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Contrary to perceptions in which technological development proceeds independently of scientific 
research, the interplay between science and technology has been recognized as an essential part in 
technological change, industrial competitiveness, and economic growth. While the process of 
knowledge exchanges between the nexus is conceptually well grounded in relevant literatures, the 
absence of quantitative measures and assessments of such linkages may underestimate the 
importance of scientific knowledge inputs for generating high-impact innovative outcomes. In this 
regard, we propose a large quantitative analysis on knowledge externalities from science to 
technology by investigating patent citations to science data across European metropolitan regions. 
First, we construct a dataset of patent citations to scientific knowledge that includes information on 
the spatial origins of knowledge spillovers. Subsequently, the ratio of internal scientific knowledge 
sourcing to external sources and its effect on patent citation impact is evaluated. Findings suggest 
that regions with a higher reliance on their internal scientific resources tend to generate inventions 
with higher technological impact, and that a strong connection between science and technology is 
even more effective in advanced industrial regions. 
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Introduction 

Contrary to perceptions in which technological development proceeds independently of scientific 
research (Cohen et al., 2002), interconnection between science and technology has been recognized 
as an essential part in technological change, industrial competitiveness, and economic growth 
(Fagerberg, 2003; Nelson, 1993). Scientific and technological spheres differ in the way of disclosure 
of knowledge and reward systems, i.e., scientists aim for pure research and publications, and 
inventors focus on economically useful knowledge and patents, thus operate based on different 
kinds of objectives, decision making rules, interpretation, etc. There is no direct overlap between 
the two systems, however, there is interaction between them (Kaufmann & Tödtling, 2001). 
Scientific knowledge generated at universities and research institutes provides a fundamental 
understanding for practical applications and contributes to technological advancements 
(Ahmadpoor & Jones, 2017). In other words, industrial innovation is conceived as a cumulative 
process of basic to applied research and then to development and commercialization to the 
patented ends. For instance, one of the key functions driving innovative dynamics in Silicon Valley 
is the knowledge exchange between high quality research-based science from universities and 
inventive efforts made in firms and industries (Hoppmann, 2021). Given that scientific research is a 
key to initiating new innovative outputs, it is worthwhile to investigate the proceeding from 
scientific knowledge to ultimate technological applications.   

In this regard, scholars have a longstanding interest in revealing and disentangling the 
connection between science and industry complex. Discourses in this regard have taken place in the 
science, technology, and innovation (STI) policy literature, in which innovation processes are viewed 
as a linear sequence of stages including scientific research, development and commercialization that 
lead to economic benefits (Jensen et al., 2007), and the innovation systems literature that 
emphasizes the interplay between institutional functions; here mainly focusing on science and 
industry linkages, in diverse geographical scales (Cooke et al., 1997; Lundvall, 1992; Malerba, 2002). 
Based on these discussions, policy makers have aimed to build closer relationships between 
scientific bodies and industries to encourage knowledge transfer from basic research to practice. 
Moreover, several attempts were made to design and assess the contribution of academic research 
to technological developments by applying indicators such as research and development (R&D) 
expenditures, number of publications, and number of patents to measure the efficiency of such 
knowledge flows (Godin, 2009; Hall & Jaffe, 2018). However, these measurements are not sufficient 
to capture how knowledge ‘flows’ from scientific research activities to patented inventions (Alhusen 
et al., 2021).  

