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Abstract

A promising tool to achieve more flexibility within power systems is demand response (DR). End users

in many strands of industry have been subject to research regarding the opportunities for implementing

DR programmes. We review recent DR modelling approaches in the realm of energy systems models

and industrial process models. We find that existing models over- or underestimate the available DR

potential from an industrial end user for two main reasons. First, the interaction between power system

operation and industrial process operation caused by DR is not taken into account. Second, models

abstract from critical physical process constraints affecting the DR potential. To illustrate this, we

discuss the wastewater treatment process as one industrial end user within the energy-water nexus, for

which the lack of suitable modelling tools is affecting the accurate assessment of the DR potential. Case

studies indicate the potential for wastewater treatment plants to provide DR, but no study acknowledges

the endogeneity of energy prices which arises from a large-scale utilisation of DR. Therefore, we propose

an integrated modelling approach, combining energy system optimisation with the level of operational

detail in process simulation models. This will yield a higher level of accuracy regarding the assessment

of DR potential from a specific process, such as wastewater treatment.
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1. Introduction

With increasing power generation from renewable energy sources (RES), electricity supply be-

comes increasingly variable. This necessitates more flexible energy demand sources, which can adapt

to the variability in supply by providing Demand Response (DR). DR can be defined as “changes in

electric use by demand-side resources from their normal consumption patterns in response to changes in

the price of electricity, or to incentive payments designed to induce lower electricity use at times of high

wholesale market prices or when system reliability is jeopardized.“(Lee et al., 2013). The implementation

of DR programmes reduces peak demand, such that the output from expensive and carbon-intensive

peak units is decreased (Nolan and O’Malley, 2015). Consequently, it can help reduce the risk of power

outages, defer capacity investments, improve the reliability of the system and is likely to reduce electric-

ity costs for energy consumers (Kim and Shcherbakova, 2011). Research has looked at the DR potential

of heating, cooling and transport extensively, but comprehensive assessment of the DR potential within

the energy-water nexus is still very limited.

In general, the energy-water nexus (sometimes also the energy-water-food nexus or the energy-

water-land nexus) refers to all processes which represent linkages between the water system and the

energy sector, and the trade-off of both resources. Water is required for energy production (water

for energy), energy is required for water services (energy for water), and both resources have close

interconnections in production and consumption of products. Against the background of climate change,

increasing global energy demand and increasing water scarcity (Rodriguez et al., 2013), research on the

energy-water nexus gains more and more interest. The connections between the energy sector and the

water sectors were first recognised in the early 2000’s, for example with a focus on India (Malik, 2002) or

California, US (Lofman et al., 2002). Since then, the number of publications on the energy-water nexus

has increased significantly, from 8 publications in 2010, to 131 publications in 2018 (SCOPUS, 2019).

The OECD acknowledges that “efficient management of the [land-energy-water] nexus resources needs

to take into account the direct and indirect effects of changes in the demand and supply of the various

resources on the whole biophysical and economic systems, as this is the only means to avoid negative

side effects and to create synergies“ (OECD, 2017).

Wastewater treatment is an important example of an electricity-intensive industrial process

with DR potential within the energy-water nexus. Electricity costs generally account for the highest

share of operating costs in medium and large-scale wastewater treatment plants (WWTP). Depending

on the treatment level and plant size, estimated electricity costs can range from 2 to 60 percent of

total operating costs. In countries with well-developed water distribution and treatment systems, the
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wastewater treatment sector can be a significant electricity consumer, accounting for about 3 percent of

total electricity consumption of a country per year (Gude, 2015).

Several case studies have found that energy-consuming processes within WWTPs, such as pump-

ing or aeration, allow for flexible operation. This potential flexibility, coupled with significant levels of

total energy consumption, makes the wastewater treatment sector an interesting potential provider of

DR from a power system perspective. However, there is no study which investigates the DR potential

of the wastewater treatment sector and its economic and environmental effects on the power system and

WWTP operation likewise.

In this paper, we investigate whether this is caused by a modelling gap among existing DR

models. Therefore, we summarise published literature on DR modelling within energy system models

and industrial process models. We find that the interaction between the power system and industrial

process caused by DR is not well accounted for in either of these models. In order to illustrate this, we

examine wastewater treatment as one particular end user process in detail. We point out that only a

few publications look into DR with a WWTP simulation model, although several case studies indicate

that there is significant potential for flexibility within WWTP operation. Case studies have analysed

the potential for flexibility in wastewater pumping, intermittent aeration, using built-in redundancy for

delaying treatment and sludge processing. The purpose of this paper is to demonstrate that the lack of

modelling tools in the DR literature leads to an underutilisation of readily available demand flexibility

in industrial processes, one example for this being wastewater treatment. In order to fill this gap, a

novel integrated energy-water system model is required to capture these flexibility options in a WWTP

process model in connection with the power system. In contrast to previous reviews of DR models, our

focus on the energy-water nexus offers a novel perspective on existing DR literature.

The paper is structured as follows. Section 2 summarises the literature on existing DR models.

We distinguish between energy system models, industrial process models and WWTP models. Since this

paper focuses on the DR potential of wastewater treatment for the power system, we briefly describe

energy costs in the water sector in section 3.1, before we describe the flexibility potentials within the

wastewater treatment process in section 3.2. We discuss the current modelling approaches for DR in

section 4 and propose the development of a combined system-process model for the analysis of the DR

potential from WWTPs. We conclude in section 5.

3
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2. DR models

DR is one of many sources of flexibility within energy systems that can be harnessed. We define

DR as any change of the usual electricity demand pattern in response to a price signal from the electricity

supplier. The individual characteristics of an end-user process, such as intertemporal interdependency

of processes, required timing precision in a process, or the energy infrastructure on site (i.e. electricity

meters and sensors) determine its DR potential and influence the decision for a DR strategy. One possible

option is load shedding, where the electricity use is reduced during peak hours without a change of the

consumption pattern during the rest of the time (Albadi and El-Saadany, 2008). Another option is to

shift electricity demand from peak to off-peak periods (Albadi and El-Saadany, 2008), while not reducing

the overall consumption. Load shifting is particularly beneficial for processes with a certain degree of

inertia or storage capabilities (Palensky and Dietrich, 2011). On-site electricity generation increases

flexibility in terms of electricity demand from the grid as well. However, we do not view this as DR

according to our definition, since producing electricity on-site does not lead to a change in consumption

pattern, but rather to a change in electricity supply sources.

The literature on DR modelling is extensive and comprehensive reviews on DR models have been

previously undertaken. For example, Boßmann and Eser (2016) analyse 117 DR models and cluster them

in terms of pricing schemes, electricity systems, specific end-uses and control-strategies. They find that

existing DR models are highly heterogeneous and the field lacks a body of standard models. One major

insight from their analysis is that the residential sector is in the focus of many models, while industrial

end-users are underrepresented. They also find that a majority of models deal with system performance,

while little attention is paid to control strategies. Deng et al. (2015) also perform a short summary of

DR models and categorise the existing literature in terms of the mathematical modelling approach. The

most used approaches are convex optimisation, game theory and dynamic programming. Other modelling

approaches include Markov decision processes, stochastic programming and particle swarm optimisation.

The review by Wang et al. (2017a) focuses on integrated DR in multi-energy systems. They focus on

DR provision by processes in between the energy sectors of electricity, thermal energy and natural gas.

It shows that research on the DR modelling of heat pumps and power-to-gas technologies is extensive.

However, they point out that most studies develop a detail model of these devices, while neglecting the

energy system effects. Zhang and Grossmann (2016) review scheduling models for industrial processes

in order to determine operational flexibility as a precondition to provide DR. Most of those models

focus on continuous processes, such as cryogenic air separation, aluminium and cement production, the

chlor-alkali process, flour and pulp production, machining and steel production. The authors find that

4
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the models reviewed either apply a network structure with material handling constraints or base the

modelling on operating modes, where the process can only operate in one of a number of predefined

states.

The present review represents a significant advance on the literature by considering and identi-

fying the differences between energy system models and industrial process models, particularly in their

treatment of DR. Furthermore, we provide detailed analysis of the DR potential of the wastewater

treatment process as a cogent example of an end user process, within the energy-water nexus, that has

received limited attention in the literature to date. This work shows that a sector-integrating energy sys-

tem model which can represent the wastewater treatment process as well as the power system dynamics

does not yet exist. None of the reviews addresses this gap among existing DR models with respect to

the energy-water nexus.

2.1. Energy system models

We review publications between 2001 and 2019 which incorporate DR within energy system

models. We focus on methodology rather than results for the purposes of this analysis. Most of the

models are economic dispatch (ED) or unit commitment (UC) models with a cost minimisation approach.

We also find some capacity planning models accounting for DR, as well as game theoretical models.

ED models aim to minimise the operating cost of the whole energy system by determining the

optimal power output and fuel consumption of each generator at each point in time (Zhu, 2015). Other

model outputs depend on the level of detail in the model. Most models incorporate the level of emissions

caused by fuel use, such that environmental effects are also in the scope of analysis. The optimisation

is subject to constraints including the energy demand, technological constraints of generating units,

availability of resources and fuels or regulatory constraints. Many models also incorporate the level of

emissions caused by fuel use, such that environmental effects are also in the scope of analysis. A simple

formulation of an ED model can be found in appendix 1.

UC models also determine the optimal output of each generator at each time step, but addi-

tionally consider that generators can be turned on or off dynamically. This means that not necessarily

all available generators in the system produce electricity all the time. The decision to engage a gener-

ator depends on the trade-off between the costs for that generator of providing energy and the costs of

switching it off. This makes the UC problem more complex than an ED, since the model is optimised

over the whole optimisation period at once. The mathematical structure of the problem changes from a

linear optimisation problem in the case of ED to a mixed integer linear programme for UC due to the

5
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Figure 1: Schematic energy system model

binary decision whether to switch generators on or off. An example of a simple UC is given in appendix

1.

