the ratio is set to an equal number of positive and negative candidate

sites.

Figure 2.2: A schematic diagram of the second stage algorithm.
The input volume is shown to the left, which undergoes six layers of
convolutional processing, followed by a maximum pooling operation,
and two layers of dense processing to provide the output prediction.

The architecture of the second stage network is illustrated in Figure 2.2 with

three convolution then-max-pooling blocks, followed by three dense layers and a
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softmax to assign final probabilities of a candidate region containing a nodule. After

each block of processing, Dropout [41] and batch normalisation [42] is performed.

2.3.2 Benchmark: DeepLung

In order to benchmark our novel approach, the algorithm DeepLung was used

[45]. This algorithm was first published in 2017, where it achieved state-of-the-art

performance on the task of lung nodule detection. As for the algorithm proposed

in Section 2.3.1, the authors propose an algorithm of two stages — the first for

nodule detection and the second for nodule classification. Their contribution is

the application of 3-D Dual Path Network (DPN) derived features for the second

task of lung nodule classification. To benchmark their contribution, they use the

3-D equivalent of the highly successful ResNet-18 architecture to generate features

for comparison. Critically, their method contains a quarter of the number of free

parameters as the ResNet-18 approach [46]. For completeness, we include both the

DPN and ResNet-18 based approaches as our benchmarks, which were available online

2. For both methods, the first stage detection process is common, and comprises the

application of an 3-D Faster R-CNN.

Nodule Detector

The Faster Region CNN (R-CNN) Detector [47] operates at multiple input scales

to produce bounding boxes and predicted probabilities for the contained object.

Fundamentally, they are an encoder-decoder architecture for the task of bounding

box regression. This is the problem of producing a 5-vector output for (X, Y, width,

height, probability) for each scale and pixel, for the original formulation dealing

with 2-D images. For DeepLung, this formulation is expanded to 3-D. The model

predicts a vector (X, Y, Z, diameter, probability) at each voxel, a formulation which

encloses the assumption of approximately spherical nodules. Crucially, this light

weight implementation outputs predictions at a resolution of only a quarter of the

input image resolution. For processing, images patches are generated at a resolution

of 96× 96× 96. A region of 32× 32× 32 voxels is extracted around the proposed

candidate sites, which are passed to a second stage for classification.

The authors define a custom loss function for their approach, where regression is

2https://github.com/uci-cbcl/DeepLung
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performed separately for the four spatial elements of the 5-vector output. For the

predicted probability, to address the extreme class imbalance, they calculate binary

cross-entropy for the positive and negative candidate sites separately. This allows

them to to filter the loss contribution from negative sites, and they only evaluate

those predictions which are strongly incorrectly classified. Because the loss includes

contributions from all the correctly identified cases, and only the most strongly

incorrectly identified cases, the contributions to loss become more class-balanced.

Functionally, this approach is highly similar to Focal Loss. The best model is selected

from across the epochs of training based on the value of their loss function on the

monitoring subset of cases.

Nodule Classifier

The authours of DeepLung present two algorithms for subsequent classification: DPN

and ResNet-18 based classifiers.

The Dual Path Network Classifier is based on the works of Chen et al. [48],

and is a nodule classification network. It acts to encode the input image patches

by sequential processing by DPN blocks and 3-D average pooling. DPN blocks

have the advantage that they encourage new feature exploration whilst enabling

feature re-usage throughout training, by employing parallel paths of residual and

dense processing. At the penultimate layer, a vector of size 2560 is output. For

training the DPN, this is classified by a fully dense layer into benign versus malignant

— this is a finer grained task than nodule versus non-nodule, and encourages the

learning of finer-grained features. At test time however, the 2560 long feature vector

is passed to a Gradient Boosted Machine (GBM) along with other nodule statistics

such as diameter which have been extracted by the R-CNN to generate a final nodule

classification.

The ResNet-18 Classifier is a 3-D modification of that traditional ResNet-18

algorithm [46], modified to take the input blocks of 32× 32× 32, and reduce these

blocks to a feature vector which is further classified by a GBM. This model is trained

in a consistent manner to the DPN network — in the task of benign versus malignant

classification.
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2.3.3 Experimental Design

In order to conduct a fair comparison between the three methods, the same data

was used to train, validate and test the algorithms. The full LIDC-IDRI dataset was

used to develop and validate the algorithms, which includes a selection of CT images

with slice spacing that exceeds 2.5 mm. This expansion over the LUNA challenge

data complicates benchmarking to other published works, however we determined

that a deployed CAD tool should be capable of flagging candidate sites in CT images

with a higher slice spacing.

The dataset divisions are shown in Figure 2.3, where a test set of 110 cases was

partitioned. This dataset, referred to as the LIDC-IDRI test set, and was set aside

and used only once when the algorithm work had concluded to evaluate performance.

During development, 15-fold cross-validation was applied. This is a change to the

LUNA challenge approach, which reflects the increase in the data set size. For each

fold of analysis, the algorithms were fit using 672 cases, with 168 cases used for

internal validation to assess over-fitting during training.

Figure 2.3: To enable multi-fold analysis and final testing, the LIDC-
IDRI dataset of 1010 cases is split into subsets: the test set, for testing
the final models once; the training set, for fitting the model parameters;
the internal validation set, to guide early stopping; and the validation
set, for assessing performance in a multi-fold fashion.

For the LIDC-IDRI datasets, the LUNA CPM was used as a measure of algorithm
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performance. This evaluation includes the incorporation of the small and non-nodule

sites as excluded from evaluation. Multi-fold analysis has its limitations, and while

providing a somewhat realistic estimate of algorithm performance, a held-out set is

a more reliable measure. This is because over-fitting can still occur when repeated

testing guides the algorithm development process. The LIDC-IDRI test set is a useful

method of testing, however this data is still likely to be similar in many aspects to

the data on which the algorithms were trained. To address this, the NLST dataset

described in Section 2.2.2 is used as an independent test set. Crucially, this data has

no record of other pathology present in the images, and no record of small nodule

findings, so such structures cannot be excluded from evaluation.
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2.4 Results

The results of benchmarking our novel algorithm are divided into three subsections:

Cross-Validation Results, where the scores from 15-fold cross validation is presented;

LIDC-IDRI Test Results, where the results for the held-out 110 test cases are

presented; and the NLST Test Results, where a set of totally independent data is

used to test the algorithm.

2.4.1 Cross-Validation Results

The 15-fold cross-validation results are shown in Figure 2.4. They show that the

results are very similar, with overlapping confidence intervals attained by bootstrap-

ping. The In-house algorithm provides a Luna CPM of 0.784, which is higher than

achieved by both the benchmark methods.
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Figure 2.4: The Free Receiver Operating Characteristic (FROC)
curves for multi-fold cross validation over 900 cases, where thin dotted
lines represent errors measured by bootstrapping.

Figure 2.5 shows an example of a lung nodule detection by the three methods.

The visualisation is for illustrative purposes only, and is tailored to show the bounding

spheres and coordinates obtained by the DeepLung methods. Specific processing

would be required on the segmentation masks provided by the In-house method to

generate comparable spheres, so the predicted coordinate is shown. This coordinate
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LIDC-IDRI-0045 – full In-house

DeepLung DPN DeepLung ResNet-18

Figure 2.5: A nodule detected in the left lung of LIDC-IDRI dataset
0045. An axial slice is shown, with the corresponding detection by the
In-house, DeepLung DPN and DeepLung ResNet-18 approaches. No-
tably, the In-house method is not designed to predict bounding spheres,
and only the predicted coordinate is shown for comparison.

represents the maximum of the segmentation mask in the region which is above the

detection threshold being evaluated.

2.4.2 Hold-out Validation Results

The LIDC-IDRI hold-out set results are shown in Figure 2.6. Here, higher values for

the Luna CPM score are seen across the board, and the results remain highly similar.

It is likely that this test set contains generally easier samples than are represented in

the larger training sets. Crucially, each line represents the average performance of

the 15-fold models for each method, and here the error bars show the best and worst

models from across the folds of analysis.
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Figure 2.6: The Free Receiver Operating Characteristic (FROC)
curves for the held-out LIDC-IDRI test set of 110 cases. The thick
solid lines represent the mean performance, while the thin dotted lines
represent the individual models for each approach with highest and
lowest LUNA16 CPM.

2.4.3 External Validation Results

Results for the independent test set are shown in Figure 2.7. Across the board, lower

Luna CPM scores are achieved. Here, The DeepLung ResNet-18 approach performs

best, with a LUNA CPM score of 0.684. Peak sensitivities are also lower, where

both the ResNet-18 and In-house approaches achieve 84%. Here, the DPN approach

plateaus beyond an FPR of 4 false positives per scan. The algorithm employs an

internal thresholding of candidate sites to evaluate by the DPN which was tuned

on the LIDC-IDRI dataset. This is to say, the number of candidate sites presented

is limited to only those identified by the R-CNN with high confidence. For the

NLST dataset, this threshold appears to be inappropriate, and limited the number

of candidate sites, and thus the maximum sensitivity achieved by the second stage.

2.4.4 Summary

The results from the different analysis are summarised in Table 2.2. It became

apparent throughout this work that the most challenging nodules to detect were

those which were close to the lung wall, and bordering other bright structures. This

observation resulted in a body of work which aims specifically to address the technical
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Figure 2.7: The Free Receiver Operating Characteristic (FROC)
curves for the independent NLST test set of 498 cases.

challenges of automatically segmenting such cases using DL methods.

LUNA16 CPM
model Cross-validation LIDC-IDRI Test Set NLST Test Set

In-house 0.784 0.807 0.677
DeepLung DPN 0.755 0.813 0.655
DeepLung ResNet-18 0.747 0.816 0.684

Table 2.2: LUNA16 Challenge Performance Metric (CPM) for the
three approaches on the validation, testing and independent testing
datasets.
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2.5 Hierarchical Multi-task Transfer

In this section, an approach for leveraging hierarchical relationships to improve

segmentation accuracy is presented, which was published in the form of a U.S. patent

[24]. I developed the approach following those presented in Section 2.3 to improve

the detection performance of the first stage detector algorithm described in Section

2.3.1.

2.5.1 Introduction

Given input data, it is often necessary to perform more multiple analysis. For

example, it may be that automatically derived lung nodule detection and lung

segmentation would be useful to inform patient diagnosis when dealing with a chest

CT image. This pair of tasks exhibits a spatially hierarchical relationship — a lung

nodule must reside within the lungs — as generally illustrated by Figure 2.8.

Figure 2.8: An illustration of hierarchical data, where the result of
task 1 resides within the result of task 2.

These tasks may be performed independently by two separate deep learning

models, or jointly, by a single model with multiple outputs (as described by Figure

2.9). The joint performance of multiple tasks by a single model is often referred to

as ‘multi-task’ learning. Sometimes, modelling tasks together offers an improvement

in performance. Whilst there is utility in performing related tasks together, it is rare

for deep learning approaches to capture the relationships in the data which are most

apparent to the human observer. Such relationships may be that certain objects

within the images are always adjacent, or that when one object is present another is

absent. For lung nodule detection and lung segmentation, one such relationship is

that a lung nodule always resides within the lungs.