One particular way to trace knowledge spillovers is to conduct a patent citation analysis (Jaffe 
et al., 1993). Patents leave a trail of knowledge flows from prior art documents with detailed 
information such as addresses of inventors, which allows us to track what kind of knowledge was 
exchanged or how knowledge flowed from place to place. Since we are interested in the knowledge 
exchange between science and technology, we can refer to patent citations to the non-patent 
literature (NPL), e.g., research publications. Patent citations to publications represent technological 
development drawn from the pool of research results, which is basically showing the extent of an 
academic contribution (Kim et al., 2022). Recently, empirical assessments have emerged to quantify 
the connection between science and technology using this citation information. For instance, 
Jefferson et al. (2018) showed that there has been a dramatic increase in translating scholarly 
activities to patented outcomes, and studies (e.g. Ahmadpoor & Jones, 2017; Poege et al., 2019; 
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Wang & Li, 2018) argue that the value of a patent is highly contingent to its involvement of science 
and that the relationship is fundamentally driven by the science quality thereof. In other words, 
more and more new inventions are relying on scientific knowledge, and it turns out that those 
inventions are likely to be more impactful than patents which do not have scientific bases, and that 
high-quality science is frequently selected and linked to further practical applications. 

Technological advancements rely on scientific knowledge development; however, despite this 
potential important consequence of co-development, we currently lack insights into how its 
dynamics occur in terms of geographical features, e.g., if countries and regions pool their own 
scientific resources or retrieve those developed elsewhere, and whether the dynamics actually 
induce benefits such as technological impact. For the former, first, it is likely that regions would 
exploit their internal scientific sources if they already possess relevant knowledge, because it 
significantly reduces time and cost of searching, acquiring, assimilating, and using external 
knowledge (Tödtling & Auer, 2021). Further, empirical studies have found that knowledge spillovers 
between publications and patented inventions are geographically localized (Belenzon & 
Schankerman, 2013; Heinisch et al., 2016), as it was evidenced by citation analyses between patents 
in the past (Jaffe et al., 1993; Thompson, 2006; Thompson & Fox-Kean, 2005). Furthermore, findings 
also indicate that a scientific portfolio is somewhat related to fields of subsequent technological 
development (Balland & Boschma, 2022; Catalán et al., 2020; Van Looy et al., 2006). Based on these 
insights, we can assume that regions that have considered the importance of co-evolution of science 
and technology will have higher reliance on their internal research outputs. Then, we should assess 
whether the attempt to co-develop science and technology leads to higher technological 
competences and then encourage countries and regions to invest in both knowledge production 
domains.  Murmann (2013), for instance, claimed that the co-development of academic research 
and industry have led certain countries to attain a comparative advantage over others in particular 
fields. Knowledge exchanges within co-evolution set-ups have mutually reinforcing effects in both 
science and industry (Hoppmann, 2021). Likewise, studies taking a co-evolutionary perspective can 
offer new insights into the dynamics of technological change. 

Consequently, this paper aims to explore and evaluate the spillover patterns from science to 
technology and its impact in shaping technological capabilities of regions. In detail, we measure the 
degree of internal scientific knowledge exploitation in regional economies and estimate its effect 
on technological impact on those respective regions. To do so, we use patent citations to science 
data projected onto our focal spatial units, i.e. European metropolitan areas. Knowledge diffusion 
is then traced via geographical extensions observed in patent documents, and our principal interest 
in the present paper relates to geographical traces of knowledge spillovers from research 
publications to patents, which we expect to be localized if regions had placed efforts to support 
both knowledge spheres. This study aims to significantly enhance our understanding of the science-
technology nexus and resulting dynamics in technological change. To the best of our knowledge, 
the present investigation is one of the first studies that examines the co-development process of 
science and technology via a large-scale quantitative approach for Europe and thus should deliver 
highly relevant insights for STI policy making. 

To convert on the objectives, initially a concordance table of global patent – NPL citations based 
on Marx and Fuegi (2020) is dveloped, and subsequently rrelevant patent information from the 
European Patent Office (EPO) PATSTAT database and publication information from the Microsoft 
Academic Graph (MAG) database are integrated in order to link the various data sources (Kedron et 
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al., 2020). Then all documents were geocoded to the European NUTS3 regional level classifications 
based on the residency or affiliation information of associated inventors and authors. Following 
these steps it was possible to create the final dataset that contains patent-NPL linkages and 
associated regional information. Further, the location information was used to aggregate the data 
into metropolitan regions. The scope are patents developed in metro-regions in Europe (EU15 + 
Switzerland & Norway) between the period of 2000 and 2017. Finally, utilizing relevant variables 
and indicators, we conducted empirical analyses to investigate the relationship between the share 
of internal knowledge sourcing and technological impact. Our findings indicate that regions with 
higher dependence on local scientific resources tend to have higher technological impact than 
others with lower reliance. The tendency gets clearer in highly industrialized regions, which shows 
the important role of scientific knowledge and the connection between science and technology in 
shaping regional knowledge capabilities.  