Additionally, stochastic UC can be used for representing uncertainties related to renewable

energy generation (Papavasiliou and Oren, 2012) and studying their effect on the participation in DR

programmes. Figure 1 depicts the general structure of a traditional energy system model in the form of

an ED or UC model.

Game theoretic models of DR do not have a single objective function which is optimised for the

whole energy system, but acknowledge the presence of multiple players with individual objectives within

the system. The outcome of the optimisation depends on the structure of the game, e.g. the order in

which players choose their strategies and which information is available to them. Therefore, these models

can account for strategic behaviour among players, as well as for information asymmetries.

Subsequently, we review publications with respect to two questions: First, is the DR resource

modelled in a generic way or is the DR resource specified as a particular end-user? Second, does the

model integrate different energy sectors, such as electricity (E), heating (H), cooling (C), power-to-gas

(P2G) and transport (T)? These criteria will show whether there is a modelling gap among system models

for integrated energy system approaches with end-user specific DR. We also categorise the energy system

6
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models into UC, ED, Capacity Planning (CP) and Game Theory (GT) models. Furthermore, we describe

the focus of the publication, the methodology used and the case studies for which the model was tested.

A summary of the reviewed literature in terms of these criteria is given in Table 1.
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Table 1: Energy system models incorporating DR . . .

Publication Focus DR modelling Energy
sectors

Model
type

Methodology Case study

Generic DR
Keane et al. (2011) Wind penetration Load shifting units as energy stor-

age
E UC deterministic MILP

(WILMAR)
Ireland

Dietrich et al. (2012) Wind penetration Centrally chosen DR and elastic
demand

E UC deterministic MILP Gran Canaria

Wang and Li (2015) Wind penetration DR aggregators E UC two-stage stochastic pro-
gram

PNJM 5-bus system,
IEEE 118-bus system

Kwag and Kim (2012) DR constraints Virtual generations units, self-
provided customer information

E UC stochastic DR participa-
tion, MILP

6-bus test system

Papavasiliou and Oren (2012) Decentralisation Decentralized approach: bid valu-
ations and DR in objective func-
tion; centralized approach: DR de-
termined by system operator; Cou-
pling: deferrable loads coordinate
with renewable suppliers

E UC two-stage stochastic MILP Model of the Western
Electricity Coordinat-
ing Council (WECC)

Ikeda and Ogimoto (2013) Energy storage generic DR resource E UC stochastic model Power systems in
Tokyo and Tohoku

Liu and Tomsovic (2014) Demand bidding Duplex bids in energy market and
reserve market

E UC,
ED

two-stage stochastic MILP IEEE Reliability Test
System

Behrangrad et al. (2012) Air conditioning DR aggregator E, C UC,
ED

stochastic real-time dis-
patch

32-unit test system
IEEE RTS 1996

Wang et al. (2013) Spinning reserve Aggregation into virtual power
plants

E ED non-linear program with
stochastic loads

Modified version of the
IEEE 14-bus transmis-
sion system

Moura and de Almeida (2010) multiple objectives Shift of demand curve E ED LP Portugal
Abdi et al. (2016) Non-linear responsive

loads
Total hourly demand elasticity E ED non-linear deterministic

model
ten units test system

Xu et al. (2017) Wind penetration elastic loads and dynamic incen-
tive mechanism

E ED stochastic MILP IEEE 24-bus Reliabil-
ity Test System

Tan et al. (2014) Energy storage generic DR E ED non-linear two-stage model IEEE36 node 10 ma-
chine systems

Choi and Thomas (2012) Environmental policies Demand elasticities E CP deterministic MILP Georgia, US
De Jonghe et al. (2012) Wind penetration elastic demand functions that ac-

count for load shifts among hours
E CP Static, single node LP, with

DR added as complemen-
tarity or quadratic pro-
gram, or Piece-wise Integra-
tion algorithm

Denmark

Koltsaklis et al. (2015) Capacity development Reference demand and Monte
Carlo Simulation

E CP Multi-regional, multi-
period linear MILP

Greek power system

continuation on the next page
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Table 1: Energy system models incorporating DR . . . (cont.)

Publication Focus DR modelling Energy
sectors

Model
type

Methodology Case study

Specific DR
Zhong et al. (2015) Industrial consumers Load adjustment costs, individual

load profiles
E UC deterministic MILP IEEE 30-bus system

and a real-world sys-
tem in China

Paulus and Borggrefe (2011) Energy-intensive
industries

Technical constraints for five in-
dustrial processes

E CP stochastic LP (DIME) Germany

Mohsenian-Rad et al. (2010) Autonomous DSM be-
tween end-users

Household appliances connected to
automatic ECS

E GT linear and convex program-
ming

Benchmark system
with 10 consumers

Lynch et al. (2019) Capacity markets DR aggregator and heat demand
derived from building model

E, H GT Mixed Complementarity
Problems

Irish test system with 6
generators

Shao et al. (2017) Integration of heat and
electricity

DR aggregator with connected
heating system

E, H ED,
GT

bilevel program, LP with
piecewise-linear demand
functions

30-bus test system

Linna et al. (2018) Diversified storage op-
tions

Energy hubs with P2G and heat
pumps

E, H,
P2G

ED,
GT

bilevel approach: nonlinear
and quadratic program

4-bus multi-energy sys-
tem, revised IEEE 118-
bus power system and
a 20-bus Belgian gas
system

Zhao et al. (2018) Industrial parks Model of integrated DR, composed
of separate models for Electricity
DR and heating and cooling DR

E, C, H,
gas

GT bilevel stochastic MILP Industrial park in
China, with 13 lower-
level factories and one
multi-energy operator

Hedegaard et al. (2012) Heat pumps Black-box heat pumps with heat
balance equation, with heat ac-
cumulation tanks or/and passive
heat storage of building

E, H ED deterministic MILP (Ener-
gyPLAN)

Danish energy system
in 2020

Papaefthymiou et al. (2012) Heat-pumps Detailed dynamic thermal simula-
tion model

E, H ED stochastic MILP (Pow-
erFys)

German electricity sys-
tem

Lund and Kempton (2008) EVs Aggregated vehicle fleet and oper-
ational constraints

E, H, T ED deterministic MILP (Ener-
gyPLAN)

Denmark

Soares et al. (2017) Uncertainty in PV,
EV, wind, market
prices

DR aggregator, incentive payment
for load reduction and EV fleet
with samples of driving patterns

E, T ED two-stage stochastic MILP system with 201 buses
from Zaragoza, Spain

Fehrenbach et al. (2014) Residential heating Thermal storage in buildings and
heat pumps via model constraints

E, H CP partial-equilibrium LP
(TIMES)

Germany

Zugno et al. (2013) Electricity retailers
and consumers

Three-state state space model for
heating dynamics and storage

E, H UC,
GT

bilevel programme and
single-level MILP

small test system with
3 consumers

9
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Generic and end-user specific DR

Most studies which investigate DR within an energy system model do not specify the type of

end-user providing DR, but rather incorporate a generic DR resource. For some models, this means

that DR is modelled as a portion of the total system demand, which can be shifted from peak hours to

off-peak hours. A mathematical example for this can be found in appendix 2. For example, this is the

case for Moura and de Almeida (2010), who develop an ED model with multiple objectives. In order to

incorporate DR into their capacity planning model for the Greek power system, Koltsaklis et al. (2015)

start with a reference demand function and use Monte Carlo simulation to derive a flexible demand

function.

Another way of modelling DR generically is to account for demand elasticity, either in the total

system demand or for different individual consumers. For example, Abdi et al. (2016) develop a non-

linear scheduling approach for responsive loads, where demand elasticities are defined for every hour. Xu

et al. (2017) also present a model of elastic load functions, combined with a dynamic incentive mechanism

to foster DR participation. De Jonghe et al. (2012) specifically include cross-price elasticities into the

elastic demand functions for individual consumers to account for load shifts among hours. Dietrich et al.

(2012) investigate the contrast of modelling DR by means of demand elasticities, taking into account

consumer preferences, with a scenario where DR is modelled as a DR resource that the system operator

can control directly.

Finally, a common way of modelling DR is the representation via DR aggregators or virtual

power plants. Kwag and Kim (2012) model DR resources as virtual power generating units and impose

operational constraints on them based on self-provided customer information. Keane et al. (2011) model

load shifting units similarly to energy storage units. They argue that the purpose of shifting demand

in time is the same for energy storages and DR resources. An example for DR aggregators is given by

Wang and Li (2015). They model five DR aggregators with heterogeneous cost structures and explore

how they affect each other with and without transmission constraints.

The advantage of these models is that by modelling DR in a generic way, the analysis can be

focused on the system effects of DR. For the research questions in these models, it is irrelevant how DR is

provided. However, there is a risk of over- or under-evaluating the available DR potential by not taking

into account the specific characteristics of an end-user providing DR.

In contrast, system models which incorporate specific DR resources are able to represent the

DR potential more accurately. Most commonly, those models introduce a homogeneous population of

10
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the respective resource and impose constraints on their operation. One early model which focuses on

DR from electric vehicles (EVs) is developed by Lund and Kempton (2008). DR is provided by an

aggregated vehicle fleet, and the optimisation is, inter alia, constrained by the total transportation

demand, distribution of transportation demand, power capacity of EV grid connection, maximum share

of EVs during peak demand, battery efficiency and capacity and the share of parked cars. Soares et al.

(2017) model an EV fleet with similar constraints and enhance the model by adding samples of typical

driving patterns.

Heat pumps are also often in the focus of DR system models and represented in a similar

manner. Hedegaard et al. (2012) model a heat pump population constrained by a heat balance equation.

Flexibility comes from heat accumulation tanks or/and passive heat storage of the respective building.

Similarly, Fehrenbach et al. (2014) include thermal storage in buildings and heat pumps via operational

constraints imposed on the optimisation problem.