Though low-level features (such as certain textures or edges) may be applicable

to multiple tasks in a synergistic manner, the design of current deep learning
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Figure 2.9: An illustration of a multi-task model based on the data
shown in Figure 2.8.

approaches are not prone to capturing certain high-level relationships. It is not that

modern algorithms lack the capability to capture these relationships, but rather

these relationships may not be the most effective ones to learn in order to reduce the

objective loss function given the training data. For example, an obvious error to a

human observer by an automated tool would be the detection of a lung nodule in

the intestines, as imaged by CT. Some regions within the intestines can sometimes

appear nodular in shape, with a complex and variable structure. These were the most

obvious false positive cases by the approach described in Section 2.3. If the algorithm

is operating based on mostly low-level features (edges, textures and intensity), it may

be that a reduction in the predicted probability of this intestinal structure comes at

the expense of detecting true nodules elsewhere.

The following approach was developed to explicitly impose hierarchical spatial

relationships between deep learning models, to remove the reliance to learn such

relationships internally from the data. Specifically in this invention, the hierarchical

spatial relationship between lung nodules and the lungs. The method:

1. guarantees congruence between lung segmentation and lung nodule detection

results,

2. improves lung segmentation for regions where bright pathology is present,

3. does not require data which is annotated for both tasks,

4. allows the lung nodule detector to become more sensitive by confining it’s

operation to the region of the lungs.

A number of existing works consider the operation of deep learning algorithms in

the context of class hierarchies.
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2.5.2 Existing Works

Fu et al. [49] propose a “course-to-fine” network layer in the context of image

classification. The layer is inspired by the Bayesian equation, and multiplies the

predicted probability of a sub-class by a parent class during both algorithm training

and inference. For this reason, the authors require a single dataset, which has

multiple levels of annotation, because they train a single model which predicts at

multiple levels of annotation.

Yan et al. [50] also present an approach which leverages class hierarchies. Rather

than multiplying outputs, they combine class and subclass predictions generated

from different depths of the classification network.

Both of these inventions are related to image classification. The contributions

consider categories and sub-categories of classification e.g. a parent class of dog,

with a subclass of Labrador, based on the insight that many subclasses are harder

to distinguish than classes. Our contribution is primarily concerned with spatial

hierarchies, and spatially limiting/extending the extent of predictions in pixel/voxel

level image classification tasks.

Crucially, both approaches depend on a single fully annotated dataset. I present

a method which uses multiple models and alternated training, and can utilise

independently labelled datasets, removing competition between the tasks. For

the task of classifying entire images, grouping of labels is relatively cheap. For

segmentation tasks there is limited availability of comprehensively annotated datasets,

especially in the medical domain.

2.5.3 Method

In order to impose a hierarchical spatial relationship between detected objects, I

propose joining individual models by a multiplication of their segmentation outputs

during training. This is combined with an alternated training process during training.

For the tasks of lung segmentation and lung nodule segmentation, the stages of

training are as follows:

1. the lung segmentation model is trained individually to segment the lungs,

2. the lung and lung nodule segmentation models are joined by multiplication

and trained on the task of nodule segmentation.
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Figure 2.10: An illustration of the combined model (right) and alter-
nated training strategy. Errors when training on the lung segmentation
task can be back-propagated into the lung model.

This operation may be considered as calculation of the joint probability of nodule

and lung:

P (lung ∩ nodule) = P (lung)P (nodule|lung), (2.5)

Where P (lung∩nodule) is the probability of both lung and lung nodule occurring.

P (lung) is the output of the lung segmentation model, and P (nodule|lung) is the

output of the nodule segmentation model. This results in a lung nodule segmentation

model which is only applied within the bounds of the predicted lung segmentation.

This process is shown schematically in Figure 2.10. The alternated training allows

errors calculated on the task of lung nodule segmentation to be back propagated into

the lung segmentation model. This means that the lung segmentation is explicitly

optimised to include small, high H.U. value regions which may otherwise be excluded

from the predicted segmentation. Furthermore, the lung nodule segmentation can

become more sensitive, because it does not need to distinguish regions which are

nodular in appearance as being with or outwith the lung.

The de-coupled nature of the models allows separate datasets with either lung

segmentation or lung nodule segmentation to be used to train the lung and joined

models individually. There is no requirement for data to be annotated for all target

classes.

57



Figure 2.11: four models (M1 to M4) cascaded at inference time to
generate four outputs (O1 to O4) on example hierarchical segmentation
tasks. The cyclical alternated training process is not described here.

Though not shown in detail here, the proposed method may be applied to an

arbitrary number of hierarchical segmentation tasks (shown Figure 2.11).

2.5.4 Results

Using the approach described for the first stage detector described in Section 2.3.1,

performance improved slightly from a sensitivity of 87.5% to 90.1% at an FPR of 50

per scan. The improvement to lung segmentation was also assessed. Figures 2.12

and 2.13 show an example of a region of lung segmentation where a nodule is present,

and example results whereby alternated training forces the lung segmentation to

include this previously excluded pathological region.

For the case shown in Figure 2.13, other regions of bright pathology, especially

in the thin regions of the lung are also included in the lung segmentation, which

were previously excluded. This result also clearly shows a nodule segmentation result

which is not confined to the lung region.
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Figure 2.12: A lung nodule which found in the LIDC-IDRI dataset
which is close in proximity to the lung wall.

Figure 2.13: The output of the model(s) before (top) and after
(bottom) alternated training, shown for a single CT slice (Figure 2.12).
The left panel shows the output of the nodule segmentation model only.
The central panel shows the lung segmentation output, and the right
panel shows the combined output. As a result of the described approach,
the lung segmentation sub-model now includes the lung nodule within
the area of the lung.
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2.6 Discussion

With comparison to the paper by Zhu et al. [45], we see a lower score achieved by

the DPN of 0.755 compared with the 0.842 presented in their paper for the LUNA

dataset. There are a number of differences in our experiments which may cause this

discrepancy. Namely, we use a different number of folds for analysis (increased to 15

from 10), however this should not degrade performance. We also include a number

of additional cases in this analysis with larger slice spacing, which may contribute to

the discrepancy. The open-source implementation of their method reported results

across 10-folds of analysis, however the data which was used to guide early stopping

was also used to report the result. To make comparison fair, this approach was

changed so that a separate set was used for early stopping, in an identical manner to

the In-house approach. This is most likely to be the source of the discrepancy, and

it is probable that the self-reported score in the paper is inflated due to over-fitting.

All of the approaches yield highly similar results, and results which are dependent

on the data used to test the algorithms. Across 15-folds of analysis, the In-house

method is most performant by the Luna CPM. However, on the two test sets, we see

that the DeepLung ResNet-18 approach performs best. Still, the results are highly

similar, with overlapping confidence intervals, and it is difficult to draw meaningful

conclusions.

Though a direct comparison is not possible due to differing data, all of the

algorithms presented here appear competitive with the literature. For example, Gu

et al. [51] achieve a LUNA CPM of 0.797 on the LUNA challenge data, which is

lower than any of the averages we attain across the same data but falls within the

uncertainty we find through the multi-fold analysis.

With comparison to the LUNA challenge results shown in 2.1, we achieve a

lower than many of the submissions. The differing data may contribute to this,

and the inclusion of images with larger slice spacing are likely to be more difficult

cases to analyse. Another factor is the multi-fold nature of the challenge. As we

observed when deploying DeepLung, data hygiene was a factor which inflated the

reported score of this algorithm. Once the methodology was changed to provide a

more realistic analysis of performance, all of the methods presented here performed

similarly. We suspect that those submissions which score extremely highly by the

LUNA CPM would be unlikely to show the same performance on independent data.
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The potential of over-fitting complicates comparison between the LUNA approaches,

and represents a limitation of the challenge design.

Both Gong et al. [52] and Wang et al. [53] only report a single operating level.

Gong et al. report a sensitivity of 79.3% at an FPR of 4 per scan using the LUNA

dataset and 10-fold cross-validation, which is nearly 10% below the level of our

models at that FPR on that data. This, however, is a highly similar sensitivity which

is achieved on the NLST data at that FPR. Wang et al. report 95.8% sensitivity

at an FPR of 2 on the LUNA data by 10-fold cross-validation, which is nearly 10%

above our performance at that FPR.

We note that for the NLST evaluation, results achieved by the DeepLung DPN

were hampered by the sub-optimal setting of the internal threshold. It would be

possible to adjust this threshold and improve the score, however we consider this

threshold as a hyperparameter which was fit to the LIDC-IDRI data. Interfering

with the method to improve the score by adjusting such parameters would diminish

the value of independently testing the methods.

It is highly likely that publicly available challenge data-sets cannot be easily

used to ascertain real world performance due to the body of research and magnitude

of solutions which are deployed on this data. While at first inspection the dataset

appears large, with CT volumes from over 1000 subjects, these images only contain

2669 nodules in total, and it is likely that the highest scoring methods on this dataset

are overfit (to a greater or lesser extent) to the qualities of these cases. This was

apparent in our own work when applying a selection of algorithms developed on

the LIDC-IDRI challenge dataset to an independent set. All methods performed

significantly lower on the independent NLST test set.

Whilst over-fitting may be one source of this discrepancy, the NLST dataset may

be more challenging for a number of reasons. One reason may be the inclusion of

volumes where there are no lung nodules present. Sensitivity is measured across

the entire dataset, and the inclusion of cases with no nodules present can only act

to increase the average number of false positives per scan. The other source of

discrepancy may be due to the exclusion of small nodules and pathological structures

from the LIDC-IDRI evaluation scores. This was not possible for the NLST data,

and shows that caution must be used when using competition metrics and data to

assess real world algorithm performance.

We showed how task hierarchies could be leveraged to improve the performance

61



of lung nodule detection algorithms. The results we provide show benefit to both

lung nodule detection and lung segmentation. Whilst highly encouraging, further

experimentation would be necessary to determine the benefit to the pipeline as a

whole (as only the first stage detector was augmented with the novel approach). For

numerically evaluating the performance on lung segmentation, results will depend on

the cohort captured in the data set. Segmentation of healthy lungs is not a difficult

process, due to the large difference in H.U. units at the boundary of the lung high

performance can be achieved by traditional approaches (based on thresholding and

morphology). Lungs which contain pathological regions are much more difficult to

accurately delineate, and this is where the presented approach would provide most

benefit.
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Chapter 3

Mesothelioma Measurement by

Deep Learning

Mesothelioma is an aggressive cancer with a poor prognosis. Unlike lung nodules,

which are approximately spherical in shape, mesothelioma grows around the lungs

like the rind of an orange. Disease measurement is highly challenging due to the

irregular shape of the tumour, and it is difficult to routinely assess how a patient

is responding to treatment. Previous works have attempted to semi-automate the

process of mesothelioma measurement. Here, I present the first algorithm to fully-

automate the process of MPM measurement based on CT images. In contrast to the

work presented in Chapter 2 which involved detection of small (and often subtle)

pathological regions, MPM measurement involves accurately delineating tumour

from other (visually apparent) pathological regions, and as such the presented

algorithm is of a single U-Net design. Multi-fold analysis across 123 CT images

containing MPM showed a mean Dice coefficient of 0.64 for segmentation accuracy

and volumetric measurements which were not significantly different from zero, with

a 95% LOAs between -417 and +363 cm3. The algorithm performance on a multi-

centre test set of 120 CT volumes from 60 patients showed the algorithm bias for

volumetric measurements remained low (+31 cm3), and 95% LOAs of -345 to +407

cm3 were achieved. Inter-observer analysis on a subset of cases demonstrated that the

segmentation accuracy of the algorithm is within the agreement between observers.

