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Abstract. Speed skating is a form of ice skating in which the skaters
race each other over a variety of standardised distances. Races take place
on specialised ice-rinks and the type of track and ice conditions can have
a significant impact on race-times. As race distances increase, pacing also
plays an important role. In this paper we seek to extend recent work on
the application of case-based reasoning to marathon-time prediction by
predicting race-times for speed skaters. In particular, we propose and
evaluate a number of case-based reasoning variants based on a different
case and feature representations to make track-specific race predictions.
We demonstrate that it is possible to make significant improvements
with respect to state-of-the-art baseline prediction accuracy by harness-
ing richer case representations using shorter races and track-adjusted
finish and lap-times.

Keywords: CBR for health and exercise; speed skating; race-time pre-
diction; case representation

1 Introduction

Speed skating has a long history as a popular winter sport. The International
Speed Skating Union was founded in 1892 and long-track speed skating has been
an Olympic sport since 1924 [1]. Olympic events include sprints (500/1000m),
middle distance (1500m) and long distance (3,000/5,000/10,000m) races, which
impose different physiological, fitness, and pacing demands on skaters. Fast skat-
ing requires a high degree of technical skill, physical strength and dexterity: the
crouched body position with low knee and body angles, which is optimal over
shorter distances, is exceedingly difficult to maintain over longer distances [1,2].
Speed skating is also a time-trial event, with two skaters competing in separate
lanes, so their performance mostly depends on their own abilities. Choosing a
pacing strategy that is optimal, given the distance, track, competition, and the
skater’s own ability is a challenge and it is interesting to consider whether we
can help skaters to achieve new personal-best (PB) times by recommending more
appropriate pacing strategies.
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There is a growing interest in the use of machine learning techniques in sports
and for performance prediction [3] and recent research by [4–6] has consider
performance prediction among marathon runners, where pacing also plays a
role, showing how case-based reasoning can be used for PB prediction and pacing
recommendation. Briefly, by reusing a case-base of past race progressions, each
documenting the progress of a runner from a non-PB to a PB race, it is possible
to predict challenging but achievable PBs for runners with upcoming races, based
on the PBs of similar runners and to recommend a pacing plan to help a runner
achieve this time.

In this paper we explore whether this approach might be adapted to pre-
dict the race-times of skaters, bearing in mind that there are important and
obvious differences between speed skating and marathon running. For example,
speed skaters compete over a range of distances and thus there is an oppor-
tunity to create cases using multiple past races over different distances, unlike
the marathon-to-marathon format of the cases used by [4–6]. This also facili-
tates prediction for distances that the target skater has not yet raced. While
weather conditions are no doubt important in marathons, such factors were not
considered by [4–6]; although a simple weather adjustment was considered for
ultra-running by [7]. However, in skating the condition of the ice and the environ-
ment of the track are significant enough that they need to be included, especially
since a skater’s prior races will tend to take place on a variety of different tracks;
we will describe how to normalise performances with respect to different tracks.

The remainder of this paper is organised as follows. In the next section we
introduce speed skating as our domain of interest, discussing the important as-
pects of the sport, summarising the data set that we will use in this research, and
highlighting the main research questions that we wish to answer. Following this,
we will present our main technical contribution, by describing a case-based ap-
proach to predicting track-specific race-times. In fact, we will describe a number
of different variants of this approach, which differ in terms of the race histories
that are used in cases and the way that they are used. Finally, before conclud-
ing, we will describe a detailed evaluation to compare the prediction accuracy
of these different variants, showing how significant improvements in prediction
accuracy can be achieved relative to the state-of-the-art baseline approach pro-
posed by [4, 8].

2 An Introduction to Speed Skating

Speed skating is a unique sport that combines endurance and power with pacing
strategy and racing aerodynamics. In this section we briefly review the major
features of the sport before describing the details of the data set used by this
work. We then go on to outline the key research questions that will be considered
by this research.
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2.1 The Anatomy of Speed Skating: Skaters & Races

Long-track speed skating is typically performed on an 400m artificial ice-rink
(see Figure 1) over the following distances:

1. Sprint: 500m (comprising one straight end and one lap) and 1,000m (2.5
laps);

2. Middle Distance: 1500m (an opening of 300m, with 3 additional laps) is an
important distance because it combines elements of sprint and endurance
skating;

3. Endurance: 3,000m (7.5 laps), 5,000m (12.5 laps) and 10km (25 laps), all of
which demand a considerable degree or pacing strategy from skaters.