Paulus and Borggrefe (2011) focus on the DR potential from energy-intensive industries. In their

capacity planning model, they investigate potential DR provision of the chlor-alkali process, mechanical

wood and pulp production, the aluminum electrolysis, electric arc furnace (to produce steel) and cement

mills for the German electricity system. For their analysis, they use the Dispatch and Investment Model

for Electricity Markets in Europe (DIME), which is a linear optimisation model that minimises total

system costs. Within this framework, Paulus and Borggrefe model DR resources with a potential for

load shedding similarly to power plants and processes with the potential for load shifting as energy

storage units. Technical restrictions which ensure minimal disruption of the production process and

cost parameters define the extent to which the DR resources are developed and exploited in the system.

Zhong et al. (2015) also focus on DR from industrial consumers. They introduce the concept of load

adjustment costs, expressing the willingness of consumers to change their load pattern. Thereby, the

operational constraints of the industrial process are implicitly included in the resulting load profiles of

the consumer, rather than directly in the optimisation problem.

Other DR system models address end-user specific DR with a two-stage optimisation approach.

For example, Zugno et al. (2013) model the relationship between electricity retailers and consumers

as a Stackelberg game with a dynamic pricing scheme. They formulate the optimisation problem as

a bi-level programme and model the thermal storage and heating dynamics in buildings via a three-

state, discrete-time state space model. Papaefthymiou et al. (2012) couple a detailed dynamic thermal

simulation model of specified reference buildings with an electricity system model. In a first step, the

thermal building model allows for the assessment of the operational restrictions of heat pumps within
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the building. Subsequently, the system model incorporates the building stock’s thermal behaviour as a

form of energy storage in an electricity market. A mixed-integer stochastic optimization model called

PowerFys is used for modelling the day-ahead and intra-day electricity markets with an hourly resolution,

with particular emphasis on wind forecast uncertainty.

Since these models account for specific characteristics of the respective end-user, the flexibility

and the quantity of DR provision are represented more accurately. This makes them more suitable for the

analysis of the effects of DR on both the energy system and the DR provider than models with generic

DR. By including the operational constraints for the end-user into a single-stage optimisation problem,

the system operator is assumed to be able to choose the optimal operation and DR provision of the

end-user. The analysis yields the optimal technically available DR potential, accounting for the mutual

influence of system operation and end-user operation. However, most models implement a homogeneous

population of one end-user type and impose operational constraints which do not account for the inner

processes of the DR resource. This can mean that important operational constraints are neglected, which

can lead to an incorrect estimation of the DR potential. In contrast, game-theoretic approaches with

specific end-users acknowledge strategic behaviour and informational asymmetries between DR providers

and system operators. The resulting two-stage optimisation problem can better account for operational

detail within the end-user process, but the solution is often sub-optimal, either for the end-user or for the

power system. So far, detailed models like this only exist for the thermal storage capacity of buildings,

where heating dynamics are taken into account.

Integrated energy system models and multi-sector models

Most DR models reviewed focus on analysing DR within the electricity system, and do not

account for other energy sectors. Among multi-sector DR models, one can distinguish between integrated

energy models and models of interlinked energy sectors. The majority of these DR system models focus

on the linkages between electricity and either heating or transport.

Integrated energy system models incorporate all relevant energy sectors into one optimisation

problem. The advantage of this approach is that the solution generally yields the global optimum for

the operation of the combined system. On the downside, the resulting multi-sector energy models can

be very complex, depending on the size of the system and the level of detail. Therefore, it is generally

not expedient to include a high level of detail into the modelling of individual technologies.

Lund and Kempton (2008) use a general energy system analysis tool called EnergyPLAN to

investigate energy sector integration within the Danish energy system. EnergyPLAN is a deterministic
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input-output model and integrates the electricity, transport, industry and district heating sectors. It

incorporates data on technology capacities in the system, conversion efficiencies between different energy

sources, energy demands, fuel costs and CO2 costs. The model outputs comprise energy balances,

energy supply, fuel consumption, electricity imports/exports, CO2 emissions, and costs. Within this

framework, Lund and Kempton investigate the linkages between the electricity sector and the transport

sector. They use the model to analyse the flexibility potential of EVs and the potential for the “vehicle-to-

grid" technology as an energy storage option. Thereby, they also investigate whether demand flexibility

in the transport sector can help reduce the excess of wind energy.

Soares et al. (2017) integrate the electricity and transport sectors in their model by taking into

account an EV fleet with system-wide operational constraints for charging and discharging. However,

other constraints on EV utilisation are not introduced (in contrast to Lund and Kempton (2008)).

Instead, different samples of driving patterns, using departure times and locations as stochastic variables,

are used. Hedegaard et al. (2012) also use EnergyPLAN for their analysis of DR within the electricity

sector and the heating sector. They explore the utilisation of compression heat pumps and heat storage

devices to integrate more wind energy into the power system.

Another single-stage optimisation model which investigates DR from the heating sector in an

integrated energy system is Fehrenbach et al. (2014). They use the TIMES (The Integrated MARKAL-

EFOM System) model, which is a widely used energy system optimisation tool and combines a-technical

engineering and an economic perspective. It uses linear-programming to produce a least-cost solution

for the energy system over medium to long-term time horizons (Loulou et al., 2005). Fehrenbach et al.

(2014) use TIMES for modelling the electricity and residential heat supply in Germany and to determine

capacity developments and dispatch of electricity and residential heat generation technologies until 2050.

Another approach is the subsequent optimisation of two energy sectors. This can be beneficial

when the level of complexity of one energy sector model is particularly high, such that an integrated

optimisation approach would be computationally intensive to solve. It is also suitable for models where

the operation of one energy sector is optimised depending on the operation of the other, such as in

game-theoretic approaches. However, vice-versa effects of DR cannot be studied in this context, because

the operation of one energy sector is assumed exogenous for the optimisation of the other energy sector

operation.

One example for a model of interlinked energy sectors is Papaefthymiou et al. (2012). They

couple a detailed thermal model of six reference buildings with a high-level electricity market model.

Different scenarios of heat pump operation (business-as-usual and demand shifting) are determined within

13
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the buildings simulation model and incorporated into the electricity model afterwards.

Zugno et al. (2013) use a three-state, discrete-time state space model for the heating dynamics

based on Halvgaard et al. (2012) to model electricity consumer decisions. The model considers indoor

temperature, floor temperature and the temperature inside a water tank directly connected to a heat

pump. Outdoor temperature is treated as a stochastic exogenous parameter and solar irradiation is

neglected. Electricity retailer decisions are then driven by profit maximisation. Although this bi-level

program is the starting point of the model, an integrated MILP is later derived such that the final

optimisation problem is solved simultaneously for both players.

In summary, the review shows that multi-sector DR is well explored for linkages between elec-

tricity, transport and heating. However, we did not find any DR system models that address potential

sources of DR within the energy-water nexus.

2.2. Industrial process models

The focus of our review now turns to DR within industrial process models. In contrast to

energy system models, industrial process models focus on a process, device or application of a particular

end user. Usually, these models take energy prices as an input and evaluate DR potential by comparing

different electricity tariff schemes. In some cases, these price patterns are derived from running an

electricity market simulation prior to the process model.

Modelling approaches for industrial processes can be either model-based or data-driven. One

model-based approach involves the detailed description of the system’s performance, e.g. its thermody-

namics and kinetics (Mitra et al., 2012). This requires the formulation of heat and mass balances for each

process module. The resulting simulation models often consist of a set of non-linear differential equa-

tions that are based on fundamental physical principles. Simulation models are suitable for analysing

the effects of different set-points for controllable parameters within the system (so-called controllers) on

the process performance.

However, following this approach can make a model extremely complex due to its non-linearity

and its size, rendering it difficult to solve for longer time horizons. Therefore, process optimisation

models focus on the electricity demand of the process and abstract from the physical details by using

LP or MILP approaches. The objective of these models is to find an optimal process schedule given

the technical constraints of the process and cost parameters. Despite their wide application, there is a

risk that these models over- or underestimate the DR potential by neglecting the physical details of the
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process.

Finally, data-driven approaches use regression models to establish a meaningful relationship

between input and output data of the respective process, for example by using machine learning tech-

niques. They require greater amounts of data compared to simulation models, but can be advantageous

when details of the process operations are unknown. A schematic industrial process model is given in

figure 2.

Figure 2: Schematic industrial process model

Several process models deal with the DR potential from industrial processes. For the selection

of relevant literature, we focused on the type of industrial process studied and the applied methodology.

Table 2 gives an overview of the reviewed industrial process models analysing DR.
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Table 2: Industrial process models incorporating DR

Publication Industrial process Methodology

Zhang et al. (2016) Industrial loads Model predictive control

Hindi et al. (2011) Industrial process Model predictive control

Ding and Hong (2013) Steel plant State task network (STN)

Ding et al. (2014) Industrial consumers STN and MILP

Reka and Ramesh (2016) Refinery industrial plant Resource-task network

processing model

Desta et al. (2018) Soft/hard biscuit production Finite state machine,

local search heuristic

Mohagheghi and Raji (2014) Vehicle cockpit manufacturing Fuzzy logic

Rodríguez-García et al. (2016) Industrial consumers Dynamic simulation

Ashok (2006) Steel plants Integer programming

Abdulaal et al. (2017) Industrial loads: multistage chiller system, Quadratic, stochastic, and

EV charging and discharging for evolutionary programming with

building’s demand support (V2B) multi-objective and

continuous simulation

Sianaki et al. (2018) Industrial consumers Linear programming

Schoepf et al. (2018) Paper industry Linear programming

Seier and Schebek (2017) WWTP Linear programming

Middelberg et al. (2009) Colliery process Binary integer programming

Wang et al. (2017b) Chlor-alkali plant Convex optimisation

Mitra et al. (2012) Air-separation process Deterministic MILP

Helin et al. (2017) Pulp an paper mill MILP

Ramin et al. (2018) Metal casting plant MILP

Jiang et al. (2018) Industrial consumers LP with piecewise-linear

heat and electricity demand

One possible and commonly applied control approach in industrial process models is Model

Predictive Control (MPC). It uses state variables and a detailed mathematical system model in order

to predict system outcomes based on stochastic system disturbances (Lauro et al., 2015). Usually, the

computational complexity of MPC models is high, but in contrast to data-driven approaches, they do

not have large data requirements from specific buildings (Lauro et al., 2015).
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Zhang et al. (2016) recognise that many industrial processes can technically provide fast DR,

but most of them can only vary electricity demand discretely in the form of certain Megawatts at a

time. However, providing fast DR can require a more granular change in power. In order to overcome

this, the authors propose a process model which incorporates on-site energy storage. As a case study,

the authors choose mills in a cement plant, which can be switched on and off very rapidly. An MPC

coordinates a large discrete power change provided by the industrial process and a small continuous

power change provided by the energy storage, such that the total power change accurately follows the

DR signal. The MPC approach combines a stochastic model for inputs, e.g. a price signal, with a

short-term optimisation of the connected processes. In the model, DR is achieved by incorporating the

satisfaction of the DR signal along with the number of switching actions in the objective function of the

optimisation model. The results demonstrate that the MPC regulates both the industrial loads and the

energy storage effectively to provide fast and high-quality DR.