This work comprises the largest study of this type to date in the context of automated

mesothelioma analysis, and to our knowledge, provides the first fully-automated

method of volumetric measurement of MPM tumours. In future work, the algorithm
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will be developed further towards clinical deployment, to enhance the ability of

clinicians to routinely and accurately characterise mesothelioma cases.
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3.1 Overview

Section 3.2 provides the reader with an introduction to the mesothelioma disease,

treatments and measurement methods.

3.2 Introduction

Malignant Pleural Mesothelioma (MPM) is a cancer associated with exposure to

asbestos fibres. The outlook for patients with this disease is poor and care is often

palliative. The irregular shape and thin nature of the tumour makes response to

treatment difficult to measure, impacting both the outcome for individual patients

and the development of new treatments. Whilst mesothelioma can develop in the

testes, the lining of the abdomen and the lining of the heart, the vast majority of

cases occur in the lining of the lungs where asbestos fibers become lodged after

inhalation, and this is called pleural mesothelioma.

3.2.1 Asbestos and Disease Prevalence

Asbestos is a naturally occurring natural mineral (shown in Figure 3.1) formed of

microscopic silicate fibres. The material has been widely applied industrially due to

several useful properties including low heat, sound and electrical conductivity, water

and fire resistance. It is also a cheap and strong material.

Asbestos has been used throughout ancient history, including in the Roman

and Egyptian civilisations. Around the early 1900s its mining and application was

increased, and over the following years asbestos became the material of choice for

roofing panels, spray on fire retardant, ceiling tiles, floor tiles, insulation for pipes,

walling material, and as woven fabrics for fireproof garments.

Though a relationship between fibrosis of the lungs and asbestos was speculated

for many years [54], it was 1960 before the relationship between pleural mesothelioma

was conclusively described in the literature [55].

There are several forms of asbestos, differentiated by their composition. Blue and

brown asbestos — the most harmful types — were banned first in the UK in 1985,

followed by white asbestos in 1999 [57]. Due to this ban, case rates are beginning to

level-off in the UK, and are projected to decline into the future (shown in Figure

3.2). Despite the ban, asbestos remains in many buildings built before this time. For
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Figure 3.1: An SEM image of asbestos fibres, which are similar in
length to the diameter of many mammalian cells (Figure from [56])

example, it is estimated that as many as 90% of public school buildings in England

still contain asbestos [58].

Figure 3.2: UK mesothelioma, asbestosis and pleural thickening
deaths and Industrial Injuries Benefit Disablement (IIDB) cases (figure
from [59]).

Elsewhere in the world, the mesothelioma epidemic is only starting [60]. In

countries such as Zambia, Colombia, Russia, India, China and Kazakhstan there

remains little or no legislation around asbestos use, and a rise in mesothelioma cases

could be expected in the future [60, 61, 62, 63].

In most countries, legislation and regulation surrounding asbestos use has taken

time to emerge as the impact to health has been realised. This realisation was

gradual due to the long latency of the disease — symptoms do not develop until

some decades after exposure, and it is only years later that the damage to public

health may be fully realised.
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3.2.2 Disease Development

After a period of prolonged inflammation caused by asbestos fibres lodged in the lung

wall, heart or diaphragm MPM tumour may develop. The fibres may gradually move

further into the pleural lining, causing chronic inflammation and genetic changes

which cause cells to become cancerous [64]. Often there is a significant period between

exposure to asbestos and contraction of the disease, as shown by Faig et al. [65]

with an observed mean latency of 49.8 years. A patient with mesothelioma is likely

to experience chest pain, shortness of breath, fatigue, fever, reduced appetite and

swollen fingertips.

The tumour develops in the pleural space around the lungs, taking a shape like

the rind on an orange (illustrated in Figure 3.3). Often fluid (pleural effusion or PE)

may build up in the affected lung, leading to the possibility of eventual lung collapse.

In the advanced stages of the disease, it is possible that malignant cells may spread

through the lymph system and form new tumours at distant sites.

Figure 3.3: An illustration of MPM development. The left panel
shows the lung, heart and liver of a healthy individual. Tumour starts
to develop in the central panel shown to enclose the lung in pale yellow.
After time, the tumour may grow between the lobes of the lung, as
shown in the right panel. Illustration by David C. Rice.

Those diagnosed with the disease have a median survival of around 13-15 months

[66] beyond their diagnosis, and the efficacy of current treatments is poor.

3.2.3 Disease Treatment

There is no curative treatment for MPM, however surgery, radiotherapy and chemother-

apy or a combination thereof may extend median survival times. Due to the often

disjoint and delocalised nature of the tumour, targeting by radiotherapy is often
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challenging, and is likely to be advised in cases where the tumour is situated in a

localised mass. Several therapeutic options for chemotherapy exist, for example the

combination of Pemetrexed with Cisplatin has been shown to increase median survival

to 12.1 months, compared with 9.3 months by Cicplatin alone (which considered the

previous standard of care) [67]. Chemotherapy alone is used most often amongst

patients considered to have unresectable disease by surgery, and where possible a

multi-modal treatment approach is applied.

Clinical trials aimed to investigate new treatments are expensive. One component

is related to the rarity of the disease — it can be challenging to source cohorts of a

large size without a prolonged duration study or multi-site collaboration. Another

factor is the nature of the disease — the typically high surface to volume ratio of

the tumour makes it extremely difficult and time consuming to measure volumetric

change, and the efficacy of new treatments are often difficult to determine by cheaper,

routine measurements.

3.2.4 Manual Mesothelioma Measurement

Mesothelioma may be suspected on presentation if the patient has a known history

of asbestos exposure. Imaging will be performed of the lungs. Typically this will be

be acquired by CT, however some confounding structures are better differentiated in

MR. Specifically, pleural effusion is a common feature which shares very similar H.U.

values with tumour in CT, and distinction is more easily made in MR. However due

to the relative rarity of MR scanners in the UK, imaging by this modality is not

clinically routine. Following the imaging, a biopsy will be taken. It is impossible to

determine solely from imaging whether mesothelioma is present. If a biopsy confirms

mesothelioma, a treatment regime may commence, and the routine measurement to

track patient development is known as the modified-RECIST Score.

RECIST Scoring System

The RECIST (Response Evaluation Criteria in Solid Tumours) scoring system ([7])

was originally developed to measure the change in tumours which are approximately

spherical in shape e.g. lung nodules. For spherical tumours, uni-dimensional measure-

ments of diameter across two time points are sufficient to track patient progression.

This measurement can be made extremely quickly. For spherical tumours, there is

68



often no benefit in performing a full volumetric segmentation.

Modified RECIST Scoring System

Mesothelioma tumour is not spherical in shape. A modified version of the RECIST

score (mRECIST) was developed for mesothelioma tumours. Rather than diameter,

the thickness of tumour is compared across two time points. Firstly, three regions

where the tumour appears thickest are selected from the CT image. The thickness of

these regions is measured perpendicular to the lung wall, and these three measure-

ments are summed. Examples of such measurements are shown in Figure 3.4. In

the follow-up scan, corresponding regions are identified and the tumour thickness is

again measured and summed. The two thickness sums are compared and the patient

is classified as follows [7, 68]:

1. Complete Response (CR), indicating a disappearance of all known disease;

2. Partial Response (PR), indicating a 30% or more decrease in the mRECIST

score;

3. Stable disease/No change, indicating that no new lesions have appeared, and

the mRECIST score has not significantly changed;

4. Progressive Disease (PD), indicating a 20% or more increase in the mRECIST

score, or the appearance of new lesions.

The mRECIST score is prone to poor inter- and intra-annotator agreements

[69]. Yoon et al. show that the inter-observer 95% limit of agreement (LOA) values

exceed the cut-offs described in the RECIST classification [70], indicating that it is

challenging to achieve agreement in classifying tumour progression. The identification

of regions where the tumour is thickest is a heuristic task — different experts may

select different regions. The measurement is sparse — it does not measure the

entirety of the tumour. Additionally, there is inherent ambiguity in differentiating

the complex structures in the images, and finding corresponding regions in images

which may have significantly changed in appearance between baseline and follow-up

is a challenge.
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Figure 3.4: A slice from a CT image of a patient with mesothelioma.
Two example mRECIST thickness measurements are shown as white
lines on the tumor. Figure from [68].

Manual Volumetric Segmentation

Full volumetric segmentation is the gold-standard mesothelioma measurement.

Frauenfelder et al. [71] measure agreement in tumour progression classifications

between three observers across 30 MPM cases. They show that that where the

mRECIST scoring system results in 14/30 cases classified with total agreement, this

number is increased to 27/30 when using a volumetric approach.

Due to inherent ambiguities in appraising the cases, disagreement between an-

notators is likely to remain. Labby et al. [72] compare five independent expert

annotators and report 95% CIs of 311% and 111% for volumetric measurements

performed on baseline and follow-up images respectively. Access to baseline contours

when annotating the follow-up images introduced bias, and the authors propose that

this is the source of a lower CI for the follow-up images. Figure 3.5 shows an example

of the differing segmentations provided by the observers.

Volumetric tumour measurement it extremely time consuming and expensive to

perform. For the most accurate measurements, an expert must delineate the tumour

on each axial CT slice. The high surface-to-volume ratio and irregular nature of

the tumour means that the volumetric measurements are sensitive to interpolation

(either between annotation on slices or between annotation points) provided by

standard annotation software. The time to perform a tumour segmentation is highly
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Figure 3.5: Five independent tumour segmentations produced for a
corresponding axial CT slice. Figure adapted from Labby et al. [72].

variable — depending largely on the volume of tumour present — and times may

range from 60-90 minutes per volume. Measurements of volumetric change require

two full volumetric segmentations to be performed for two time-points.

The development of a fully automated tool for mesothelioma measurement may

greatly reduce the time-to-annotate for an expert — segmentation by an automated

method could be used as a starting point for an expert review. In case where such

an automated tool produces results which are within the agreement bounds of expert

human annotators, it may be used to evaluate the efficacy of new treatments and

statistics derived from the tool could be used to monitor patient care and inform

treatment decisions.

3.2.5 Automated Mesothelioma Measurement

Due to the clear opportunity for automation of MPM, several methods have been

developed to semi-automate the measurement of mesothelioma to varying degrees.

Gudmundsson et al. [73] use CNNs to segment MPM tumour, pleural effusion

and pleural plaques as a single segment. They train two U-Nets for separate analysis

of the left and right lung, and the laterality of the disease must be manually input

to select which CNN is used to analyse the images. Over a test set comprising 131

axial slices (taken from 41 patients) with MPM tumour segmented they achieve Dice

coefficients ranging between 0.662 to 0.800. Crucially, their test set is annotated

with MPM tumour segmentation, rather than the task for which the algorithm was

trained. It is likely that these tasks are congruent due to the level of ambiguity

in differentiating many of the structures, and the score is similar to inter-observer
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Dice coefficients. In later publications, they aim to exclude pleural effusion from the

measurements, as the volume of pleural effusion is unrelated to tumour volume [74],

acting to confound the predictions.