Fig. 1. The dimensions of a standard speed skating track and race configurations;
image provided courtesy of wikipedia.org

In competition skaters achieve similar high speeds to cyclists: elite sprint-
ers reach 60 km/h while endurance skaters sustain average speeds in the 45-50
km/h range. During a race, skaters have access to very limited information on
their performance – unlike runners and cyclists, GPS devices are useless as most
tracks are semi-covered or completely indoor – and typically have only access to
their 400m lap-times. Speed skating also places very different physical demands
on athletes, compared with running or cycling: the crouched body position and
low knee and trunk angles that are required for aerodynamic skating are physi-
ologically challenging because they restrict blood-flow to the active muscles [1].
This makes it especially difficult for skaters to maintain good form and pacing
over longer distances.

2.2 The Importance of Pacing

Previous research has focused on the pacing strategies used by elite skaters for
shorter [2,9] and longer distances [10]. For sprint distances (500/1000m), pacing
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does not play a significant role and the best approach is typically an all-out
strategy with skaters going as fast as possible from the start and maintaining this
speed, as best they can, until the finish [9]. However, for distances≥1500m, which
combine elements of anaerobic and aerobic exertion, pacing plays an increasingly
important role [11,12]. If a skater starts too fast, then they run the risk of slowing
during the final stages of a race, and research has shown how maintaining a high
speed in the 3rd lap (from 700-1,100m) of 1,500m races is critical for faster
finishing times; see also the work of [13] for an analysis of a similar phenomenon
among marathon runners.

Pacing is even more important during long-distance races, but in a way that
differs from marathon running. For example, in elite long-distance skating neg-
ative splits – where the skater achieves a faster second-half time than first-half
time – are more rare than in elite long-distance running, likely due to the physi-
ological constraints and reduced blood-flow that is associated with good skating
form.

For non-elite skaters lap-times typically slow as a race unfolds but the degree
of slowing depends on the race distance: shorter races present with more signifi-
cant slowdowns between laps than longer races, which are associated with more
consistent pacing. As with marathons, how skaters pace their races is important
when it comes to identifying similar skaters, thus motivating the importance of
lap-times as part of case representations.

While previous research has focused on small samples of elite speed skaters,
in this paper we focus on much larger samples of amateur and sub-elite speed
skaters. Usually amateur skaters are still learning how to race, and thus any
improvements to their pacing may improve their performances and PB prospects.
Indeed, the pacing issue is exacerbated for non-elite skaters with respect to longer
distances, in part because there are fewer opportunities to compete over longer
distances, compared with elites; in other words non-elite skaters have fewer racing
experiences when they need them.

2.3 The Dutch Speed Skating Data Set

The data set used in this study was collected from http://www.osta.nl and com-
prises 329,080 race records from 15,590 unique Dutch skaters; thus each indi-
vidual skater is associated with an average of 21 races. The races took place
between September 2015 and January 2020 and race distances included all of
the common distances, 500m, 700m, 1,000m, 1,500m, 3km, 5km, and 10km. Each
race record includes information about the skater (their name/id, gender, age),
the race date, distance and track, and the skater’s performance (finish-time and
segment/lap-times, whether or not the result was a personal-best, and various
age/gender rankings).

Skater Demographics: Speed skating is a somewhat unusual sport. In the
data set skaters ranged in age from 4 to 84 years-old, but as shown in Figure 2
most skaters are young, between the ages of 10 and 18 years-old, and once they
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Fig. 2. Age distribution of skaters in the Dutch data set

graduate from high-school and go on to college most leave the sport, unless they
are especially competitive. However, it is not unusual for skaters to return to
the sport in their 40’s, especially men, perhaps as their own children start to
compete. In the Netherlands there exists a large population of older skaters who
remain active at so-called masters level; indeed there is even an official national
masters championship.

Race Histories: There are 4 major categories of skaters in the data set (Figure
3: pupils are younger than 12 years old and only compete over shorter distances
(100m and 300m, which are not in the data set, and 500m, 700m and 1000m);
the majority of races are completed by junior skaters between 13 and 18 years
old, mostly in races up to 3000m; senior and masters skaters more frequently
compete in 5km and 10km races, although they still remain rare compared to
shorter distances, in part at least because the economics of ice-rinks make longer
races more costly. The 500m races are the most common by far, in part because
skaters often combine a 500m race with another distance on the same day or at
the same event.