The reminder of the paper is organized as follows. In the next section, some of the relevant 
literature is presented and discussed, which allows us to derive at our main research questions. This 
is followed by a section that outlines the data, variables, and models that are employed in the 
analyses. Lastly, an overview of results and then a further discussion and concluding remarks are 
provided. 

 

The Science and Technology Nexus and its Impact on Technological Change 

The underlying perception in the innovation process and its contribution to economic benefits is 
that innovation is comprised of a sequence of distinct stages of different kinds of knowledge 
production activities, i.e., basic scientific research, applied research, development, and 
commercialization, that altogether may lead to economic gains (Flink & Kaldewey, 2018; Grupp & 
Mogee, 2004). The first two parts are done by scientific bodies, mostly resulting in publications, and 
the two latter stages refer to technological activities that are then mostly protected via intellectual 
property rights, e.g., patents. The idea of the assortment of distinct series of actions in innovation 
processes, the so-called a linear model, led to the introduction of an STI mode of innovation, in 
which learning starts from searching for new knowledge of scientific principles, recombines 
knowledge to achieve technological development, and results in new products or processes (Jensen 
et al., 2007). Namely, technologies involve supporting knowledge derived from fields of science. 
New scientific knowledge generated by research serves as an input for innovative inventions and 
inherent to the mode is the exchange and spillovers of knowledge between science and technology. 
The procedure can take place within a firm or industry, but also by interactions with actors outside 
the firm such as research institutions (Malerba, 1992). The STI mode therefore is used to advice 
policymakers on how and where to implement supplementary tools to foster innovation and 
support interactions of diverse centers of new knowledge production such as universities and 
institutions that create scientific knowledge and firms that exploit those knowledge components to 
deliver innovations (Fitjar & Rodríguez-Pose, 2013).  

In the STI mode of innovation, scientific research often does not directly affect technological 
development, i.e., research does not result in inventions with immediate industrial applications, but 
rather in indirect way through documented results in a codified form (Cohen et al., 2002). Despite 
the fact that the linear model remains prevalent in STI policies (Flink & Kaldewey, 2018), only 
recently has this feature of linear relationship between advance understanding and practical 
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applications been quantified in a few studies that examined patent citations to science to 
demonstrate knowledge flows between academia and industry. For instance, Ahmadpoor and Jones 
(2017) and Wang and Li (2018) showed that patents that refer to scientific publications have higher 
citation impact than the other patents that do not refer to NPLs as their prior art. Those studies 
confirmed that more and more patents are linking back to scientific knowledge base and that 
scientific knowledge has significant contribution to technological activities. At the same time, Poege 
et al. (2019) found strong positive selection of high-quality scientific works into NPL references, 
showing connectivity between the bodies of patented inventions and research publications.  