Chen et al. [75] propose a semi-automated method based on a random walk

segmentation of the tumour, initialised by a minimum of 20 manually placed seed

points per slice within the tumour region. The median time-to-annotate for their

method is reduced by semi-automation from 68.1 min to 23.1 min. They achieve a

Dice coefficient of 0.825 over a test set of 15 subjects.

Earlier work by Sensakovic et al. [76] firstly aim to detect the hemithoratic cavity,

based upon a segmentation of the liver. This liver segmentation involves the manual

delineation of the liver in several axial CT sections, which are interpolated to define

the liver. Once the hemithoratic cavity is identified, the user must input the laterality

of the disease. The pleural space is then identified automatically, and a k-means

classifier is used to segment MPM tumour within the pleural space based on H.U.

intensity. Based on an evaluation comprising 5 CT sections taken from 31 subjects,

the automatic segmentation achieved a median Dice coefficient of 0.484 compared

with 5 observers. This is similar to the median Dice coefficient across the 5 observers

of 0.517.

Brahim et al. [77] localise the thoratic cavity and perform subsequent texture

analysis to derive the MPM tumour. Over a test set of 10 CT images, they achieve

a Dice coefficient of 0.88.
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3.3 Tumour Shape Analysis

It a challenge to achieve high agreement between observers when segmenting long

and thin regions such as MPM tumour, both at the image-level (e.g. as measured by

the DICE coefficient) and at the total volume level. This may be partially due to

confounding image features, and partially due to the shape of the region. Analysis

of tumour shapes may allow us to determine how sensitive volumetric measurements

are to the tumour delineation. I designed a simulation to determine what change in

volume could be expected from an expansion or contraction in the segmented region

of a few voxels. This provides an indication of the variability one may expect from

measurement error alone, without the confounding effects of image interpretation.

Method: Several binary masks of 3-D shapes were analysed:

• a binary mask of a sphere, containing a volume comparable to that of MPM

tumour,

• a binary lung mask of a single lung, generated from a subject from the LIDC-

IDRI dataset,

• a binary mask of a lung annulus, generated by applying a threshold to the

distance transform of the lung mask described above, and subsequently dilating

to a thickness of (n) mm,

• and a binary mask of MPM tumour, generated from a subject from the PRISM

study.

The analysis comprised performing either the binary dilation or binary erosion

morphological operation and subsequently evaluating the volume ratio Vf/Vi, where

Vi pertains to the volume before morphological processing, and Vf pertains to the

resultant volume of the region following the processing. Morphological processing

was performed in the 2-D axial plane (rather than 3-D processing), in order to reflect

the nature of annotation process. The volume ratio Vf/Vi is plotted as a function of

number of pixels change in the boundary location (where erosion is described as a

negative change, and dilation as positive change).

Results: The results are shown in Figure 3.6. The sphere and lung annulus show

a low sensitivity of volume to the boundary location. These shapes have a low
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Figure 3.6: The volume ratio following binary erosion or dilation for
four shapes: a sphere, in red; a lung segmentation mask, in gold; a
lung annulus, in blue; and a MPM segmentation mask, in green.

surface-to-volume ratio. For the synthetically generated lung annulus and MPM

tumour segmentation masks, a variation of one pixel (or voxel) in the placement of

the boundary lines can results in volume changes of 60%. Measurement error may be

approximated as half of the smallest measurement, and this experiment shows that

when dealing with extremely thin tumours the measurement error from the shape

alone may be approximately ± 30%.

Across the literature, segmentation agreement (as measured by the Dice coefficient)

is extremely variable for both manual and semi-automated tumour measurements.

This variability comes from the nature of the data — images of early stage subjects

are likely to contain narrower regions of tumour, and for these cases high agreement

is more difficult to achieve. This data-dependent variability makes comparisons

between methods a challenge.
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3.4 Preliminary Experimentation

I conducted a number of preliminary experiments throughout the development of the

algorithm presented later in this chapter. As shown in Figure 3.7, many early results

showed qualitative promise. For example, regions of pleural thickening were often

identified by the algorithm. However, Figure 3.7 also shows how the promising results

often showed extremely limited overlap with the reference ground truth, which can

lead to poor numerical performance. This section intends to provide a brief summary

of early experiments prior to the publication of a functional method.

Figure 3.7: Axial (top) and coronal (bottom) CT views with tumour
segmentation shown in green overlay. Manual segmentation is shown
in the right column, and a predicted segmentation by an early method
is shown left. False positive regions may be seen by the automated
method.

Fully Convolutional Approach: Fully convolutional approaches to image seg-

mentation are desirable due to their simplicity and efficiency. These methods do

not involve any down-sampling, thus receptive field is solely dependant on network

depth. Generally, these methods are more suited to segmentation tasks which can be

completed using lower-level features. Several novel fully convolutional architectures
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were developed to process 2-D CT slices for mesothelioma segmentation, however

none of these methods converged during training. It was concluded from these exper-

iments that the accurate delineation of mesothelioma tumour is highly dependent on

higher level anatomical features. At a local image level, distinction between tumour

and neighbouring structures and pathology is an ill-posed problem, and successful

approaches should be capable of utilising high-level anatomical features.

Input Image Resolution: Input image resolution was designed as a variable

parameter in the experiment pipeline, and a selection of resolutions were tested

for automatic segmentation. These experiments showed that, especially for images

of early stage disease, the segmentation masks of thin and irregular shapes were

extremely difficult to resample accurately. Some regions may be as narrow as a voxel,

and the segmentation may be lost entirely upon downsampling. Similarly, there are

inherent ambiguities to upsampling such narrow regions. These added confounding

factors to interpretation of the results. To avoid these complexities, it was concluded

that resolution should be maintained at the resolution at which the images were

carefully annotated.

Hard Dropout for Uncertainty Estimation: For clinical application of deep

learning algorithms, it is desirable to provide a measure of model certainty with

an output prediction. This would allow for better interpretation of the results —

for instance, it would be possible to show that the algorithm is more uncertain

where image ambiguity is high. For this purpose, hard dropout as a Bayesian

approximation of uncertainty was investigated [41]. This method involves using the

model to generate a segmentation mask multiple times using a subset of different

kernels. It was determined that uncertainty generated by this method had no

discernible correlation to model error as calculated from the reference ground truth

by a single observer. This may be due to a variety of reasons. It is possible that in

the case where agreement between observers is low (as is the case with MPM tumour

segmentation) the agreement between multiple annotations may be necessary to

benchmark an uncertainty score.

Pre-trained Network Weights: When training neural networks, it is a common

approach to use pre-trained weights as opposed to a random initialisation. We com-
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pared both pre-trained weights (based on ImageNet [40]) and random initialisation,

and found that overall there was no significant difference in performance between the

two approaches. However, it was clear that using pre-trained weights reduced the

number of epochs required for the algorithm to reach the optimum stopping point

during training.
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3.5 Methods

I have developed an automated approach for the segmentation of MPM tumour from

CT images as part of a retrospective cohort study funded by the Cancer Innovation

Challenge (Scottish Health Council). The work in these sections has been published

as a conference proceeding as ”Fully Automated Volumetric Measurement of Malig-

nant Pleural Mesothelioma from Computed Tomography Images by Deep Learning:

Preliminary Results of an Internal Validation“ [25] and Springer book chapter titled

”Estimating the False Positive Prediction Rate in Automated Volumetric Measure-

ments of Malignant Pleural Mesothelioma“[26], on which the following material is

based.

3.5.1 Data

123 volumetric CT datasets from 108/403 subjects recruited to the DIAPHRAGM

and PRISM research studies were used to train and cross-validate the automated

method, all of which had a confirmed histological diagnosis of MPM. A further subset

of CT datasets from the NLST archive were utilised to test the automated detector.

PRISM (Prediction of ResIstance to chemotherapy using Somatic copy number

variation in Mesothelioma) [78] is a retrospective cohort study to determine a genomic

classifier that predicts chemo-resistance in MPM. The study involves retrieval of

tumour blocks pre- and post-chemotherapy from 380 subjects across five UK centres.

123 CT images from 85/380 PRISM subjects are included in this study (43 images

acquired pre-treatment, and 80 images acquired post-treatment), from centres in

Glasgow.

DIAPHRAGM (Diagnostic and Prognostic Biomarkers in the Rational Assess-

ment of Mesothelioma) [79] was a 3 year prospective observational study, which

involved 747 patients from 23 UK sites. Subjects were recruited to the study upon

first presentation of MPM. A subcohort of 23/747 subjects from Glasgow centres

(who had both MRI and CT images) were selected. All the selected images were

acquired pre-treatment. Contemporaneous MRI images are useful in disambiguating

some confounding features in CT images.
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NLST (National Lung Screening Trial) [80] was a multicentre study which aimed

to compare low-dose CT with chest radiography for lung cancer screening. The study

targeted older (55–74 years) ex- and current smokers. 46,613 CT images from 14,965

subjects are used to test detector specificity.

Figure 3.8: Two axial CT slices from two subjects in the cohort, with
manually derived MPM tumour segmentation shown in red. Left: A
slice from a CT image taken in the DIAPHRAGM study. Right: A
slice from a CT image taken in the PRISM study. The unsegmented
areas (in grey) represent adjacent pleural fluid. Figure from [25].

The images from the DIAPHRAGM study were acquired earlier in development

of MPM with respect to those from the PRISM study, and consequently the tumour

volumes tend to be smaller and thinner in the DIAPHRAGM study. Slices from a

PRISM and DIAPHRAGM dataset are compared in figure 3.8.

Ground truth generation:

A respiratory clinician with training in image analysis and mesothelioma identification

manually segmented the MPM tumour in 123 CT images from the PRISM and

DIAPHRAGM studies. Tumour segmentation was performed in the axial plane

using Myrian software (Intrasense, Paris). Segmentations were performed in all

slices containing tumour for 80/123 images. For 43/123 images a more sparse

annotation was performed where every fifth slice was annotated. Consecutive slices

are highly correlated — both in appearance and in terms of the tumour characteristics.

Annotating a subset of slices allowed a greater number of subjects to be included

in the training set, increasing the diversity of this cohort. Although beneficial to

training the algorithm, a sparser annotation resulted in datasets which could not be

used to evaluate volume accuracy, and were not included in the evaluation of the
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algorithm.

The manual segmentation was drawn free-hand, rather than using any inter-

polation or semi-automated tools (e.g. region growing techniques). This was to

avoid sources of bias in the ground truth generation process. For example, region

growing techniques may bias the annotation process towards inclusion of regions

with certain ascetic qualities. Given the ambiguity in delineating the boundaries

of mesothelioma tumour, these included regions may not be incorrect per-se, but

consistent over-segmentation would result in a dataset which did not fully capture

this interpretation ambiguity. Similarly, interpolation of the segmentation between

slices would bias the annotator to more closely replicate their own interpretation of

the previous image slice.

Ground truth inter-slice consistency processing:

The MPM tumour was manually segmented in the axial plane. A free-hand segmen-

tation was required to capture the complex shape of the tumour, and inevitably

this leads to some annotation inconsistencies between slices. These appear as a

discontinuities of the tumour segmentation in the orthogonal, sagittal and coronal

planes, contrasting with the continuous nature of the tumour viewed in the axial

plane of annotation (figure 3.8). For many measurements inconsistencies of this

nature are negligible, however for MPM measurement the between-slice inconsistency

can have a significant effect on volumetric measurements. To improve between-slice

consistency, a three-dimensional binary closing operation (figure 3.10) was performed

using an 11 × 11 × 11 voxel structuring element. A limitation of this approach is

that any genuine holes in the tumour smaller than five voxels will be removed.