Track Types & Track Conditions: Track type and the ice conditions are
important factors that influence performance. The quality of the ice can have an
impact on race-times and is determined by a variety of factors including humidity
and temperature. Outdoor or semi-covered tracks require frequent reconditioning
of the ice (often every 20-30 mins), while air-conditioned, closed-roof tracks pro-
vide more stable conditions, which are conducive to faster racing; high-altitude
tracks are also considered to be faster [10], due to reduced air-resistance, but
they are not present in the Dutch data set.

The data set contains records for a variety of track types, including: fully
enclosed, air-conditioned tracks like the one in Heerenveen (HV), which hosts
many international races; enclosed tracks without air-conditioning, typically with
direct ventilation; semi-closed tracks with some cover, but that are otherwise
exposed to the elements; and fully outdoor tracks without any cover at all.
Figure 4 shows the mean 500m race-times for a variety of different tracks and
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Fig. 3. Speed skaters by age category and distance.

track types, and serves to highlight just how important track types are when
it comes to finish-times. The fastest air-conditioned tracks are associated with
finish-times that can be >10% faster that outdoor tracks (e.g. ≈45s vs ≈53s, for
HV vs AM).

Fig. 4. Boxplots of 500m times by track; note times are in hunderds of a second.

2.4 Research Questions

The main research question to be explored in this work is whether it is possible
to accurately predict track-specific, personal-best times for skaters based on their
previous racing histories. Unlike the work of [4, 5, 8], which relied on marathon
race records from the same course, in this work each skater can be represented by
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a more diverse mix of race distances across a variety of tracks. As such, the main
question becomes whether it is possible to predict the performances of skaters
over distances that are longer than they are used to, and for different types of
tracks, using their shorter racing histories. This use-case is particularly impor-
tant to younger skaters because, when younger skaters graduate from shorter
sprints to longer endurance races they can benefit from advice about realistic
goal-times and pacing strategies.

For a given distance, differences in finish-times depend on track conditions,
but they also depend on the skaters. Therefore it is not not enough to simply
apply a one-size-fits-all weighting to account for track differences when trying
to predict track-specific finish-times. For example, some tracks might attract
very young or much older skaters, who tend to be slower, while faster tracks like
Heerenveen (HV) tend to attract more competitive skaters, who want to improve
their PB, or those who wish to qualify for national championships.

3 Predicting Track-Specific Race-Times

Our approach to predicting finish-times is fundamentally case-based in nature:
to predict a finish-time for some skater s and distance d we reuse the finish-times
of skaters with similar race histories. To do this we describe a number of different
ways to represent race histories with or without track-specific adjustments, and
outline how the resulting case-bases can be used to generate predictions.

3.1 From Races to Cases

The work of [4, 8] proposed a specific case representation by pairing a runner’s
non-PB marathon time (and 5km split-times) with their PB time (and split-
times). The equivalent representation in the present work would, for a given
target distance, d, pair a skater’s non-PB race for d, nPB(s, d), with their PB
time for d, PB(s, d) as per Equation 1; each race, is represented by a finish-time,
lap-times and a track id. In other words, to predict the finish-time for s for an
upcoming 3,000m race, requires a case-base that is made up of PB/non-PB times
for 3,000m races by other skaters. In what follows we refer to this as the nPB
case representation and it will serve as the baseline against which to judge the
variations that follow.

cnPB(s, d) =
!
nPB(s, d) | PB(s, d)

"
(1)

While this baseline remains a valid in the present work, we are also interested
in predicting a target distance PB by using previous races from shorter (more
common) distances. Thus one representation variation pairs a skaters PB and
lap-times for shorter distances with their PB for a longer target distance, d as in
Equation 2; note that in this study the target distances used are 500m, 1,000m,
1,500m, 3,000m, and 5,000m. We refer to this as the PB representation.

cPB(s, d) =
!
PB(s, d′) ∀d′<d | PB(s, d)

"
(2)
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In this way each case encodes additional performance information for s –
their finish-times (and lap-times) for multiple shorter races – but these times are
also personal-best times, reflecting recent best-efforts over these distances. This
contrasts with the nPB representations, where it is less clear if the transition
from nPB to PB is a representative of a typical progression for a skater, or an
artefact of the pairing of an outlier nPB with a very good PB. Moreover, the
pacing patterns reflected in the lap-times of these shorter distance PBs encode
important information about the type of pacing employed by a skater, which is
important when it comes to finding cases that are similar in terms of their finish-
times and pacing strategy: a sprinter will likely use a different pacing strategy
on a 3000m than an endurance skater, for example.