Ashok (2006) develops a load model for small steel plants in India under a time-of-use (TOU)

tariff regime. A TOU pricing scheme consists of different tariff periods throughout the day, for example

peak and off-peak periods, with a higher charge during peak periods (Samad and Kiliccote, 2012). The

model is coupled with an optimisation formulation utilising integer programming for minimising the total

electricity cost satisfying production, process flow and storage constraints. The author claims that it can

also be applied to other batch-type processes. Middelberg et al. (2009) explore optimal control strategies

of the colliery process and conduct a case study for a colliery in South Africa. The control strategy

emerges from minimising the total electricity costs of the process, with a binary decision variable for

every module of the process. They discretise the time horizon of the optimisation window, which turns

the scheduling problem into an integer programme.

Mitra et al. (2012) develop a discrete-time, deterministic mixed integer linear model for schedul-

ing power-intensive continuous processes. The objective function is composed of the production cost,

inventory cost and transition cost of the process. This is minimised for every hour with an emphasis on

the operational transitions, which arise from switching the operating modes of the process modules. They

show that certain logic constraints limit the flexibility in control severely. Given an hourly electricity

price pattern, they conduct a case study on air-separation plants and cement plants and demonstrate

that their model yields practical schedules, while minimising the number of changeovers.

Ding and Hong (2013) provide a process model for industrial consumers which can incorporate

on-site electricity generation, e.g. by solar panels, wind turbines or waste heat recovery, and energy

storage. The mixed integer linear model is based on a state task network (STN) approach, which divides
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tasks into non-schedulable and schedulable. Hence, only schedulable tasks can be used to provide DR,

because they can be run in multiple operating modes, with varying production rates and electricity

demand. This structure yields a relatively straight-forward framework to model any industrial process

with a focus on DR. Ding and Hong (2013) demonstrate the model structure with the help of a case

study for steel manufacturing facilities. However, they do not provide any results on the scope of DR

in this case study nor specify the required DR algorithms and strategies according to which the tasks

should be scheduled.

In another study, Ding et al. (2014) apply the same model to the industrial oxygenating gen-

eration, which is part of many industrial processes like steel and glass manufacturing or wastewater

treatment. DR decisions are based on day-ahead hourly electricity prices. The optimisation yields a pro-

cess schedule where energy demand is shifted from peak to off-peak periods, which results in a reduction

of total energy costs.

Reka and Ramesh (2016) use a similar approach called resource-task network processing mod-

elling. They also distinguish between schedulable and non-schedulable tasks within the process, but pay

special attention to the resources consumed in every task. They use stochastic optimisation with discrete

time steps. The proposed DR algorithm aims to minimise the total process costs. The model is tested

with a case study for an oil refinery with on-site electricity co-generation facilities. The most energy-

intensive refinery sub-processes are desalination, hydro-treatment and crude oil distillation. Findings

suggest that employing DR strategies for schedulable tasks yields a shift in energy demand from peak to

non-peak periods.

Rodríguez-García et al. (2016) introduce a model for industrial customers to perform a cost-

benefit analysis of the implementation of DR strategies. In contrast to most other (prescriptive) models

that we found, this is a dynamic simulation model, which relies on the identification of typical load curves

by an energy audit. The decision criterion for whether a process should participate in DR is the difference

between the net amount of money that the industrial customer receives due to the participation in the

reserve energy market, and the expected benefit for the customer. The authors make the model available

to industrial customers as an online tool and show an application for a German paper factory. Although

they claim that the model has been validated in four real industrial sites from different parts of Europe,

it does not sufficiently account for the interdependence of sub-processes and therefore yields a skewed

picture of the economic DR potential.

Wang et al. (2017b) conduct a case study on DR from a grid-connected chlor-alkali plant with

an integrated on-site energy recovery system. They develop a communication and incentive scheme
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that incorporates day-ahead process scheduling according to the electricity contract, as well as real-time

DR. Total operating and environmental costs through producing, purchasing and selling electricity are

minimised while meeting production requirements. The results show that the average electricity costs

are lowest with an energy contract based on demand responsive behaviour.

Seier and Schebek (2017) develop a linear optimisation model of a WWTP that focuses on biogas

usage to cover electricity demand. They assess the effects of load shifting by WWTPs in Germany on

residual load smoothing. The residual load refers to the total power consumption minus the feed-in of

renewable energies. The load shifting potential arises solely from a biogas storage option, which can

be used to generate electricity on-site in a CHP plant. Seier and Schebek use a separate merit order

simulation to model wholesale electricity prices, which are then fed into the WWTP optimisation.

The review of industrial process models shows that no model accounts for the vice-versa in-

teraction with the power system when providing DR. Instead, models account for the electricity sector

by using electricity price patterns as a model input. That means that the effects of industrial DR on

the power system are out of the scope of these models. We only find one publication which specifically

deals with DR from WWTPs (Seier and Schebek, 2017). However, the model represents WWTPs solely

as biogas users or providers and neglects all other processes within a WWTP. In order to perform an

analysis of the effects of DR provision on the whole process, a process simulation model can be more

suitable.

2.3. WWTP models

Within end user process models, one example for a well-established process simulation model

is the Activated Sludge Model 1 (ASM1), developed by Henze et al. (1987) to model municipal acti-

vated sludge plants. Activated sludge is the most common technology used in WWTPs with secondary

treatment. The purpose of the process is the removal of biodegradable organic matter, nitrogenous

compounds and suspended solids (Tchobanoglus et al., 2003). The core process includes the injection of

air into the reactor tanks, which facilitates the growth and respiration of micro-organisms that are able

to break down organic and nitrogenous matter in the wastewater (Aghajanzadeh et al., 2015). Figure

3 depicts the basic activated sludge process. It consists of a primary settling tank, an aerated tank in

which the micro-organisms are kept in suspension, a sedimentation tank to separate liquids and solids by

gravitation, and a recycle system which returns sludge back into the aerated tank (Tchobanoglus et al.,

2003).

The ASM1 describes the biochemical processes within the aerated tank by eight processes
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Figure 3: Basic activated sludge process

and 13 state variables (Jeppson, 1996). A reduced form of the model, without the description of the

dynamics of alkalinity, is given in appendix C. For each step of the process, mass balance equations are

established, which must be respected at any point in time. Since the first introduction of the ASM1

model, it has been updated and extended twice to account for initial shortcomings. The latest version,

the ASM3 model, proposed by Gujer et al. (1999), corrects for a number of shortcomings of the ASM1

model, like inflexibility in settings for the external temperature, pH values, water toxicity, wastewater

composition and the kinetics of bio degradation. Both ASM1 and ASM3 are used for WWTP design

and for determining optimal process control strategies.

Based on these models and benchmark data, commercial WWTP simulators are available to

model the whole WWTP process or specific sub-processes. These WWTP simulators often contain a pre-

installed library of WWTP layouts. The process can easily be configured by connecting predefined unit

blocks and modifying the model parameters. Examples of commercial modelling software are AQUASIM,

BioWin WEST, EFOR, GPS-X, ICS, SIMBA#water, STOAT and Sumo. With the help of these simu-

lation platforms and based on the ASM model family, a variety of WWTP models have been developed.

They differ in plant layout and treatment technology and are often build to fit the characteristics of a

real WWTP.

Other WWTP applications like the prediction of the influent load or the estimation of biomass

activity and effluent quality use black-box or stochastic grey-box approaches (Gernaey et al., 2004).

White-box models can also be complemented by Artificial intelligence (AI) methodologies, for example in

the form of supervisory control systems (Gernaey et al., 2004). While white-box models can only evaluate

scenarios based on existing process knowledge about the WWTP, AI methods can also extrapolate

knowledge from experience, in order to enhance WWTP control (Gernaey et al., 2004).
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WWTP models dedicated to minimising the energy costs of the process (particularly by op-

timising the aeration schedule) often employ a bio-kinetic model like the ASM1 in connection with an

electricity tariff structure. For example, Póvoa et al. (2017) couple the ASM1 model with an energy

pricing and a power consumption model to explore the cost efficiency of different control strategies. En-

ergy prices are represented in three different ways: real energy pricing, weighted arithmetic mean energy

pricing and arithmetic mean energy pricing. They find that modelling diurnal variations in energy prices

instead of constant energy pricing enables the wastewater utility to optimise plant operation with respect

to minimum energy consumption.

The WWTP model of Emami et al. (2018) deals with the effects of influent variations on energy

costs for aeration and the related GHG emissions. A bio-kinetic model for the AS process is employed

first to derive oxygen requirements based on the influent characteristics. Then, an aeration submodel

determines the air requirements, which subsequently determines energy consumption and GHG emissions.

A TOU tariff is used for the energy price structure. However, a shift of operation according to the TOU

tariff is not considered. This is because the diurnal pattern of influent flow is inverse to the energy

price structure, i.e. the maximum energy consumption occurs in peak hours and the minimum energy

consumption in off-peak hours. Therefore, the authors conclude that shifting operation in time could

result in non-compliance with the effluent standards.