3.5.2 Cross-validation

The algorithm was evaluated by k-fold cross validation, where a setting of k = 7

was found to provide robust group statistics for each test set, whilst maximising

the amount of training data at each fold. As described in section 3.5.1, 43/123

datasets were sparsely annotated, and could not be used to evaluate volumetric

accuracy. These datasets were used in the training set for all seven folds. The 80/123

datasets with full annotation were randomly assigned to seven folds, to provide a

validation set of 11 or 12 datasets per fold. The 68 or 69 remaining datasets are
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further sub-divided by a 30:70 split, where 30% is used to determine the best model

and select an optimal model threshold (referred to as the internal validation set),

and 70% is used as the training set, to which the 43 sparsely annotated datasets are

added.

Neighbouring CT slices are highly correlated, and including all the slices from

a CT images biased the algorithm towards maximising performance on the images

with the greatest number of slices. To counter this, fully segmented CT images were

also subsampled to 100 slices when training the algorithm.

Performance metrics:

Absolute volume correspondence and segmentation accuracy are used to evaluate

agreement between the automated method and manual observer. Given only single

time-point images were available in this preliminary evaluation, we were unable to

evaluate volume change accuracy.

Bland-Altman analysis [81] is used to evaluate volumetric agreement between the

automated and manual segmentations. This plots the difference of two measurements

against the mean of the two measurements, together with the mean difference and

the 95% limits of agreement. The following summarises the volumetric agreement

statistics:

1. The mean difference (or bias) between the two measurement methods

2. A test for whether the mean difference between the two measurement methods

is significantly different from zero, determined using a two-sided paired t-test

(MATLAB statistics toolbox, Mathworks, Natick).

3. The 95% limits of agreement [81].

4. A test whether the difference between the measurement methods increases

(or decreases) as the tumour volume increases. This was determined from

the slope of a least squares regression fit to the points in the Bland-Altman

plot. Specifically, it tests whether the slope is statistically different from a

zero gradient, based on t-statistics (MATLAB statistics toolbox, Mathworks,

Natick).

The Dice Score is used to measure region overlap between the manual and

automated measurements. Although volumetric agreement is the primary property of
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interest, it does not show whether the same regions have been delineated, or whether

the regions intersect. The Dice score provides a measure of these properties.

3.5.3 Algorithm

To automatically segment MPM tumour, a Convolutional Neural Network (CNN)

was trained.

Architecture:

The CNN was a U-Net architecture [23] — similar to the method used by Gudmunds-

son et al. [73, 82]. Our network (figure 3.9) takes three axial slices at a time, and

predicts a segmentation at the central of these slices. The encoder is pre-trained

in a VGG classifier on the ImageNet challenge data [83]. For pre-training, the

three-channel input was used to consume three-colour natural images.

All network activations are rectified linear units, aside from the ultimate layer of

the network, which was a softmax activation. Dropout (with a rate of 0.2) [84] was

used to prevent over-fitting and batch normalisation [85] was used at the locations

illustrated in figure 3.9 to improve the training characteristics. The network was

implemented and trained using the Keras framework [86].

The main benefit of the U-Net, as opposed to a standard CNN with no down-

sampling, is the increased receptive field. For this analysis, voxel intensities from

the entire axial slice (512 × 512) may be used to inform the segmentation output at

any voxel. For mesothelioma, where the appearance of the tumour may be subtle,

a manual annotator may rely on their understanding of the surrounding anatomy

and knowledge of how the disease progresses to inform a manual segmentation. So a

U-Net with a large receptive field was found most suitable, allowing the automated

approach to leverage any spatial priors and surrounding structures to inform the

segmentation.

Though similar, this algorithm differs from the first stage detector presented

in Chapter 2. Specifically, it operates with larger (higher resolution) input images,

to allow use of fine-grained textural features to disambiguate tumour from other

pathology. It also outputs two segmentation channels — one pertaining to background,

and the other pertaining to segmented tumour.
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Figure 3.9: A schematic of the U-Net model architecture. The
blue boxes represent a stack of convolutional filters, with the number
of filters per stack shown to the left of each box. All filters have a
dimensionality of 3× 3. Green and orange boxes represent dropout and
batch normalisation layers respectively. The blue arrows represent skip
connections by feature concatenation. Figure from [25].

Image pre-processing:

CT image intensities input to the network are clipped to [-1050, +1100] Hounsfield

Units, and normalised to range [-1, +1]. The images are retained at their original

resolution (which is typically within the range 0.71mm to 1.34mm).

Training:

The network was trained for 30 epochs, after which the best performing model

is selected across the epochs. This model was chosen based on highest average

voxel-level accuracy for the internal validation set. For training, the Adam optimiser

was used, with a cyclic learning rate [87], where the learning rate (lr) has been set

to oscillate between lr = 0.0001 and lr = 0.003, with a full cycle duration of one

epoch. A batch size of 8 slices (with context) per batch allowed the model (10,019,874

parameters) to train on the available GPU.

Despite MPM tumour segmentation being a binary classification task, categorical

cross-entropy was used as the objective function. Therefore, the output of the

network was two-channel: one for tumour segmentation, and one for background

segmentation. This objective function was found to improve convergence with respect

to binary cross-entropy. The slices during training were randomly ordered, and it

was possible that the class balance in the first batch was highly unbalanced. When

batches were predominantly tumour negative in the first few batches, weights near

the decoder of the network were optimised to zero, and training stopped as errors

could no longer back-propagated. Categorical cross-entropy was used to overcome
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this, a non-zero signal is always required in one of the two output channels, regardless

of the class balance of the example slice/batch. This regularising effect of categorical

cross-entropy increased experiment repeatability between runs and folds of analysis.

Binarisation:

The output of the CNN was a probability map, showing the probability of MPM

tumour at every voxel in the input CT slice. This output was binarised by applying

a threshold. The optimal threshold for the CNN was chosen to maximise the mean

Dice coefficient between the binarised prediction and manual annotations in the

internal validation set. The optimal threshold varied slightly between models —

different training datasets had varying levels of complexity, resulting in models which

predicted in varying probability ranges. The internal validation sets at each fold

also contained different disease characteristics, which added variance to the optimal

threshold between folds.

Tumour volume:

For validation, the algorithm was used to segment the MPM tumour in every slice of

the input CT images. Tumour volume was then calculated [25]:

M(x, y, z) =

1 ∀P (x, y, z) > t

0 ∀P (x, y, z) ≤ t

(3.1)

where M describes a segmentation image of same dimensionality as the input CT

image, with each voxel assigned a binary value of one to indicate MPM tumour and

zero elsewhere. M was calculated by evaluating the probability map (P (x, y, z)) with

respect to the optimal threshold, t. This binary segmentation was then converted

into a measurement of tumour volume (V ) [25]:

V = SxSySz

X∑
x=0

Y∑
y=0

Z∑
z=0

M(x, y, z), (3.2)

where Sx, Sy and Sz denote the image voxel sizes in x,y and z respectively.
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3.5.4 False Positive Rate Estimation

NLST Study Data:

The National Lung Screening Trial (NLST) study enrolled 53,454 persons at high

risk for lung cancer between 2002 and 2004 from 33 centres in the United States.

The study had two arms, comparing chest X-rays and CT imaging for detecting

lung cancer. 26,722 participants were enrolled in the CT arm of the study. Of

these, 14,965 subjects are used to provide a further testing set for the automated

mesothelioma detector. The subset of NLST images was selected to include subjects

with reported lung abnormalities and lung nodules. The NLST study was not

focused on mesothelioma, and it is unlikely that many images in the study contain

mesothelioma (it was not indicated as an incidental finding for any images in the

study). Hence this dataset is used to analyse the specificity of the automated detector

across a large and independent cohort. Since imaging alone cannot give a definite

diagnosis of mesothelioma — the appearance of the tumour in CT images is similar

to many other findings — biopsy is often the only definitive test. For this reason, it

is possible that images acquired for the NLST study contain one or more subjects

with mesothelioma.

Time-points: The CT images acquired for the NLST study spanned three annual

time-points. Participation was terminated upon either: a) completion of the third

time point, b) subject drop out, or c) a significant finding impeding the ability to

complete the study. In this analysis, images from all the available time points were

included in the analysis.

Study Findings: As a part of the NLST study, a variety of findings of relevance

were recorded. For the purposes of this analysis, hyperdense pathologies which have

a bright appearance in CT images are of relevant — such findings are most likely to

be confused with MPM by the automated detector. The specific NLST findings of

interest are listed in table 3.1. Note that since the NLST study recorded findings by

subject rather than by image, not all of the images from a subject with a positive

finding will necessarily contain evidence of the specific finding(s).

Reconstruction Kernel: The CT images acquired for the NLST study were

reconstructed using “hard” (sharp) kernels, “soft” kernels. For some subjects images
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Table 3.1: List of NLST study findings considered positive in the false
positive detection rate analysis.

NLST findings of interest

Pleural thickening or effusion,
Non-calcified hilar/mediastinal adenopathy or mass,
Chest wall abnormality,
Consolidation,
Emphysema.

were reconstructed from the same acquisition data using both types of kernel. CT

manufacturers offer a variety of different reconstruction kernels, described by their

own naming conventions. Table 3.2 lists the kernels by CT manufacturer that were

considered hard for the purposes of this study. In total, this resulted 20,139 hard

image reconstructions and 26,474 soft image reconstructions.

Table 3.2: List of CT reconstruction kernels considered “hard” and
“soft” in this study. Kernels names used to reconstruct two or more
images are listed.

Manufacturer Hard kernel names Soft Kernel Names

GE LUNG and BONE STANDARD,
BODY FILTER / STANDARD
and BODY FILTER / BONE

Philips D and B A, C and EC

Siemens B50f, B60f, B80f
and B45f

B30f, B20f, B31f, B30s, B50s,
B70f, B31s, B40f, B60s and B35f

Toshiba/Canon FC51, FC53 FC01, FC30, FC50, FC02, FC10,
FC82 and FC11

3.5.5 Experiments

The convolutional neural network was trained seven times on seven folds of the

training dataset, as described in 3.5.2. The seven resulting CNN models were

combined into an ensemble to generate the final volume measurement result, by

calculating the mean of the volumes from the seven models. The results obtained by

this method were:
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1. Compared with those obtained from the individual seven models for all subjects

with histologically confirmed MPM (DIAPHRAM and PRISM),

2. Stratified by whether hyperdense pathology is present (NLST),

3. Stratified by hard/soft kernel reconstructions (NLST).

The 100 cases where the algorithm finds the largest volumes of tumour were qualita-

tively analysed.
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3.6 Results

Manual annotation time varied between subjects, taking approximately 2.5 hours

per image. Automated measurements required approximately 60 seconds per image,

using an Nvidia 1080Ti graphics processing unit (GPU), 32GB of RAM and a 12-core

Intel Xeon CPU (3.40GHz).