Of course, we can also combine the nPB and PB representations, so that
cases for some race distance d are made up of a nPB race for that distance and
PB races for shorter distances, as shown in Equation 3, which we refer to as the
combined representation.

ccom(s, d) =
!
PB(s, d′) ∀d′<d , nPB(s, d) | PB(s, d)

"
(3)

3.2 Adapting for Track Variations

Given that track conditions can have a material impact on finish-times we also
produce modified versions of the above case representations, which use adjusted
finish-times to reflect these conditions. In our initial analyses we found that
simple adjustments for mean times per track (as reflected in Figure 4) did not
improve our predictions, because there are many confounding factors at play,
such as different track-specific populations and type of races.

Since many skaters in our data set have race times for a specific distance
for different tracks we can estimate within-person adaptations that overcome
most of these confounds. For each skater and each distance we calculate a PB
for each track they have raced on, and then fit a multilevel regression model to
this data to estimate within-person, track-specific differences relative to a single
reference track. The fixed effects of this multilevel regression model provide the
adjustments that can be used to standardise the finish-times of all races relative
to the reference track.

c′nPB(s, d) =
!
nPB′(s, d) | PB′(s, d)

"
(4)

c′PB(s, d) =
!
PB′(s, d′) ∀d′<d | PB′(s, d)

"
(5)

c′com(s, d) =
!
PB′(s, d′) ∀d′<d , nPB′(s, d) | PB′(s, d)

"
(6)

These adjusted finish-times can then be used to produce new versions of
our nPB, PB and combined case representations, as shown in Equations 46,
by replacing raw timing data with normalised, track-adjusted timing data, as
indicated by nPB′ and PB′.
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3.3 Generating Predictions

For a given skater s and race distance d we predict their finish-time (using one
of the representations outlined above) by using the past races of s to identify the
k nearest cases, using a standard Euclidean distance similarity metric. As in the
work of [4, 5, 8], male and female skaters are separated so that the predictions
for male skaters are only generated from the cases of male skaters and vice versa
for females; this is because of the performance differences that exist between the
sexes due mainly to physiological differences. We also separate younger skaters
(≤20 years-old) from older skaters (≥40 years-old) to facilitate a later age-based
comparison.

Then a prediction is generated based on the distance-weighted mean of the
target distance PB times from these cases (PB(s′, d) or PB′(s′, d) as appropri-
ate, where s′ denotes a similar, nearest-neighbour skater). If adjusted timings
are used then (PB′(s′, d)) then obviously the resulting prediction needs to be
transformed back into an actual finish-time for the target track. As an aside, it
is worth noting that to predict a pacing plan for the target race we can adopt
a similar approach to that described in [4,8], by computing the average relative
lap-times from the k nearest cases. However, we do not focus on this particular
task further in this paper.

4 Evaluation

In this section we provide a detailed analysis of prediction accuracy, compar-
ing the baseline nPB approach originally described in [4, 8] to the alternatives
proposed in this work.

4.1 Data Set & Methodology

We use the Dutch data set introduced earlier to produce different case-bases
for three common target distances (1,500m, 3,000m, and 5,000m), using the
different case representations (nPB, PB, and combined), and timing data (raw
times versus adjusted times). This leads to 18 (3× 3× 2) individual case-bases
for prediction. Note that the different target distances have quite different race
characteristics: there are ≈48k 1,500m races, each with 4 lap times, compared
with ≈16k 3,000m races (each with 8 lap times) and ≈2.7k 5,000m races (with 13
lap times per race). The longer distances also facilitate richer PB representations
because there are more shorter component PB distances. Thus a 5,000m PB or
combined case will have significantly more features than a 5,000m nPB case,
because of its extra component PB cases, and their lap-times.

We adopt a standard 10-fold cross-validation approach to evaluate predic-
tion accuracy across these variations and for different values of k (1, 3, 5, 10.
20, 50). During each fold/iteration we select a random 10% of cases to use as
test problems with the remaining 90% of cases used as the training case-base.
Each test problem is solved (generating a race-time prediction) and compared
to the known race-time for that test problem. For each prediction we calculate a
percentage error and compute an average error across the folds for each variation.