Aymerich et al. (2015) model a WWTP based on the Benchmark Simulation Model 1 (BSM1)

layout in SIMBA#. The BSM1 is a full-scale WWTP model which uses the ASM1 to describe the

biokinetic processes within the aerated tank. The authors investigate the effect of different electricity

tariff structures on the energy bill. They address three different tariffs: flat energy tariffs, TOU tariffs

and a tiered rate, which increases when a certain threshold for the energy consumption is reached.

Different control strategies and set points for the aeration process are studied. Their results show that

using average energy prices instead of time-varying prices can lead to a biased selection of operating

strategies, technologies and equipment.

Giberti et al. (2019) investigate the effects of electricity demand shedding in the aeration process

on plant performance by means of a modified version of the BSM1 under different pollutant loading

conditions. Their dual-layer settling model is capable of representing activated sludge settling when the

aeration is turned off. Demand shedding is modelled by switching off the aeration in the last aerated

tank for 1 hour, between 5pm and 6pm. This time interval is chosen due to a typical electricity demand

peak at that time of day. However, electricity prices are not considered explicitly in this study, since

it is focused on the effects of demand shedding on pollutant removal rather than energy costs. Results
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demonstrate the importance of modelling particulate settling within the aerated tank for evaluating the

impact of DR on effluent quality accurately.

Recently, data-driven approaches have become more popular to investigate energy costs and

saving potentials of WWTPs. For example, Asadi et al. (2017) use a data-mining approach based

on input-output data to optimise the aeration process of a WWTP in Detroit, MI. The authors use a

combination of the multi-adaptive regression spline (MARS), Artificial Neural Networks (ANN), Random

Forest (RF) and K-nearest neighbor (k-NN) to construct the aeration model. The approach is data-

intensive, as the training set for the algorithms contains 4368 data points and the testing set contains

2544 data points. The model minimises the dissolved oxygen (DO) concentration in the wastewater as a

proxy for energy consumption for aeration.

Torregrossa et al. (2018) also use machine learning for modelling energy costs of WWTPs. Their

data set contains energy consumption and intensity, energy prices, wastewater inflow mass and pollutant

loads, pollutant loads at the outlet of the plant and plant sizes of 317 WWTPs using CAS technology,

located in Northwestern Europe. They use NN and RF algorithms to generate regression models of energy

costs. The paper does not address differences in electricity tariffs, but rather assesses total electricity

costs of the plant. The authors even find that energy prices have a minor impact on energy consumption

compared to other process parameters in their model. However, the authors acknowledge the importance

of investigating the effect of different electricity tariffs on energy consumption in the future.

Table 3: WWTP models investigating DR

Publication Subject of analysis Methodology

Model Póvoa et al. (2017) Cost efficiency of control strategies ASM1

based Emami et al. (2018) Effect of influent on energy costs Biokinetic model and

aeration submodel

Aymerich et al. (2015) Effect of different energy tariffs on ASM1

energy cost

Giberti et al. (2019) Effects of demand shedding in aeration ASM1

process on plant performance

Data- Asadi et al. (2017) Cost optimisation of aeration control Neural Network

driven Torregrossa et al. (2018) Energy cost models Neural Network

It can be seen that in all models, DR activity is triggered by an exogenous price signal from the

power market. All of the models above optimise the WWTP operation subject to a fixed electricity price
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pattern, either as flat tariffs or flexible tariff rates. There is no interaction between the electricity system

operation and the WWTP operation. That means that while these models are suitable for investigating

the effect of different price patterns on WWTP operation, investigating the effects of large-scale DR from

WWTPs on the electricity system is out of the model scope.

2.4. Comparison between existing DR modelling approaches

The review of different modelling approaches shows that DR can be considered from different

modelling perspectives. A summary of the identified differences between energy system models, industrial

process optimisation and simulation models (which includes WWTP models) is given in Table 4.

Table 4: Energy system models and industrial process models compared

Energy system models Industrial process Industrial process simulation

optimisation (including WWTP models)

Mathematical (MI)LP (MI)LP System of non-linear

approach differential equations

Subject of System operation End-user operation Physical reactions

analysis (supply side) (demand side) and processes

Integration End-users as black boxes Closed system Closed system

(energy price simulation)

Model elements Objective function and Simplified process Process rates and physical

system constraints equations mass balance equations

Aim of model System cost minimisation Production cost Evaluation of

or welfare maximisation minimisation, control strategies

profit maximisation

Time frame Discrete time steps Discrete time steps Continuous time

Energy system models are used to investigate how DR affects the overall system operation.

Process optimisation models focus on the end-user operating schedule considering DR provision. Process

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

simulation models, such as the WWTP models presented here, provide insights about the inner physical

processes. While energy system models and process optimisation models focus on cost optimisation,

process simulations often aim at evaluating the cost effectiveness of different control strategies under a

given energy pricing regime.

So far, industrial process models only account for exogenous energy price patterns, and energy

system models do not account for end user processes in sufficient detail. Moreover, the disadvantages of

neglecting the interaction between system and process operation have become eminent from the literature

review. An integrated approach, combining energy system optimisation with the level of operational

detail in process simulation models, could yield the highest level of accuracy regarding the DR potential

from a specific process, such as wastewater treatment.

Problems arise from the different mathematical approaches of optimisation and simulation mod-

els. While energy system models are mostly formulated as an LP or MILP, process simulation models

often use non-linear approaches. Therefore, a joint representation of the electricity system and a process

like wastewater treatment in an integrated energy system is challenging. So far, research in the realm

of the energy-water nexus has not yet tackled this challenge. Instead, a review of the literature on the

energy-water nexus shows that existing models focus on overall system efficiency or the water require-

ments of the energy sector. For example, Chen and Chen (2016) apply an ecological network analysis

framework for investigating water and energy consumption within the urban energy-water nexus of Bei-

jing, China. Tsolas et al. (2018) use a generic graph-theoretic network approach that accounts for the

interactions between energy and water flows to identify redundant subsystems and redesign the nexus

for optimal resource generation and utilization.

Gabriel et al. (2016) consider the integration of industrial heat, power and water via hybrid

thermal-membrane desalination. DeNooyer et al. (2016) analyse the current and future water require-

ments for cooling in thermal power generation in Illinois, using a geographic information systems (GIS)

model. Yang et al. (2014) proposed a MILP to determine optimal water consumption in shale gas pro-

duction. Santhosh et al. (2014) develop an ED model to co-optimise the dispatch of power generation and

potable water treatment. They specifically allow for co-production of water and energy in a single utility,

representing for example hydroelectric or thermal desalination, which can serve either the power demand,

or the demand for potable water. Baliban et al. (2012) develop a mixed-integer nonlinear energy-water

model for an industrial process that converts biomass, coal, and natural gas to liquid transportation fu-

els. The model accounts for fresh water requirements of the process and comprises wastewater treatment

units that process and recycle wastewater.
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This brief review reveals that energy-water nexus models dealing with the energy requirements

of the water sector are underrepresented. In particular, we did not find a model that investigates the

flexibility and DR potential from wastewater treatment plants.

3. Wastewater treatment as a DR resource

This section explores wastewater treatment as one promising application for industrial DR.

First, we outline the energy demand of wastewater treatment in contrast to other water services. We

identify the main energy consuming processes within a WWTP and explore case studies on their potential

for DR provision in the following subsections.

3.1. Energy demand of water and wastewater processes

Energy is required to lift groundwater, desalinate sea water and pump and treat both freshwater

and wastewater. Most of the energy consumed in fresh water supply and treatment is due to pumping

and disinfection. In a conventional water treatment plant with coagulation, flocculation, sedimentation

and filtration, the total energy requirement varies between 0.25 and 1 kWh per m3 of treated freshwater

(Gude, 2015). In general, the treatment of ground water or surface fresh water is not highly energy-

intensive. In contrast, desalination of sea water or brackish water, which is sometimes necessary in dry

regions with close proximity to the sea, is very energy-intensive. The process consumes up to 20 kWh

per m3 of treated water (Gude, 2015).

Water pumping is also the major energy-consuming process in the water distribution system.

The energy consumption depends on the topology of the region, the quality of the infrastructure (for

example, if there is a high amount of leakage in the pipe system), as well as the distances over which

water has to travel to the consumers. Water consumption itself also often consumes additional energy,

mainly for heating or cooling the water to a desired temperature.

Apart from desalination, wastewater treatment is the most energy-intensive process in the water

cycle. Gude (2015) states that it typically requires between 0.5 and 2 kWh of energy to treat 1 m3 of

wastewater. The energy requirements for wastewater recovery, such that water can be reused for human

purposes, are in a similar range. In the United States, wastewater treatment accounts for around 3

percent of total electricity consumption (Gude, 2015).

Most electric energy is required for the aeration in the activated sludge process and the wastew-

ater pumping. Figure 4 shows the share of the electricity consumption in the influent pumping and the
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aeration process from the total energy consumption of plants with a conventional activated sludge (CAS)

system, as monitored in different case studies. It can be seen that the aeration in the activated sludge

process consumes the highest share of electricity, ranging between 10.2 and 71 percent of total electricity

consumption. Depending on the topology of the plant, the inflow pumps consume up to 15 percent.