3.6.1 Inter-slice consistency processing

Three-dimensional binary closing was proposed to increase between-slice manual

segmentation consistency (c.f. 3.5.1). This processing increased detected pleural

volume from 301.1 cm3 (standard deviation 263.9 cm3) to 514.7 cm3 (standard devia-

tion 336.1 cm3) over the cohort. Figure 3.10 shows a typical binary closing result,

and highlights the additional voxels added by the closing operation. Visually, the

closed version appears more contiguous and physically plausible.

3.6.2 Volumetric agreement

The cohort mean predicted volume was 547.2 cm3 (standard deviation 290.9 cm3)

across seven-folds of analysis.

Raw manual annotations:

The mean tumour volume in the raw manual segmentations is 405.1 cm3 (standard

deviation 271.5 cm3), which is significantly lower than the automatically detected

volume. The Bland-Altman plot in figure 3.11 shows a minor, though statistically

significant, trend where the volume error increases slightly with tumour volume

(p < 0.001). This indicates that on average, the algorithm over-segments the tumour

compared with the raw ground truth (here the manual measurement is without the

binary closing operation to increase consistency between slices).

Closed manual annotations:

Binary closing increased the mean tumour volume of the manual segmentations to

574.4 cm3 (standard deviation 327.1 cm3). The Bland-Altman plot in figure 3.12

shows that using closed manual annotations gives a mean difference of -27.2 cm3,

which is not significantly different from zero mean difference (p = 0.225). To facilitate
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Figure 3.10: A CT coronal view of a subject with MPM, showing
the right lung. The white annotation indicates the location of tumour,
as drawn by an expert annotator in the axial plane, which follows the
bounds of the pleural cavity, surrounding a region of pleural effusion.
Red shows the regions which are closed by a binary closing operation.
Figure from [25].

comparison to other methods, the results are equivalent to 95% limits of agreement

which span 129.2% of the total tumour volume.

Four measurement differences in 3.12 are outliers (outside of the 95% limits of

agreement): three of these are where the algorithm predicts a higher volume of

tumour than recorded by the observer. Inspection of these cases showed extremely

narrow tumour in these images. The algorithm often identifies the bulk of the tumour

mass (where it is thicker and more visible), but does not propagate the tumour into

the rind-like surface which, although narrow, encloses a significant proportion of the

lung surface area. This is potentially where the slice-based nature of the approach
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limits performance. A fully 3D CNN approach may offer higher accuracy in such

cases. Inspection of the remaining outlier (under-segmentation by the algorithm)

showed tumour which was unusually thick compared with the other images in the

training cohort. For this case, it is likely the algorithm failed to generalise to this

degree of tumour thickness, unseen during training.
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Figure 3.11: Bland-Altman plot of the algorithm-annotator agreement
for tumour volume measurements, across 80 subjects. The central
dashed line indicates a mean difference of 142.2 cm3 over-segmentation
by the algorithm. Outer dashed lines indicate upper and lower 95%
limits of agreement of [−224.1, +508.5] cm3 respectively. Figure from
[25].

3.6.3 Region overlap (Dice score)

The mean overall Dice coefficient was 0.64 (standard deviation 0.12) using the binary

closed ground truth. In comparison, the Dice score was 0.55 (standard deviation

also 0.12) using the raw ground truth, confirming higher voxel-wise correspondence

following binary closing to improve inter-slice consistency. Dice coefficients varied

between subjects and between analysis folds. Due to the wide range of tumour shapes

and volumes in this dataset (c.f. section 3.5.1), some test sets simply contained more
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Figure 3.12: Bland-Altman plot of the algorithm-annotator agreement
for tumour volume measurements across 80 subjects, using cleaned
ground truth. The central dashed line indicates a mean difference
of −27.2 cm3 under-segmentation by the algorithm. Outer dashed
lines indicate upper and lower 95% limits of agreement of [−414.2,
+360.5] cm3 respectively. Figure from [25].

difficult cases. Figure 3.13 shows the ground truth and predicted tumour for a subject

from the PRISM sub-cohort.

Figure 3.13: A CT slice from a subject positive for MPM. Top:
Image overlaid with the ground truth segmentation (in red). Bottom:
The corresponding predicted segmentation from one of the seven-fold
models. Figure from [25].
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3.6.4 False Positive Rate Estimation

Using the ensembled algorithm, prediction time increased to around 120 seconds per

image, using an Nvidia 1080Ti graphics processing unit (GPU), 32GB of RAM and

a 12-core Intel Xeon CPU (3.40GHz).

Comparison to MPM positive images:

For the NLST dataset, which should contain little or no mesothelioma, in the

vast majority of images the automated detector segmented very little. Figure 3.14

shows the predicted volumes for the NLST hard kernel images, together with the

mesothelioma positive volumes from the DIAPHRAM and PRISM studies. The

average volume measurement from the hard kernel NLST images is 3.6 cm3 (standard

deviation 6.5 cm3). In contrast the mean automated volume measurement in the

DIAPHRAGM and PRISM datasets was 547.2 cm3 (standard deviation 290.9 cm3).

Figure 3.14: A histogram of predicted MPM volumes across CT
images from the NLST study with reference to the volume results from
the mulit-fold analysis across images from the PRISM and DIAPHRAM
studies. The NLST images are reconstructed using hard kernels. For
the volume measurements, a logarithmic scale is used.

Stratification by NLST finding:

Of the hard kernel images, 11,157 were finding positive and 8,982 were finding

negative (see table 3.1 for details of the positive and negative groups).
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Across the hard kernel image reconstructed images there was a small but significant

(p < 0.001) difference between the algorithm predictions for finding positive and

finding negative images. The mean segmented volume in finding negative images

was 2.9 cm3 (s.d. 3.4 cm3, median 2.0 cm3). For the finding positive images this

increased to 4.1 cm3 (s.d. 8.2 cm3, median 2.2 cm3). Given that the finding positive

subjects may have up to two time-points where no pathology was present, as the

pathology finding is per subject rather than per image, an overlap of the groups is to

be expected. Figure 3.15a shows predicted volumes for the NLST datasets, stratified

by whether the image was graded as finding negative or finding positive.

Effect of reconstruction kernel:

Of the soft kernel images, 14,763 were finding positive and 11,711 were finding

negative.

For the soft kernel reconstructions the mean detected volume was 10.1 cm3 (s.d.

13.8 cm3), an increase compared with the mean volume of 3.6 cm3 for the hard

kernels. Figure 3.16 shows the distribution of detected volumes for all the images

reconstructed with the soft and hard kernels. Figure 3.17 shows a direct comparison

between the hard and soft kernel image segmentations, where the softer kernel results

in a thicker segmentation. The figure also provides an example of how the appearance

of the images may change between the reconstruction kernel used.

Using the soft kernel images, differentiation by bright pathology finding is less clear.

The mean segmented volume in finding negative images was 9.0 cm3 (s.d. 8.8 cm3,

median 6.5 cm3). For the finding positive images this increased to 11.0 cm3 (s.d.

16.7 cm3, median 7.1 cm3). Although remaining statistically significant (p < 0.001),

this difference is less apparent than for hard kernel images (figure 3.15b).

In general across the images, a softer kernel results in a thicker segmentation.

Due to the nature of the segmented regions, any volume measurements are extremely

sensitive to this thickness change. In some cases (and as shown in figure 3.16),

a difference in volume arises because new regions were segmented — sometimes

regions which are segmented in hard kernel images extend further in the equivalent

soft kernel images. This may be due to an increased ambiguity — areas which the

algorithm could differentiate in hard kernel images may be less distinguishable in

soft kernel images. This may also arise because of a minimum tumour thickness
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which the algorithm can segment (this is discussed further in section 3.8.1).

(a) Hard Kernel (b) Soft Kernel

Figure 3.15: Comparison of predicted MPM volumes reconstructed by
hard 3.15a and soft 3.15b kernels. Subjects are stratified into finding
positive and finding negative. Note that different axis limits are used
for the hard and soft kernel subplots.

Observation of outliers:

Using both hard and soft kernel reconstructed images, 94/100 upper outliers were for

subjects reported to have a bright pathology finding. Many images show evidence of

pleural thickening and considerable pleural effusion. Examples of 9/100 outliers are

provided in figure 3.18. The training data only contains unilateral examples of MPM,

however it is likely the algorithm has not fit to this aspect of the data. Several of the

upper outliers in figure 3.18 show subjects with pathologies in both lungs which have

been identified by the algorithm. By design, the algorithm had sufficient receptive

field to encompass the entire image, and had the capability to use information in

one lung to guide any tumour delineation in the other, however the unilateral nature

of the disease in the training data appears not to have been learned. It is likely the

algorithm would generalise to measurement of bilateral examples of MPM, although

such cases are exceptionally rare. The remaining 6/100 images with no reported

bright pathology finding associated were abnormal. For one, the automated method

segmented volume in the liver. Generally, the algorithm segmented more around

the diaphragm, and this region was where false positives were most frequent. This
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is a region where axial slices are particularly difficult to interpret, and where more

extensive 3-D information could help disambiguate the images.

Figure 3.16: A histogram of MPM volume predictions across the
NLST dataset, stratified by hard or soft image reconstruction kernel.

95



Figure 3.17: Top row: a comparison of corresponding hard-kernel
(left) and soft-kernel (right) reconstructed images from the NLST study,
with an overlay the segmentation produced by one of the 7-fold models.
Bottom row: A cropped region corresponding to the green box in the top
row, showing the smoother appearance of the soft kernel reconstructed
images.
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Figure 3.18: A selection of images from the NLST study for which
the algorithm predicted a relatively high volume of MPM tumour. The
images are overlaid with segmentations by a random selection of the
7-fold models.
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3.7 External Validation

In this section, material is presented which is based on “Fully automated volumetric

measurement of malignant pleural mesothelioma by deep learning AI: validation and

comparison with modified RECIST response criteria” which was published in the

journal Thorax [27]. This work was completed as a component of a multi-centre

collaboration between Mesothelioma specialists based at the Queen Elizabeth Univer-

sity Hospital (Glasgow, Scotland) and Canon Medical Research Europe (Edinburgh,

Scotland). This group of clinical collaborators examined the performance of the

algorithm described in Section 3.5 on a novel, multi-centre validation set.
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3.7.1 Methods

Data: The external validation set consisted of 60 CT images (pre- and post-

treatment) of a total of 30 patients with MPM from Glasgow (n=10), Wythenshawe

(n=10) and Leicester (n=10). These cases were selected from two multi-centre MPM

boimarker studies (DIAPHRAGM, Diagnostic and Prognostic Biomarkers in the

Rational Assessment of Mesothelioma [88] and PRISM, Prediction of Resistance to

chemotherapy using Somatic Copy Number Variation in Mesothelioma [89]). All

images were annotated using Myrian Intrasense software by two respiratory physicians

with doctoral training in MPM.

Algorithm: The algorithm (previously described in Section 3.5) was developed

on seven folds of analysis, and for prediction on the novel test set the results from

these seven-fold algorithms were ensembled by averaging the MPM tumour volume

predictions. DICE coefficients were computed for each of the seven-fold algorithms

individually, and the average of these coefficients is reported.

Volumetric Response Classification: For the external validation set, tumour

volume change was computed for the manual and automated MPM measurements.