10 B. Smyth and M. C. Willemsen

4.2 Prediction Error vs k

To begin, it is informative to explore how prediction error varies with k, the
number cases retrieved to make a prediction, and how this depends on the target
distance, representation, and whether or not track-adjusted timings are used.
Figure 5 shows the results, separately for each combination of (a) target distance,
(b) representation, and (c) timings.

Fig. 5. The mean error rates by k (the number of similar cases reused) for different
(a) target distances, (b) representations, and (c) timings (raw versus track-adjusted).

In general, as we might expect, the accuracy of predictions improves with k,
up to a point, and on average the best overall errors are available for values of
k in the range 1020. It is also clear that the accuracy of the predictions, for a
given value of k, depends on the target distance, representation and timing and
it is worth discussing these accuracy differences further before proceeding.

The different error rates between the target distances can be explained by
the number and quality of the features used during prediction. Since the error
rates in Figure 5(a) are averaged over all representations and timings, then cases
for longer target distances tend to use more features, since the combined and PB
representations will be made up of additional PB races and because longer races
will be made up of more lap-time features. This explains the lower combined
and PB error rates in Figure 5(a). Moreover, since these longer distances are
predominantly skated by the more skilled skaters, they are more predictable
even at lower k. However, for larger k, the error goes up, most likely because
there are fewer records for the longer distances and a larger k results in less
representative similar cases being reused. This does not apply to the 1500m
distance, which still benefits from larger k due to the much larger number of
available race records, good similar cases can still be found even up to k = 50.

A related argument can be applied to explain the error differences by repre-
sentation, in Figure 5(b): the combined cases contain more features than the PB
cases which, in turn, contain more features than the nPB cases. In addition, it
is reasonable to expect that the PB races used in the PB and combined cases
will be of higher quality, from a prediction viewpoint, than the lone nPB races
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in the nPB cases. That being said, the improved error rates for the combined
cases over the PB cases indicates that these nPB races do add still value.

Figure 5(c) presents a like-for-like comparison in terms of the number and
types of features in cases, the only difference being whether raw timings or track-
adjusted times are used. The difference in error is more modest across values of
k but indicates a benefit accruing to the track-adjusted timings.

In summary then, the novel case representations (PB and combined) and
track-adjusted timings proposed in this work lead to more accurate predictions
than the baseline nPB representation from [4,8].

4.3 Best Performers

Given the sensitivity of prediction to k, the target distance, the case representa-
tion, and the timings used, it is appropriate to examine the single best performing
k for each combination of distance, representation, and timings, so that we can
compare individual systems (single case-based predictors) more directly.

Figure 6 presents a table of these best performers for each of the 18 unique
combinations of distance, representation, and timings. Each row of the table
represents a single case-based predictor, with its corresponding value of k, and
shows the mean and standard error of the prediction errors produced by the 10-
fold cross-validation. The table is arranged in blocks by target distance (1,500m,
3,000m, and 5,000m) and within each block the baseline and best performing
variants are indicated.

We can see that best predictors, for a given combination of distance, represen-
tation, and timing, produce their most accurate predictions for different values
of k, from 3 to 50, although in most cases the best value of k is either 10 or 20.
The combined representation using track-adjusted times provides the most ac-
curate predictions, regardless of target distance, with significant improvements
with respect to the baseline, as shown. For example, when predicting 1,500m
times, the combined, track-adjusted variant generates predictions with a mean
error of 0.0154 and a standard error of 0.0015, as compared with 0.0298 and
.0016 for the baseline; a relative error improvement of more than 48% due to the
combined, track-adjusted approach. As the target distances increase the improve-
ments for the combined, track-adjusted variant, relative to the baseline, decrease,
but remain significant; a relative error improvement of 29% anf 21% for 3,000m
and 5,000m races, respectively.