The connection between science and technology further became recognized as a mutual 
interplay beyond the linear process. Scholars have started to acknowledge the interactive nature of 
science and technology and have employed a co-evolutionary perspective to explore how interfaces 
between science and industry shape an entity’s overall capabilities over time (Fagerberg, 2003; 
Kaufmann & Tödtling, 2001), and it has been proposed as a theoretical framework to back up 
interdependent dynamics embedded in technological change (Nelson, 1993). For instance, it is 
widely accepted that science – industry linkages played a crucial role in innovative clusters such as 
Silicon Valley (Hoppmann, 2021), and lack of such interactions would weaken the effectiveness of 
national research capabilities and the emergence of new technologies (Alhusen et al., 2021; 
Goldstein & Narayanamurti, 2018). In line with this argument, ‘systems of innovation’ literature has 
long been interested in the interplay between the two groups of bodies at various geographic and 
sectoral scales (Cooke et al., 1997; Lundvall, 1992; Malerba, 2002). Especially in national innovation 
systems (NIS), Lundvall (1992) emphasized the elements including firms, universities, and research 
institutes and their relationships in production, diffusion, and use of new and economically useful 
knowledge. Here, the way knowledge is distributed and used among those main elements’ 
interactions is central to the performance of an innovation system (Godin, 2009). Thus, in this 
approach, scientific research first constitutes a fundamental component within the system since the 
co-evolutionary process of knowledge development is based on the overall state of knowledge in 
scientific disciplines and the level of technological capabilities. Then knowledge transfer from 
science to technology occurs through diverse channels such as collaborative research and migration 
of researchers from public to private sectors. Moreover, firms often access the results of scientific 
research in codified forms such as publications and patents. Consequently, knowledge production 
and spillovers from universities and research institutes are increasingly the focus of policy makers 
to maximize the societal impact of innovations (Blankenberg & Buenstorf, 2016).   

Given the importance of science and technology nexus in the process of technological change, 
it is not surprising that relevant literature has long been interested in how to design and evaluate 
the interfaces between the two groups (Cohen et al., 2002). Empirically, measures to assess the STI 
mode of innovation and NIS include input measures such as R&D expenditures or personnel and 
output indicators such as publications and patents, which are then compared and used to reflect 
efficiency level (Godin, 2009; Hall & Jaffe, 2018). However, approach to capture the ‘flow’ of 
knowledge between science and technology is not well understood (Alhusen et al., 2021).  Indicators 
should be able to consider the use of such knowledge – producing, diffusing, and exploiting 
economically useful knowledge. A few attempts have been made to consider the co-evolutionary 
process of science and technology, e.g., Wong and Wang (2015) used the quantity of publications 
and patents at national level to assess the patterns of cumulative knowledge production of science 
and technology and examined the relationship between the proportion of science-based patents 
and citation impact, both at national level, to evaluate the impact of science-based knowledge usage 
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on technological change in emerging countries. Further, Blankenberg and Buenstorf (2016) showed 
a mutually reinforcing effect in the evolutionary process by employing the number of patents, 
publications, and etc. in German laser industry. These attempts have contributed to empirically 
explain a systematic perspective in innovation process, however, are still limited to investigating 
superficial bond of science and technology since the measurements cannot reveal the diffusion 
process nor exploitation of scientific knowledge in technological advancements.     

In short, while the process of knowledge exchange between science and technology is 
conceptually well grounded in the STI and NIS literatures, etc., absence of quantitative measures 
and assessments of such phenomenon may underestimate the importance of science in patenting 
activities. In this regard, we propose a large quantitative analysis on knowledge externalities from 
science to technology based on patent citations to science information. Backward citations in patent 
documents are treated as a proxy of the ability to identify the value of external novel information 
and exploit it to the end, and references indicate useful knowledge that are selected for creation of 
new knowledge (Cohen & Levinthal, 1990). Consequently, patents’ NPL references show to which 
extent technological knowledge involves academic contribution (Kim et al., 2022). In this sense, we 
believe that using patent citations to science information is acceptable to achieve our research aim 
to evaluate the patterns of science and technology links and their impact on technological change. 
Some studies have used this kind of data to disclose some features of knowledge spillovers from 
scientific knowledge to patented inventions in terms of geographical extent. For instance, Belenzon 
and Schankerman (2013) showed that the knowledge spillovers from university publications to 
patents in the US are strongly localized and sensitive to distance. Heinisch et al. (2016) also 
confirmed international geographical localization in patent – NPL citations in Dutch context. These 
studies prove that the inherent nature of ‘stickiness’ in knowledge (Von Hippel, 1994) applies to 
both scientific and technological knowledge. Furthermore, some recent studies found that regions 
tend to develop new technology that is related to their scientific portfolio, and regions with strong 
scientific base are highly likely to become technological frontiers in the same domain while regions 
with only technological capabilities often downgraded to one of the followers (Balland & Boschma, 
2022; Catalán et al., 2020).   