This was calculated as:

∆V =
Vf − Vi

Vi

× 100, (3.3)

where Vi and Vf are the pre- and post-treatment volume measurements respec-

tively. Tumour volume change was grouped into three classes: Partial Response

(PR), indicating a ≥ 30% reduction; Progressive Disease, indicating a ≥ 20% reduc-

tion; and Stable Disease (SD), for those cases which did not meet the PR and SD

thresholds. These criteria are based on the mathematical modelling of Oxnard et

al. [90], which show that the grouping by these thresholds accurately reflect those

disease classifications achieved by the mRECIST scoring system. The modelling

assumes tumours which are approximately crescent-shaped.

Statistical Analysis: Depending on the distribution, the median (IQR) or mean

(SD) were used to summarise data. Mostly, the data was non-normally distributed, so

non-parametric tests were used. For paired volume data (e.g. comparing automated

and manual measurements, or pre-treatment and post-treatment measurements)
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the Wilcoxon matched-pairs signed rank test was used. Correlation was assessed

using the Spearman’s rho test and Bland-Altman analysis was used to evaluate

agreement between the automated and manual assessments. For voxel-wise tumour

segmentation comparisons, region overlap was scored using the Dice coefficient

(which is equivalent to the F1 score). Comparison between response classification

by mRECIST scoring, manual volumetry and automated volumetry was assessed by

the Cohen’s kappa statistic. The Kruskal-Wallis was used to compare the differences

in disease classification by the Kruskal-Wallis test, and the Dunn’s test was used

for multiple comparisons. Survival analysis was performed using the Kaplan-Meier

methodology.

Inter-observer and intra-observer variability for manually derived tumour volume

measurements was assessed by the intraclass correlation coefficient (ICC). For the

interobserver comparisons, 10 randomly selected CT images from the DIAPHRAGM

study were re-annotated by an independent observer. For the intraobserver com-

parisons, 10 images (averaging 225 slices per image) were re-annotated by the same

observer after at least three weeks had passed since the primary annotation.

For the statistical tests, SPSS (V.24.0, Chicago, USA), GraphPad (V.9.1.0, San

Diego, USA) and MATLAB (V.9.10, MathWorks, Natick, USA) were used.

3.7.2 Results

Fidelity to reference human annotations by region overlap Comparing

manual and automated segmentation over the test set, the mean Dice coefficient

was 0.55 (SD 0.12). A mean Dice coefficient of 0.54 (0.08) and 0.54 (0.16) was

achieved for the two sub-cohorts of 10 CT scans used to assess interobserver and

intraobserver agreement. In comparison for these CT datasets, this was higher than

the agreement with a second human reader (mean DICE 0.36 (0.1), p=0.002), but

lower than the agreement achieved by repeat annotation by the same reader (mean

DICE 0.61 (0.09), p=0.014).

Human versus AI volumes: Manual and automated measurements of tumour

volume were strongly correlated (r=0.851, p≤0.0001) (shown in Figure 3.19), and

Bland-Altman analysis showed a mean bias of +31 cm3, which was not significantly

different to zero (p=0.182), and 95% limits of -345 to +407 cm3 (shown in Figure

3.19). These results were similar when computed on the sub-groups of pre- and
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Figure 3.19: Correlations (panels A and C) and Bland-Altman
analysis (panels B and D) comparing manual and automated MPM
volume measurement. Panels A and B show the results on 80 scans
from the cross-validation set (which have been provided in Section
3.6). Panels C and D show the results on the 60 scans in the unseen
validation set.

post-treatment volumes. For the Bland-Altman analysis, there were four outliers.

Two oversegmented scans showed, when inspected by MPM experts, one case of a

mistaken inclusion (by the algorithm) of atelectatic lung overlying the hemidiaphragm

(shown in Figure 3.20 B) and a second case where the algorithm segmented a region

of benign pleural thickening in the tumour-free lung of a subject with unilateral

disease (shown in Figure 3.20 C). Those under-segmented outliers showed failures to

include fissural tumour (shown in Figure 3.20 A).

Volumetric change following chemotherapy: For volumetric change, the pre-

and post- treatment volumes change was not statistically significant (by manual

measurements: 366 cm3 (244 to 656) vs 328 cm3 (225 to 663), p=0.196; by automated

measurements : 427 cm3 (220 to 682) vs 371 cm3 (122 to 689), p=0.081). Manual and

automated assessment of volume change were closely correlated (r=0.611, p=0.0003)

(shown in Figure 4A). A mean bias (automated minus manual) of +2.1% which

was not significantly different to zero (p=0.425), 95% limits of agreement -59.6%

to 55.5% (see figure 4B). For the volume change classification into the PR, SD and
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PD categories, there was agreement between the manual and automated methods in

20/30 (67%) cases, with κ=0.439 (0.178 to 0.700) (shown in Figure 3.21 C). When

response was simplified to non-PD versus PD (by the combination of the SD and PR

categories), agreement increased to 26/30 (87%), κ=0.586 (0.227 to 0.945) (shown in

Figure 3.21 D).

mRECIST versus AI volumetric response: Moderate agreement was achieved

between volume change classification by mRECIST and the automated approach. For

16/30 (55%) cases there was agreement, κ=0.284 (0.026 to 0.543) (shown in Figure

3.22 A). When response was simplified to non-PD versus PD (by the combination of

the SD and PR categories), agreement increased to 20/30 (67%), κ=0.223 (-0.128 to

0.574) (shown in Figure 3.22 B)

Survival analyses: The median survival duration for the 30 subjects in the

validation cohort was 377 days (with a median follow-up of 4.7 years). There were

no significant trends between survival and tumour volume change classification by

the mRECIST, manual volumetry or automated volumetry approaches. However,

baseline tumour volume was significantly associated with survival by both manual and

automated measurements (HR 4.01 (1.67 to 9.64) p=0.0019 for manual volumetry,

and HR 2.45 (1.08-5.55) p=0.010 for automated volumetry).
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Figure 3.20: Outliers from the Bland-Altman analysis shown in
Figure 3.19. For two cases in panel A (a pre- and post- treatment
image from the same subject) the algorithm undersegments a region
of fissural tumour (arrow). In panel B, a case where tumour has been
oversegmented by the automated approach is shown, where an area
of atelectatic lung overlying the right hemidiaphragm is erroneously
included (arrow). Panel C shows a case where a region of benign pleural
thickening is included in the automated tumour segmentation (arrow).
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Figure 3.21: Panel A shows the Spearman’s correlation for volumet-
ric change between the automated (AI) and manual (human) derived
measurements. Panel B shows the corresponding Bland-Altman anal-
ysis. Panel C shows a confusion matrix between the automated and
manual classifications, as dichotomised into Partial Response (PR),
Stable Disease (SD) and Progressive Disease (PD) categories. Panel D
shows a confusion matrix where the SD and PR categories have been
combined.
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Figure 3.22: Panel A shows a confusion matrix of tumour change
classification agreement by mRECIST and the automated approach,
as dichotomised into Partial Response (PR), Stable Disease (SD) and
Progressive Disease (PD) categories. Panel B chows a corresponding
analysis where the SD and PR categories have been combined. Panels C
and D show both the mRECIST and automated volume change classifi-
cations against the gold standard measurement - manual measurements
of volumetric change.
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3.8 Discussion

Although there is no curative treatment for MPM, tumour volume measurements

would support clinicians to find the most effective care for each patient, and could

enable more powerful clinical trials. Manual measurements of volume are too time-

consuming to be routine, and still suffer from uncertainty. Some of this uncertainty

arises from ambiguous features in the images — many structures appear very similar

to MPM tumour in CT images. Manual measurements require significant clinical

expertise to disambiguate the images, the expert uses an understanding of anatomy

and experience of how the tumour develops. The distillation of such complex domain

knowledge makes the application of traditional image analysis techniques complex.

Such tasks, however, are where deep learning is readily applied.

Distilling expertise does not overcome the inherent uncertainty in annotating a

tumour of this shape, with an unusually high surface-to-volume ratio. The large

proportion of edge voxels means that any volume measurement is highly sensitive to

the edge dilatation of the tumour segmentations - changing the boundary by half

a voxel can change volume measurements by up to 60% (based on the analysis of

tumour shapes from the DIAPHRAGM study). This poses many technical challenges

— for the automated method, we have shown that in the regime of narrow segmented

regions in MPM negative subjects, the choice of reconstruction kernel consistently

impacts measurements.

3.8.1 Critical analysis

Generally, the literature shows significant variability in MPM tumour measurements.

Sensakovic et al. [76] found an inter-observer mean Dice coefficient of 0.68 across slices

from 31 subjects. Gudmundsson et al. [82] achieve a mean Dice coefficient of 0.690

on slices which are selected to contain pleural effusion. This mean Dice coefficient

increases to 0.780 on a second test set, containing different disease characteristics.

Over full volume images from 15 subjects, Chen et al. [75] achieve a Dice score of

0.825. Our mean volumetric Dice coefficients of 0.64 (by multi-fold analysis) and

0.55 (by independent testing) is lower than that achieved by Chen et al. Some of the

difference may arise from the semi-automated nature of their approach, however on

some images we achieve similarly high Dice coefficients. Across our cohort, higher

Dice scores were achieved for images where the tumour was thicker — these are
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images which are inherently easier to annotate, both manually and automatically, and

a higher Dice coefficient is more easily achieved. Although these comparisons provide

interesting context, we can only draw limited conclusions without a like-for-like

comparison between methods on the same cohort.

3.8.2 False Positive Rate Estimation

Further large scale analysis across data from an independent study indicates that the

algorithm is robust to the majority of negative cases. This is a one-sided analysis,

and does not provide a measure of sensitivity, however analysis of outliers shows the

algorithm is providing plausible output. Where the predicted volumes are highest,

the algorithm confounds other bright pathologies with MPM tumour — most of

the outliers are unhealthy, and many have images similar in appearance to those

from MPM positive subjects. We would not expect the algorithm to be capable of

distinctions between many pathologies and MPM tumour based on the images alone.

The analysis suggests that the choice of CT reconstruction kernel is significant

where there is little or no MPM present. Smoother images may increase the ambi-

guity in delineation at the edges of the tumour, and given the algorithm has only

been trained on positive cases, it is likely to be biased towards inclusion of these

ambiguous regions. As mentioned in section 3.6.4, for some cases using a softer

image reconstruction results in additional segmented areas, which could be due to

an increased image ambiguity in these regions, or because a larger spatial extent

is more likely to be detected by the algorithm. By its design, the CNN outputs

smooth and continuous probability maps. After thresholding, it is unlikely that

segmented regions will be narrower than a few voxels. Generally, for measurements

of MPM tumour this is not a problem, however for the NLST cohort images that

show pleural thickening, it is possible that a thickened pleura is thinner than the

algorithm can segment. In CT images, a healthy pleura is invisible, and a thickness

of even one or two voxels may be significant. Expanding a region of bright pleural

thickening (or other pathological regions) in the images by using a softer kernel may

slightly increase the thickness of these regions, allowing them to be detected by the

algorithm. We note that inspection of several outliers in the cross-validation on MPM

positive subjects did show undetected, thin tumour regions (section 3.6.2). It is

possible that for these outliers, the choice of reconstruction kernel would also impact
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any automated measurements. To overcome this, an algorithm which segments the

images at an increased resolution may be more appropriate.

Of the images from the PRISM and DIAPRAGM studies, 107/123 were recon-

structed using soft kernels. This leaves 16/123 hard kernel images, and meaningful

statistics could not be derived to measure how the manual annotations were impacted

by reconstruction kernel. It may be that the algorithm is biased by reconstruction

kernel imbalance in the training data — it is possible that segmenting greater volumes

would be measured as higher segmentation performance for subjects with known

MPM. This cannot be determined by analysis of cases with no known MPM.