It is interesting to note that these results appear somewhat at odds with
the average prediction errors by target distance from Figure 5(a), where shorter
distances were associated with larger errors. While this is true in general – Figure
5(a) averages over all representations and times for a given distance – the much
higher error for the nPB cases for the 1500m tends to increases the overall error
rate. When we compare the single, best performing system for each distance,
then the shorter distances have lower best-errors. This may be due to the fact
that there are many more 1,500m cases to choose from than there are for the
3,000m or 5,000m distances, as previously discussed.
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Fig. 6. Mean and standard error of prediction errors for the best performing value of
k for each of the 18 case-base variants.
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Figure 6 also indicates that the most accurate PB representation is also as-
sociated with significantly lower errors than nPB ; the latter has fewer, lower
quality features than the former. Moreover, for any given combination of dis-
tance and representation, the best track-adjusted timing cases offer improved
errors compared to the use of raw timings; although the difference for a given
distance and representation tends to be modest and is not commonly statistically
significant.

4.4 On Gender and Age

The work of [4,8] highlighted different marathon-time prediction errors for men
versus women: women enjoyed superior prediction accuracy, a result that is con-
sistent with the notion that female runners tend to pace their marathons more
evenly than men, and therefore are more predictable in their finish-times; see [14].
We consider a similar question here, by examining male and female prediction ac-
curacy, and also the accuracy associated with younger (≤ 20) and older (≥ 40)
skaters. We do this for two approaches – the best overall approach (combined
representation with track-based timing adjustments) and the baseline (nPB with
raw timings) – for the three target distances (1,500m, 3,000m, and 5,000m).

We define a relative advantage score for gender and for age as shown in
Equation 7, so that the relative advantage for males versus females, for the
baseline, one minus is the baseline error rate for males divided by the baseline
error rate for females; thus, if RelAdvbaseline(males, females) < 0, then it means
that the baseline error rate for males is higher (worse) than the baseline error
rate for females, and vice versa.

RelAdvalg(x, y) = 1− error(x)

error(y)
(7)

Figure 7 presents the corresponding scores for the best and baseline ap-
proaches and the three target distances, comparing male versus female and
younger versus older error rates. RelAdvbest(males, females) > 0 in Figure 7(a)
means that the best approach produces more accurate predictions for men than
for women. But RelAdvbaseline(males, females) < 0, indicating that the base-
line produces more accurate predictions for women than for men, as with [4,8] for
marathons. A similar pattern is observed in Figure 7(b), comparing younger and
older skaters: For the best approach the race-times of younger skaters are pre-
dicted more accurately RelAdvbest(younger, older) > 0 than older skaters, but
for the baseline approach the finish-times of older skaters are predicted more
accurately, RelAdvbaseline(younger, older) < 0 (except in the case of the 5,000m
target distance).

It is not clear why these approaches perform differently in this way, but it
does indicate that the best approach offers a more balanced prediction accuracy
than the baseline approach, as well as its better overall accuracy. For example,
the mean absolute relative advantage of the best approach is ≈0.05, for gender
and age, indicating that the mean errors between genders and ages differ by
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only about 5%. This is compared with corresponding scores of 0.08 and 0.19 for
baseline, indicating a much greater imbalance between genders and between age
categories.

Fig. 7. A comparison of the relative error rates for the best and baseline approaches
with respect to gender and age. A relative advantage score <0 for gender means females
enjoy more accurate predictions than men, using a given approach, and a similar score
for age means older skaters enjoy better predictions than younger skaters.

5 Conclusions

This paper extends the original work of [4, 8], on predicting finish-times for
marathon runners, in a number of important ways. First, we apply the techniques
described by [4,8] to the very different sport of speed skating. Second, we propose
an alternative case representation which may be better suited to speed skating
by representing case uses multiple races that are shorter than the target race;
this in turn addresses one of the key shortcomings of the [4, 8] approach, which
meant that runners had to have run at least one marathon in the past. Finally,
given the importance of track conditions in speed skating we also proposed a
technique for normalising race-times across a wide range of tracks. The results
of a large-scale evaluation demonstrate the benefits of the new approaches that
have been proposed. Using these approaches it has been possible to significantly
reduce the prediction error compared with the baseline approach of [4, 8].

The ideas presented in this work are general enough that they may also be
applicable to marathons and other sports. For example, in marathon running,
course conditions may have a significant impact on performance, which speaks to
the value of a similar timing adjustment for marathon races to the one presented
here for speed skating. Moreover, since many marathoners will run shorter races
too (5k’s, 10k’s, half-marathons), then the idea of including PBs over shorter
distances is also likely to be worthwhile. We also plan to extend our current work
to include pacing recommendations as was the case for marathon races [5, 6] to
help skaters to achieve their predicted PB times and even help skaters to tackle
a first race over a new, longer distance.
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