Given that knowledge is innately sticky to specific places, there is overlap between scientific and 
technological bases, and science matters in technological development, we can assume that regions 
who possess scientific knowledge base in relevant industrial fields are likely to refer to their internal 
scientific sources since there is no need to spend time and effort to search, assimilate, and exploit 
external scientific knowledge to develop their technological capabilities. In other words, regions that 
count more on internal scientific resources rather than external sources are likely to have strong 
connection between science and technology or are likely to put efforts on promoting both research 
and inventing sides, which in turn should lead to better performance in technological activities as 
argued in the STI and NIS literatures. Subsequently, based on all the discussions above, our 
hypothesis is: regions with higher reliance on internal scientific research bases are likely to have 
higher technological impact. If we can accept this hypothesis, we can argue that technological 
advancements stem from scientific base and provide relevant implications for the STI policies. 
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Data and Methods 

As shown in Fig 1, the projection of patent citations to science on the European metropolitan regions 
are as follows. First, we retrieved a concordance table of patents and their references to scientific 
publications from the work of Marx and Fuegi (2020). It provides a publicly available patent – 
publication link records by linking global patents and their NPL citations based on MAG database. 
Using this as a reference, we extracted relevant patent information including priority year, citations, 
inventor addresses, etc. from the EPO PATSTAT and publication information including publication 
year, institution addresses, etc. from the MAG database. Then we geocoded addresses with NUTS3 
regional level classifications in all the documents. Further, those that can be assigned to 
metropolitan regions were aggregated to metro-regional level classifications. 

 

 

 

Figure 1. Data overview 

 

 

Following these steps created our own dataset of patent citations to science with the list of 
metropolitan regions and NUTS3 regions entailed in the process of knowledge production in science 
and technology. We limited our sample to patents developed from metropolitan regions in EU15 + 
Switzerland & Norway covering from 2000 to 2017. Our final dataset for the analysis contains 
information from 218 metro-regions from 17 countries (See Appendix A for the geographic profile). 
Regional level knowledge and economic indicators from Web of Science (calculated by authors), 
Cambridge Econometrics, and Eurostat are also added. Table 1 describes the variables included in 
our analysis.  
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Table 1. Description of variables 

Variable  Definition Data source 
FwdCitr,t Technological impact Number of 5-year forward citations  

in region r in year t 
EPO PATSTAT 

IntraSharer,t Degree of internal 
science sourcing 

Ratio of intra to inter dummies 
in region r in year t 

MAG, EPO PATSTAT 

KCapAbsr,t Technological 
absorptive capacity 

Number of backward citations of 
patents in region r in year t 

EPO PATSTAT 

KCapPatr,t Technological  
output 

Number of patent applications  
in region r in year t 

EPO PATSTAT 

KCapScir,t Scientific  
output 

Number of scientific publications 
in region r in year t  

Web of Science 

KCapInsr,t Scientific research 
activities 

Number of research institutions  
in region r in year t 

Web of Science 

KCapSciQr,t Quality of scientific 
knowledge 

Number of forward citations of 
publications in region r in year t 

MAG 

UnivPatr,t Sci-Tech 
activities 

Share of university patents in region 
r in year t 

EPO PATSTAT 

CitLagr,t Sci-Tech  
citation lag 

Average citation lag year between 
publications and patents in r in t 

MAG, EPO PATSTAT 

PopDenr,t Region 
size 

Population density (population/area) 
in region r in year t 

Cambridge 
Econometrics, Eurostat 

* r – metropolitan regions (Eurostat), t – 2000~2017 

 

FwdCitr,t is the dependent variable measuring technological impact of a region r at time t which 
is calculated by the number of 5-year forward citations. Forward citation index has been exploited 
in many previous studies to reflect impact or value of a patent (Ahmadpoor & Jones, 2017; Jefferson 
et al., 2018; Poege et al., 2019), and therefore we also utilize the number of forward citations.  