Figure 4: Share of total energy consumption across case studies (Foladori et al., 2015; Smith, 1973; Malcolm Pirnie, 2005;
EPRI, 2002; SAIC, 2006; Panepinto et al., 2016; Longo et al., 2016)

Therefore, many studies have performed energy audits (see some examples in Table 5), looking

into the possibilities to improve energy efficiency (Foladori et al., 2015; Guerrini et al., 2017) and to save

energy in pumping and aeration (Awe et al., 2016; Panepinto et al., 2016). Fewer studies explore the

technical potential for flexibility and assess the economic potential of changing the operating schedule

according to energy prices.
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Table 5: Energy audits of WWTPs

Data type Energy audits Country Number of plants

Total energy consump-

tion

Silva and Rosa (2015) Portugal 17

(and biogas production) Bodik and Kubaska (2013) Slovakia 51

(and other cost factors) Hernández-Sancho et al. (2011) Spain 177

Total energy costs Guerrini et al. (2017) Italy 127

Póvoa et al. (2017) Portugal 1

Energy consumption

of subprocesses

Foladori et al. (2015) Italy 5

Longo et al. (2016) Multiple 601

Awe et al. (2016) Ireland 1

Panepinto et al. (2016) Italy 1

Wett et al. (2007) Austria 1

Schäfer et al. (2017) Germany 1

3.2. Energy demand flexibility of wastewater treatment

There is a slight tendency towards load shedding strategies across the reviewed case studies that

explore the flexibility potential for WWTPs. However, the potential for load shifting is also addressed

in some publications. The opportunities for flexible operation are investigated for the aeration in the

activated sludge and for wastewater pumps at several stages of the treatment process in conjunction with

the use of overcapacity in the tanks (Schäfer et al., 2017; Aghajanzadeh et al., 2015). Anaerobic sludge

digestion, which is a part of many modern WWTPs, also allows for flexible operation. Additionally, the

process generates biogas, mainly methane, which can be used to produce electricity on-site.

The flexibility options reviewed are the sludge processing, the aeration process, the wastewater

pumping and the use of built-in redundancy. Since the aeration and the pumping consume significant

amounts of electricity, they can be classified as flexibility options that can be used to provide DR.

In contrast, one can argue that the flexibility provided by biogas production cannot be classified as

a DR action, since the flexibility does not arise from load shedding or load shifting of an electricity-

consuming process, but rather from the production and self-consumption of electricity. However, the
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ability to produce electricity on-site affects the energy consumption from the grid and consequently the

DR provision. Therefore, the flexibility options within the sludge processing are reviewed first, followed

by the flexibility potential of the aeration process and the pumping. We also explain how the use of

built-in redundancy affects the flexibility potential of the pumps.

Sludge processing

Sewage sludge is a by-product of the wastewater treatment process. It refers to the solid part

of the wastewater that settles down in the tanks and is generally disposed to landfill or used for land

applications. Prior to disposal, the sludge needs to be dried in several steps in order to reduce its

volume. This sludge treatment can account for about 30 percent of a plants operating costs (Shen et al.,

2015). After thickening the sludge, it enters the anaerobic digestion system, normally consisting of a

reactor filled with liquid sludge, and a sealed gas headspace (Batstone et al., 2002). The biochemical

and physico-chemical reactions within the sludge release biogas to the headspace, which can be extracted

into storage tanks for further utilisation. Afterwards, the remaining sludge is dewatered, typically in a

centrifuge, for final disposal. Figure 5 depicts the sludge treatment process.

Figure 5: Sludge treatment process

The biogas captured in the tank’s headspace can be transformed into electrical (and thermal)

energy by a combined heat and power (CHP) plant or used as a transport fuel. The electric energy

produced by an on-site CHP can either be used to drive the aeration system or heat the sludge digesters

(Wett et al., 2007). Shen et al. (2015) claim that biogas recovery from sewage sludge has the potential to

make a WWTP energy self-sufficient and even turn it into a net energy producer. However, significant

capital and maintenance costs are connected with the implementation of an on-site electricity generation

system, which can be a high barrier for WWTP operators to implement a CHP system.
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Schäfer et al. (2017) finds the greatest flexibility potential within a WWTP in Germany in the

operation of a CHP unit fed by biogas from the anaerobic digestion. Based on this, Schmitt et al. (2017)

calculate a total flexibility potential for WWTPs in Germany of 2,057 MWh/day of additionally available

load and 2,391 MWh/day of curtailable load for the whole treatment process. The majority of this

flexibility is based on the availability of CHP for on-site electricity generation. Seier and Schebek (2017)

find that German WWTPs, which use biogas for electricity generation, have a potential to integrate 120

MW of surplus electricity. Gude (2015) estimates that biogas produced from anaerobic digestion can

cover up to 50 percent of the total energy needs for sludge treatment and that WWTPs can even become

net energy producers if energy recovery rates from biogas increase.

The aeration process

The aeration process is an essential part of a CAS system, which is the most common treatment

technology amongWWTPs with secondary treatment. The injection of air into the reactor tanks supports

the growth of microorganisms that break down the organic and nitrogenous matter in the wastewater

(Aghajanzadeh et al., 2015). The two main methods of aerating wastewater are mechanical surface

aeration, where the water is aerated by agitation of the water surface, and the use of submerged diffusers

to inject air or pure oxygen directly into the wastewater (Bolles, 2006). In the activated sludge process,

diffused aeration systems are most commonly used. They typically consist of blowers, air pipes and

diffusers (Brandt et al., 2006). The size and number of blowers and diffusers is determined by the

biological oxygen demand (BOD) of the wastewater and by the efficiency of the equipment (Aghajanzadeh

et al., 2015).

In CAS systems, the aeration within the aerated tank is a continuous process in order to

provide a stable environment for the bacteria which perform the organic decomposition. Other treatment

technologies, e.g. the sequencing batch reactor (SBR), employ a strategy of intermittent aeration in order

to create a cycle of anoxic and aerobic conditions within the tank (Tchobanoglus et al., 2003). This

illustrates that the required energy for aeration highly depends on the type of treatment technology.

Additionally, factors such as the population of aerobic bacteria, the pollutant loading of the wastewater,

the standards for effluent quality, and the size and age of the treatment plant play an important role

(Awe et al., 2016). Seasonal variations of inflow patterns and weather conditions also determine the

aeration requirements. On the one hand, the overall wastewater inflow is lower during dry months

(Lekov, 2009), which reduces the aeration requirement e.g. during summer. On the other hand, it has

to be taken into account that the DO concentration is a function of temperature (Tchobanoglus et al.,

2003). With higher temperatures, the oxygen demand for biochemical reactions increases (Aghajanzadeh

29



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

et al., 2015), which means that maintaining DO levels requires more extensive aeration during summer

months (Tchobanoglus et al., 2003). Determining the optimal operating schedule of the aeration process

requires the consideration of all these factors.

Several case studies find that shutting down the aeration in peak periods is possible for a limited

amount of time without a significant change in effluent quality. Schäfer et al. (2017) conduct a case study

on a German WWTP and find that the aeration can be switched off for 60 minutes without a significant

decline in effluent quality, with a maximum effective power flexibility of 98.6 kW. Müller and Möst (2018)

find that the aeration can be turned down for 30 minutes at maximum at day-time and up to 120 minutes

during night-time. Nowak et al. (2015) come to a similar result, turning off the aeration for a period

of 60 to 120 minutes without breaching the effluent standards. In contrast, Berger et al. (2013) and

Kollmann et al. (2013) evaluate a possible switch-off duration of only 15 minutes. In another case study

of a California WWTP by Thompson et al. (2010), switching off the aeration for 120 minutes negatively

affected the effluent turbidity. The study of Giberti et al. (2019) also emphasises the potential negative

effects of load shedding on effluent turbidity. This shows that the technical flexibility of plant equipment

can vary significantly.

Thompson and McKane (2008) propose the idea of excessive aeration during off-peak periods to

extend the switching-off time during peak periods. This is based on the idea that the DO concentration

within the water can be increased by over-aerating the water. Ideally, this could extend the phase in

which the DO concentration is decreasing when the aeration is off, down to a critical level when the

aeration has to be switched back on. To our knowledge, there have not yet been any case studies of

WWTPs to test for its feasibility. Neither have there been any attempts to model over-aeration to

investigate its DR potential. However, Brdjanovic et al. (1998) demonstrates the negative impact of

excessive aeration on the process efficiency, namely the biological removal of phosphorus. The fact that

only a limited amount oxygen can be dissolved in water (Tchobanoglus et al., 2003) might restrain the

flexibility potential even further.

Wastewater pumping

Wastewater pumping is often the second most energy-intensive process in a WWTP after the

aeration (Awe et al., 2016). Pumping is necessary in the form of inlet pumps, because topographic

conditions often prevent the wastewater from flowing into the WWTP naturally. Even in the case of

favourable topography, inlet pumps are often in place due to the texture of the sewage, that results in

an innately slow flow rate. Additionally, sludge recycle pumps are used to recycle a part of the sludge
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from the secondary clarifier back into the aerated tank (see figure 1). This is necessary to maintain the

bacteria concentration within the aerated tank. Both processes have been subject to research to explore

their potential for load shedding and load shifting.

In the case study of Schäfer et al. (2017), it was possible to switch off the sludge recycle pumps

for 120 minutes without a negative effect on the effluent quality, providing a maximum of 23.6 kW of

effective power for flexibility. According to a case study in California from Olsen et al. (2012), lift pumps

and external pump stations show potential for load shifting, because of their low ramp rates.

Many studies investigate how to operate pumps in WWTPs with minimum energy consumption

(Torregrossa et al., 2017; Zhang et al., 2012; Chang et al., 2012; Olszewski, 2016). However, there is

not yet much published research on the potential for load shedding or load shifting of inlet or recycle

pumps. An important condition for pausing wastewater pumping in peak periods is that wastewater

can be withheld in the system to a certain extent, either in tanks or in the pipes. Many WWTPs have

built-in redundancy on-site, which can potentially be used in order to operate pumps intermittently.

Using built-in redundancy

Particularly small-scale WWTP often have redundancy on-site, in the form of oversized or

additional tanks or overcapacity in the sewers. WWTPs can extend the retention time of untreated,

partially treated or treated wastewater during peak periods and process or release it later during off-

peak hours (Aghajanzadeh et al., 2015), if site conditions allows for longer wastewater retention. In

the energy audit performed by Foladori et al. (2015) (see figure 1), the design capacity of all WWTPs

exceeds the capacity which is actually used for treatment. Schäfer et al. (2017) find in their energy audit

that small-scale WWTPs have more unused capacity than larger WWTPs, due to oversized equipment.