For the task of MPM segmentation on histologically confirmed cases, where the

disease characteristics can vary dramatically between subjects, as well as between

time-points and observers, performance of an algorithm depends heavily on the

training and testing cohort. An increased variance between subjects means that

a large and diverse test set is required to truly establish whether any automated

method can generalise to unseen cases. A potential limitation of this work is that

we have demonstrated the performance of the algorithm on 80 subjects which have

not undergone treatment for the disease, all from imaging centres based in Glasgow,

all annotated by a single observer. Images from a further 14,965 subjects from 33

different centres have provided an insight into some aspects of algorithm performance

on independent images. However, to truly understand performance, more images

containing MPM tumour (with ground truth segmentations) are required. We have

used an unusually large cohort with full volume annotation of MPM tumour, however

a large, independent and varied test set by multiple observers is still necessary to

truly determine the performance of this algorithm.

3.8.3 External Validation

For the independent validation set (60 CT datasets), the mean difference between AI

and human volumes was not significantly different to zero with 95% limits of -345 to

+407 cm3 (shown in Figure 3.19 C and D). Segmentation errors exceeding this interval

were observed in 4/60 cases, and were related to fissural tumour, contralateral pleural

thickening and adjacent lung atelectasis. These are important features of MPM, and

it is possible that further expansion of the training set to include more similar cases

may improve algorithm performance.
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The mean bias decreased from +142 cm3 on the internal cross-validation set to

31 cm3 for the independent set. This is likely to reflect the inclusion of subjects from

the DIAPHGRAM study in the training set — these were subjects with early stage

disease, and often extremely thin tumour. It is from cases from the DIAPHRAGM

set that the interobserver DICE coefficient was found to be 0.36, showing again

that these cases were extremely challenging to annotate. The automated method

tended towards over segmentation of the tumour for these cases. The predicted

segmentations by the algorithm are extremely sensitive to the choice of the model

threshold, and it is possible that an optimal threshold for one cohort (or, in this

case, disease stage) is sub-optimal for another. This manifested in the necessity to

denoise the ground truth for the early stage cohort, whilst the test set ground truth

was more contiguous between slices due to a thicker tumour region.

Only moderate agreement was achieved for disease classification by the automated

approach and the mRECIST score. This may be due to the improper selection of

cut-points to classify the volumetric tumour change, as low agreement was also

found between manual volumetry and the mRECIST scoring system. For all the

disease classification approaches, no significant relationships were found between

classification and outcome, however an association was found between the initial

tumour volume and survival as assessed by manual and automated volumetry.

The Dice coefficient between observers on a sub-cohort of 10 cases was 0.36. This

was a particularly challenging sub-cohort to annotate, with predominantly early stage

disease. It would be beneficial to repeat this analysis on a larger number of cases,

with more varied disease characteristics. Whilst over a small cohort, this relatively

low agreement score has implications for the algorithm. Where varied interpretations

between observers exist, it would be beneficial to evaluate the proposed approach

on a set annotated by multiple observers. This would allow the extent to which the

algorithm is over fit to one observers interpretation of the disease to be determined.
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Chapter 4

Conclusions

I have developed and evaluated two algorithms to quantify cancers which grow in

and around the lungs. The first algorithm is for the detection of lung nodules, which

may precede lung cancer. The second cancer is mesothelioma.

4.1 Lung Nodule Detection by Deep Learning

I developed a novel algorithm for lung nodule detection which was of a two-stage

design, and benchmarked it against two publicly available high-performing algorithms

(DeepLung DPN and DeepLung ResNet-18). The evaluation was conducted in three

parts: an LIDC-IDRI multi-fold analysis, and LIDC-IDRI held-out test set analysis,

and an independent NLST analysis. LUNA CPM scores of 0.784, 0.807 and 0.684

were achieved for these analysis respectively and peak nodule sensitivities ranged

from 84% to 91% across these analysis. The novel algorithm was found to be

equivalent in performance to the benchmarks, and also comparable in performance

to other works cited in the literature. Critically, the extent to which the testing

data impacts performance was shown, and how the most important component of

assessing performance is the data (both in terms of image qualities and ground truth)

on which analysis is conducted. It is likely that the assessment on NLST is a better

approximation to the real-world performance of these methods. Following this, I

formulated a novel invention (published as a U.S. Patent), whereby hierarchical

relationships (e.g. those that exist between lung and lung nodules) can be leveraged

to increase DL algorithm performance. Analysis showed the approach qualitatively

improved resultant lung segmentation, and quantitatively improved lung nodule

detection performance for the first stage lung nodule detector.
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Future Work

An invention to impose hierarchical relationships was presented and demonstrated

on the first stage “In-House” nodule detector, however its benefit on the entire

detection pipeline was not evaluated. Future work would involve a full integration

and assessment of this invention within the pipeline as a whole, to ascertain a

more complete assessment of both the impact to lung nodule detection and lung

segmentation.

As hardware capabilities continue to improve, the maximum size of image volume

presented to DL algorithms increases. It is possible that further improvements could

be leveraged on the candidate proposal section of the “In-House” approach providing

a full 3-D volume to the CNN. This would improve its capability to leverage further

3-D information to disambiguate confounding structures.

From a clinical perspective, some false positives are more tolerable for a CAD

system to flag than others. For example, a false positive which is detected in the

stomach is a more glaring error than a false positive in pathological regions of

the lung, and would not promote confidence in an automated tool. The extent to

which this problem exists may not be apparent in the numerical performance of the

algorithm, and thus further development would be usefully informed by a review of

the tool by an expert, and detailed feedback on the types of errors observed.

4.2 Mesothelioma Measurement by Deep Learning

A novel algorithm was developed to fully-automate the process of MPM measurement

based on CT images. An algorithm was developed using 123 CT images containing

MPM, and multi-fold analysis reported across 80 CT images showed a mean Dice

coefficient of 0.64 for segmentation accuracy. Volumetric measurements were not

significantly different from zero, and 95% LOAs between -417 and +363 cm3 were

achieved using de-noised ground truth. A qualitative evaluation over 14,695 subjects

was conducted to ascertain algorithm robustness, and images which were identified

by the algorithm showed evidence of hyperdense pathology, pleural thickening, and

significant pleural effusion.

The algorithm was subsiquently tested on an independent dataset of 60 CT

volumes from 30 patients, and the resultant tumour segmentation maps were reviewed
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and analysed by MPM specialists. The algorithm bias for volumetric measurements

remained low (+31 cm3), and 95% LOAs of -345 to +407 cm3 were achieved. These

results were highly consistent to those achieved by multi-fold analysis. The mean

Dice coefficient for segmentation accuracy was 0.55. Additional analysis showed

that for a subset of 10 cases, the algorithm Dice score was superior than that of

an inter-observer comparison between two human readers (0.54 versus 0.36), but

inferior to repeat annotation by the same observer (0.54 versus 0.61), demonstrating

that the algorithm is performing within the level of agreement that exists between

independent observers for this subset of the data. Volumetric change classification

was assessed, and the algorithm was in agreement with the gold-standard manually

derived classification for 67% of the 30 cases.

The task of manual MPM tumour segmentation is too time consuming to be

routine, and the standard mRECIST scoring system is often incapable of accurately

characterising tumour development. This work shows a proof-of-concept algorithm

which automates the process of full volumetric segmentation. The results are highly

encouraging, showing similar agreement between the algorithm and a human expert

as exists between human observers. Whilst encouraging, an independent test set

of 30 cases is too small to draw any definitive conclusions on real-world clinical

utility for volume change assessment, due to the high degrees of variability in disease

characteristics between subjects. This work represents an important first step towards

an improved ability to routinely accurately discern progression of MPM.

Future Work

Automated image analysis techniques continue to rapidly progress in performance,

and a number of new techniques have been developed in the field. For MPM

prediction, the necessity to marry local high-resolution prediction accuracy with

a more global understanding of any present pathology is an important factor to

consider. For the presented works, the algorithm consumed contextual neighbouring

slices. However, in areas such as the apex of the lung, distinction between healthy

and unheathly lung was not always possible based on those provided image slices,

resulting in low accuracy for these regions. Simple post-processing (e.g. limiting the

predicted segmentation to the largest predicted tumour regions) did not improve

the scores. It is likely that a more sophisticated approach would yield improved
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performance. Specifically, multi-resolution approach, or one which could consume

the entire patient volume as input would be of benefit. This would allow the strong

prior of uni-lateral disease to be fully leveraged, and the full 3-D shape prior of MPM

to be better incorporated by the model.

The presented algorithm was developed and validated using segmentations by one

expert annotator. For a disease such as MPM, where agreement between observers is

low, it is likely that a level of over-fitting has occurred which has not been measured in

the results — the algorithm may be strongly fit to an individual interpretation of the

disease. Thus, the work would benefit from validating (and training) the algorithm

on data annotated by different experts, so that the extent of this over-fitting may be

determined.

This work is being continued under the PREDICT-Meso network, comprised of

MPM experts from across Europe. The presented algorithm will be utilised, tested

and further developed on novel data.
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4.3 Overall Conclusions

Automatic approaches for the measurement of two types of cancers have been

presented: lung cancer and mesothelioma. For lung cancer, I developed an algorithm

for computer assisted detection of lung nodules from CT images. At a setting of 8

false positives per scan, nodule sensitivities ranged from 84% to 91% across three

analyses on different data. This was competitive with other works. Following this, I

developed a novel approach to leverage the related task of lung segmentation. This

was shown to improve nodule sensitivity for the first stage detector, and qualitatively

improved lung segmentation in pathological regions. For mesothelioma, I developed

the first fully automatic segmenter of disease based on CT images. Previously, only

semi-automated approaches had been conceived. On an independent test set, bias for

volumetric measurements was low (+31 cm3), and 95% LOAs of -345 to +407 cm3

were achieved. This algorithm has the potential to greatly reduce the time and cost

to accurately measure the disease, and may enable wider study into new treatments.

4.4 Future Work

Regarding computer assisted detection of lung nodules, the developed approach would

require to be extensively clinically evaluated before clinical deployment. There are

several ways the algorithm could be integrated into a reader assist tool, for example:

candidate nodules could be presented to the radiologist for subsequent review, or

those missed nodules could be flagged to the reader after their annotation has been

completed. The specifics of this integration would have an impact on the sensitivity

and specificity of the annotation pipeline as a whole. For the clinical evaluation

to accurately capture this performance, the next step would be to integrate the

algorithm into a tool to assist radiologists.

The development of a fully automatic mesothelioma segmentation algorithm

opens up several avenues of further work. To date, research into novel treatments

has been limited. This is partially due to the expense in determining treatment

efficacy accurately. In the future, the presented algorithm may be used to provide

proxy endpoints for clinical trials into novel treatments, or to facilitate larger scale

retrospective analysis of individuals who have had the disease. There is also the

potential for this tool to be employed in routine care, to estimate tumour volume
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or tumour volume change. These quantities are related to to the outcome of the

disease, and could be used for more accurate staging of patients. Importantly, the

algorithm sets a benchmark for future development of automatic approaches. This

work is being undertaken as a part of the PREDICT-Meso network.
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