Furthermore, large WWTPs are often already operated at optimised level, while small WWTPs often

operate below design capacity. This is often due to a lack of adequate monitoring devices in smaller

plants.

The study by Olsen et al. (2012) finds potential for flexibility in pumping due to overcapacity

in the San Francisco sewer system and the WWTP. Findings suggest that lift pump could be curtailed

for several days. However, the authors emphasise that the redundancy serves the purpose to account

for the risk of heavy rain fall events. Using it for the provision of DR means that the safety margin

given by redundancy decreases. An unanticipated exposure to a sudden rainfall event when sewers and

tanks are already heavily loaded increases the risk of over-stressing the system and discharging untreated

wastewater. Therefore, they conclude that the use of redundancy for DR must be evaluated carefully
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based on high-quality weather forecasts.

4. Discussion

Potential of DR from WWTPs

The potential of industrial DR has been considered in several studies. Cappers et al. (2010)

state that 14,800 MW of the existing DR customer base in the US comes from the industrial sector, while

the residential sector provides about 6,000 MW of DR resources. Gils (2014) estimates the theoretical

DR potential for Europe, including 30 different electricity consuming sectors with a load shedding or

shifting potential of a minimum of one hour. Findings suggest that processes with short intervention

times, such as cooling, air conditioning and wastewater treatment, show the biggest potential for DR.

Wang and Li (2015) conduct a survey of 43 ToU pricing schemes for industrial customers in the US.

They point out that customers that do not adjust their production schedule when switching from a flat

to a ToU tariff, can ultimately face higher electricity costs. Therefore, cost savings range from -72.0 to

+82.6 percent, depending on the adaptability of the production schedule.

Wastewater treatment is an electricity-intensive industrial process and a coordinated DR pro-

gramme for WWTPs could have a significant impact on the power system. The participation in DR

programmes is potentially beneficial for the plant operators in order to achieve savings in electricity

costs by making use of time-varying electricity rates. The implementation of the options presented in

section 2 (excluding the installation of a CHP plant for on-site electricity generation) do not require

significant investments in additional technology, which could hamper the net cost savings. Wastewater

flows follow a diurnal pattern that coincides with electricity demand patterns, with one peak in the late

morning and another one during the early evening between 7 and 9 pm (Thompson and McKane, 2008).

If wastewater treatment is carried out according to this pattern, the electricity demand of the WWTP is

high when overall system demand is high. Under a TOU tariff regime, a shift of treatment from peak to

off-peak periods, for example from evening to night times, can yield electricity expenditure savings. The

scope of potential savings depends on the degree of shiftable load. For example, Aghajanzadeh et al.

(2015) estimate that the participation in DR programmes can provide energy cost savings of up to 15

percent by shifting loads from peak to off-peak periods.

Specific characteristics of industrial customers can limit the potential for DR. The energy in-

frastructure (electricity meters and sensors) on site, the intertemporal interdependency of production

processes and the precision in timing that some processes require (Samad and Kiliccote, 2012) are the
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main limiting factors for the ability to react to a DR signal. The lack of adequate monitoring and

control equipment is a challenge for small-scale WWTPs in particular. The expensive installation of

meters and controls and ideally an automated control system can prevent plant operators from becoming

DR providers. Concerns about revealing confidential and commercially-sensitive electricity demand data

can also impede participation in DR programmes (Samad and Kiliccote, 2012). Furthermore, operating

within environmental standards for effluent quality is a high priority within a WWTP. That means any

deviation from the usual operating schedule can only be considered if the risk of discharging water of

insufficient quality is not increased.

The quantification of the potential of DR from WWTP is essential to evaluate its value added

for the power system and market. The case study by Schmitt et al. (2017) indicates that DR provision

by WWTPs supports the integration of more RES into the power system. Harnessing the flexibility

provided by the WWTP, the share of curtailed wind energy was reduced by 92 percent. The findings of

Seier and Schebek (2017) suggest a total potential of German WWTPs to integrate 120 MW of surplus

electricity. However, these findings are technology- and country-specific and cannot simply be applied

to other energy systems.

A combined system-process model for DR from WWTP

The literature review shows that most DR system models do not specify the resource which

is providing DR and focus on the system effects of DR. For this purpose, these models often take on

the form of ED or UC. DR influences the energy demand in the system and ideally changes the daily

load profile. This can improve the utilisation of renewable energy sources, which can be analysed by

means of an ED or UC model. They can also be used for quantifying the economic cost and savings of

DR. The underlying assumption of these DR models is that the system operator is capable of centrally

co-optimising the dispatch of demand-side resources and generators (Papavasiliou and Oren, 2012). As

a result, the outcome of an ED or UC model provides a good benchmark for the DR potential, when

assuming no strategic behaviour and information asymmetries among system participants.

However, understanding the DR potential of a specific industrial process requires a detailed

process model which takes into account minimal production disruptions and production costs. These

models often consider energy price signals to be exogenous. Following this approach, end-users are

assumed to be price takers that do not have any influence on the market through changing the energy

demand profile. However, a coordinated DR signal across multiple big industrial consumers is likely to

influence overall system demand, and hence prices. These effects of DR on the energy system cannot be
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studied within the framework of a DR process model like the ones presented here. An integrated energy

system should ideally incorporate both the relevant details of a process model and the power system to

capture the potential for DR from a system perspective.

This literature review has shown that there is not yet a model which combines these two

important aspects to perform a meaningful analysis of the DR potential from industrial processes such

as WWTPs. The reason that most DR system models abstract from the physical processes within

end-use applications lies in the non-linearity that characterises many of them. Standard ED and UC

models are linear or mixed integer linear programmes, which cannot handle non-linearity in constraints.

The wastewater treatment process in particular is characterised by complex biological and chemical

reactions with a non-linear nature. The standard WWTP models, like the ASM1 model, capture these

reactions well. However, these models are used for process and design simulations and integrating them

into a linear optimisation framework is challenging. The constraints which determine the biological

and chemical reactions within the WWTP would have to be simplified and linearised to find a balance

between accuracy and computational cost. This has not yet been attempted for any WWTP model. We

have also shown that none of the multi-sector energy system models deals with DR potential within the

energy-water nexus yet. Coupling energy sectors, and especially the electricity and water sector, within

an energy system framework is not yet in the focus of DR research.

There is no study that investigates the DR potential from WWTPs in an integrated energy

system so far. Although studies such as Seier and Schebek (2017) assess the DR potential from WWTPs,

they do not take on a power system perspective, but rather perform a cost minimisation from the plant

operator’s perspective, with an exogenous electricity price signal. They also assume biogas storage and

use for on-site electricity production as the only source of flexibility. In order to analyse all of the

flexibility options summarised in this paper comparatively, an integrated energy-water system model of

the wastewater treatment process and the power system is required. To our knowledge, such a model

does not exist to date.

Our future contribution will be to develop a novel integrated energy systems model, which can

account for the process detail of industrial end users traditionally only provided by process simulation

models. Taking WWTP as an example for an industrial end user process, this will be achieved by

coupling the traditional MILP approach for power systems modelling with a simplified and linearised

WWTP model. Within this framework, the DR potential from WWTPs can be identified not only for

the plant operator, but also for the power system. Moreover, in contrast to existing WWTP simulation

models, this novel approach accounts for interaction between the power system and the wastewater
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Figure 6: The novel integrated ESM approach

treatment sector caused by DR.

Figure 6 depicts the novel integrated energy systems approach required. Traditional energy

systems models often employ a bilevel approach and determine the end user DR action with the help of

a detailed process simulation model prior to the system level optimisation. In contrast, this approach

includes detailed physical process constraints directly into the central optimisation problem. This ensures

that the interaction between power system and end-user process are taken into account and thereby yields

a more accurate estimation of the DR potential from the process.

Additionally, a detailed representation of the end-user process enables the assessment of the DR

potential of different electricity consuming subprocesses within the industrial end user individually and

combined. In the case of WWTPs, this would allow us to compare the DR potential from pumps, blowers

and on-site redundancy and to identify the best DR strategy. Uncertainties regarding wastewater inflow

rates, e.g. due to heavy rain falls, can be included into the analysis by using a stochastic approach. The

described model will provide a framework for incorporating similar continuous end user processes into an

energy system optimisation problem. Thereby, it is not only an important contribution to the existing

literature on DR within the energy-water nexus, but also to the literature on DR modelling in general.
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5. Conclusion

DR models can be grouped into two categories: energy (or power) system models, which take on

a system perspective of the optimal utilisation of DR, and process scheduling models, which analyse the

optimal DR strategies for a particular end-user. The reviewed energy system models often do not specify

the DR resource in place, but rather assume a generic unit which provides DR. Meanwhile, industrial

process models go into greater detail, but assume price signals from the power system to be exogenous.

However, sufficiently large DR resources cannot be viewed as mere price takers. An increase in DR in

a system can be interpreted as an increase in demand elasticity. With a more elastic energy demand,

price changes can be induced by either the supply or the demand side. This endogeneity of prices is not

yet captured in process models which deal with DR. Given the size of the wastewater treatment sector

as one example of an industrial process with significant electricity demand, this endogeneity has to be

taken into account in order to assess the DR potential accurately.

The two main reasons for over- or underestimating the available DR potential from an industrial

end user have been identified by this review. The first reason is the neglect of the interaction between

power system operation and industrial process operation caused by DR. The second reason is the ab-

straction from critical physical process constraints affecting the DR potential. None of the reviewed DR

modelling approaches is currently capable of accounting for the interaction while providing enough op-

erational detail of the respective end user process at the same time. Therefore, we propose an integrated

modelling approach, combining energy system optimisation with the level of operational detail in process

simulation models. This could yield a higher level of accuracy regarding the assessment of DR potential

from a specific end-user process.

This integration of a given end-user process into an energy systems model depends on the par-

ticular characteristics of the process in question. The general principals underlying this model integration

apply for all the end-user processes reviewed in this article. In order to provide one relevant example,

we also included detailed discussion on how the end-user process of wastewater treatment might be in-

tegrated into an energy systems model. This particular example was motivated by several reasons: our

findings that there is under-exploited DR potential from this particular end-user process, and the fact

that the energy-water nexus as a source of DR has been neglected to date.

Several case studies explore the operational flexibility of different energy consuming processes

within WWTPs, and find that there is potential for load shifting for several processes. However, there

is a lack of assessment of DR potential and its environmental and economic effects on both WWTP
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operators and the power system due to an identified modelling gap. In order to address this, wastewater

treatment process-related constraints based on these findings should be applied to an integrated energy

systems model. Future research will deal with the development of such an integrated energy-water

model which can account for the wastewater treatment operation and the operation of the power system

simultaneously. The described model will provide a framework for modelling similar industrial processes

within an integrated energy systems model. Therefore, this review is not only contributing to the existing

literature on DR within the energy-water nexus, but also to the literature on industrial DR modelling

in general.
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Appendix A. Representative equations of energy systems models

Here, we provide some simplified equations outlining economic dispatch (ED) and unit com-

mitment (UC) models, which represent the majority of energy systems models. An example of a simple

economic dispatch model may look as follow:

min(systemcostst) =
∑

i

fuelcostsi,t (A.1)

s.t.

loadt −
∑

i

geni,t = 0 (A.2)

geni,max ≥ geni ≥ geni,min (A.3)

The objective function in Eq. (A.1), which is subject to minimisation, is determined by the sum

of fuel costs for power provision of each generator i. Eq. (A.2) determines the load balance constraint,

while Eq. (A.3) sets the capacity limits for the power generation for each generator. The optimisation is

then performed for each time step t. Additional constraints depend on the specification of the respective

power system, for example regarding the provision of reserves or transmission constraints.

In a unit commitment model, the economic dispatch is solved intertemporarily. A simple

mathematical formulation is given in the following.

min(systemcosts) =
∑

t

∑
i

fuelcostsi,t + startupcostsi,t + shutdowncostsi,t (A.4)

s.t.

loadt −
∑

i

geni,t = 0 (A.5)

geni,max ≥ geni,t ≥ geni,min (A.6)

startupcostsi,t = startupcosti · (statei,t − statei,t−1) (A.7)

shutdowncostsi,t = shutdowncosti · (statei,t − statei,t−1) (A.8)

Here, the objective function (see Eq. (A.4)) typically comprises the different intertemporal cost
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components of the power generation, such as fuel costs, start-up and shut-down costs for each generator

i in each time step t. Other cost components like ramping costs can also be considered. The binary state

variables in Eq. (A.7) and Eq. (A.8) determine whether a generator is switched on and thereby turn the

problem into a mixed integer linear programme.

Appendix B. Representative equations of generic demand response

The most common methods of formulating demand response in a generic manner are load shift-

ing or load shedding. There are several ways how this can be modelled, one option for each load shedding

and load shifting will be presented in the following.

For load shedding, one generic option is to model a virtual power plant on the supply side with

no fixed costs and an incremental cost equal to the cost of load shedding λshed. This means that part

of the system load can be "met" by load shedding, with the trade-off arising from the saved generation

cost of meeting an additional part of the demand via load shedding and the costs arising from providing

load shedding. This changes the optimisation problem from (A.4-A.8) to:

min(systemcosts) =
∑

t

∑
i

(fuelcostsi,t + startupcostsi,t + shutdowncostsi,t) + loadshedt · λshed

(B.1)

s.t.

loadt −
∑

i

(geni,t)− loadshedt = 0

(B.2)

, while Eq. A.6-A.8 remain unchanged. As can be seen, the load balance constraint becomes

the total generation at time t and the amount of load shedding, both subtracted from the total demand

at time t.

For load shifting, the flexible portion of the energy demand of the end user from the reference

demand DREF t needs to be determined. This flexible part is represented by the maximum load that

can be curtailed at once, drt
down (downward flexibility) and the maximum load that can be ramped

up additionally drt
up (upward flexibility). Then, a generic formulation of the profit Πenergy from DR

39



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

provision in a downward direction (following Devine et al. (2019)) for a DR aggregator can be:

Πenergy =
∑

t

(drt
down − drt

up −DREF t) · λt, (B.3)

with
t′+23∑
t=t′

(drt
down) =

t′+23∑
t=t′

(drt
up),∀t′ ∈ {1, 25, 49, ...} (B.4)

Analogous equations hold for DR provision in an upward direction.

The DR aggregator obtains revenue from load-shifting and faces the cost of meeting the con-

sumer’s reference demand DREF t. The flexible portion of the demand can be shifted up or down, with

the condition that the sum of the shifts must be equal to one over a given time horizon, 24 hours in this

case. The total load-shifting performed by the DR resource is the net result of the sum of drt
down and

drt
up, the upwards and downwards change from the reference demand DREF at each time,t. The load

balance constraint (A.5) is thereby adapted to:

∑
i,j

gent,i,j −DEM t +DREF t − drt
up + drt

down = 0 (B.5)

, with DEM t being the non-responsive part of the load.

Appendix C. Example of process model to be incorporated in an IESM: the ASM1 model

As an example for the case of wastewater treatment, the following differential equations can

be found for example in Jeppson (1996). They describe the 10 processes which constitute the basic

ASM1 model, excluding the process equations for the dynamics for alkalinity. These equations are often

displayed in a matrix form, but this can be confusing to an unexperienced reader, which is why the

equations are displayed in full in the following. The model involves 8 processes: the growth of biomass

(3), the decay of biomass (2), ammonification of organic nitrate (1) and hydrolysis (2). The differential

equations describe the dynamics of 10 state variables:

• heterotrophic biomass BH

• autotrophic biomass BA

• readily biodegradable substrate SS
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• slowly biodegradable substrate XS

• inert particulates XP

• particulate organic nitrogen XND

• soluble organic nitrogen SND

• ammonia SNH

• nitrate SNO

• oxygen SO

Energy demand in a biological wastewater treatment system is dependent largely on the aeration

which is provided to supply oxygen. As can be seen with the following model, the oxygen demand is

dependent on a number of variables which relate to the wastewater composition, flow-rate and reaction

kinetics.

The dynamics of the heterotrophic biomass concentration are affected by aerobic and anoxic

growth, and decay. The process can be described by:

dXB,H

dt
=
[
µ̂H ·

(
SS

KS + SS

){(
SO

KO,H + SO

)
+ ηg

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)}
− bH

]
XB,H

(C.1)

Since autotrophs do not grow in anoxic environments, the description of the autotrophic biomass

concentration lacks the part for anoxic growth. Therefore, the process equation is:

dXB,A

dt
=
[
µ̂A

(
SNH

KNH + SNH

)(
SO

KO,A + SO

)
− bA

]
XB,A (C.2)

The dynamics of the readily biodegradable substrate concentration are influenced by the growth

of heterotrophic bacteria and by the hydrolysis of slowly biodegradable substrate. The respective process

equation is
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dSS

dt
=
[
− µ̂H

YH

(
SS

KS + SS

){(
SO

KO,H + SO

)
+ ηg

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)}
+ kh ·

XS/XB,H

KX + (XS/XB,H)

{(
SO

KO,H + SO

)
+ ηh

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)}]
XB,H (C.3)

The concentration of slowly biodegradable substrate is increased by the recycling of dead bac-

teria and decreased by hydrolysis:

dXS

dt
= (1− fP )(bHXB,H + bAXB,A)− kh

XS/XB,H

KX + (XS/XB,H)

{(
SO

KO,H + SO

)
+ ηh

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)}
XB,H (C.4)

The concentration of inert particulates products is described by the decay of biomass:

dXP

dt
= fP (bHXB,H + bAXB,A) (C.5)

Particulate organic nitrogen is increased by the decay of biomass and decreased by hydrolysis:

dXND

dt
= (iXB − fP iXP )(bHXB,H + bAXB,A)− kh

XND/XB,H

KX + (XS/XB,H){(
SO

KO,H + SO

)
+ ηh

(
KO,H

KO,H + SO

)(
SNO

K +NO + SNO

)}
XB,H (C.6)

The development of the soluble organic nitrogen concentration is characterised by ammonifica-

tion and hydrolysis, such that

dSND

dt
=
[
−kaSND + kh

XND/XB,H

KX + (XS/XB,H

{(
SO

KO,H + SO

)
+ ηh

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)}]
XB,H

(C.7)

The ammonia concentration is affected by growth of all microorganisms and decreased by ni-
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trification. Further, the ammonification of soluble organic nitrogen increases the concentration. The

respective differential equation is:

dSNH

dt
=
[
−iXBµ̂H

(
SS

KS + SS

){(
SO

KO,H + SO

)
+ ηg

(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)}
+ kaSND

]
XB,H

− µ̂A

(
iXB + 1

YA

)(
SNH

KNH + SNH

)(
SO

KO,A + SO

)
XB,A (C.8)

The concentration of nitrate is increased by nitrification and decreased by denitrification. Its

dynamics are described as

dSNO

dt
= −µ̂Hηg

(
1− YH

2.86YH

)(
SS

KS + SS

)(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)
XB,H

+ µ̂A

YA

(
SNH

KNH + SNH

)(
SO

KO,A + SO

)
XB,A (C.9)

Finally, the oxygen concentration is reduced by the aerobic growth of heterotrophic and au-

totrophic biomass:

dSO

dt
= −µ̂H

(
1− YH

YH

)(
SS

KS + SS

)(
SO

KO,H + SO

)
XB,H

− µ̂A

(
4.57− YA

YA

)(
SNH

KNH + SNH

)(
SO

KO,A + SO

)
XB,A (C.10)

The accurate modelling of the DR potential from an end user process such as WWTPs involves

replacing or constraining the generic representation of DR in appendix B with the end-user process

model, such as the ASM1 model shown here.
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