IntraSharer,t, the independent variable, concerns the degree to which regions source internal 
scientific knowledge compared to external resources. Here, whether it is internal or not is identified 
by national boundaries. For example, if a patent from Paris refers to scientific literature published 
from France, we classified the case as intra-sourcing; otherwise, inter-sourcing. According to 
previous literature, geographical localization of knowledge is significantly observed within national 
boundaries rather than regional boundaries (Thompson, 2006; Thompson & Fox-Kean, 2005), 
because knowledge carrying individuals such as inventors relocate frequently within a country but 
not across international borders. In this sense, national borders are considered to distinguish 
internal and external knowledge. Following this rationale, based on the information of the list of 
incorporated regions in each patent – NPL link, if there is at least one matched region between 
publication and patent, we assign the patent as 1 for intra dummy; otherwise, 0. At the same time, 
if regions do not match, we assign the patent as 1 for inter dummy; otherwise, 0. Examples are 
illustrated in Table 2.   
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Table 2. Illustration of intra and inter dummies for the IntraSharer,t variable 

 NPL(s) Patent Intra dummy Inter dummy 
Case 1 Paris Paris 1 0 
Case 2 Paris London, Berlin 0 1 
Case 3 Paris Paris, Berlin 1 1 

 

Then, we sum up the values of intra and inter dummies at each regional level, respectively, and 
compare the values to calculate the IntraSharer,t:  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟,𝑡𝑡 =
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑡𝑡𝑟𝑟
𝑖𝑖

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑡𝑡𝑟𝑟
𝑖𝑖

 

 

where i stands for each patent, r for each metro-regions, and t for year. 

 

All the other variables are included to control knowledge capacities and size of region r in year 
t. First, KCapAbsr,t is for technological absorptive capacity measured by the number of backward 
citations (Cohen & Levinthal, 1990; Harhoff et al., 2003; Kim et al., 2022), and KCapPatr,t stands for 
technological output measured by the number of patent applications (Van Looy et al., 2006; Wang 
& Li, 2018). Next, science relevant capacities include: KCapScir,t for scientific output measured by 
the number of publications (Balland & Boschma, 2022; Van Looy et al., 2006); KCapInsr,t for scientific 
research activities measured by the number of research institutions (Feldman, 1994; Leten et al., 
2014) including universities, etc.; and KCapSciQr,t for the quality of scientific knowledge measured 
by the number of forward citations received by publications (Wang & Li, 2018). For variables 
KCapScir,t and KCapInsr,t, we used the Web of Science database and counted the number of 
publications the number of institutions that appear on the list of authors’ affiliation information for 
each NUTS2 level regions. Furthermore, we tried to take account of science – technology link 
support or places where universities are actively pursuing patented knowledge by including UnivPatr,t, 
the share of university patents (Heinisch et al., 2016), and the effect of referencing the most 
disruptive scientific documents that are likely to be cited for a long time by CitLagr,t, the average 
citation lag between publications and patents (Poege et al., 2019). With these variables should we 
able to control the effects of universities’ active participation in patenting and the effects of sourcing 
the most disruptive or more established scientific knowledge that are likely to be old. Lastly, 
PopDenr,t is included to control the size of regions (Colombelli, 2016).  

With the variables in hand, we conducted negative binomial regressions following that our 
dependent variable is the count of citations. Also, as we observed high skewness in our variables 
except for CitLagr,t and PopDenr,t, we log-transformed the variables for the regression. Furthermore, 
given that the patterns of patent citations to science may vary depending on industrial profile of 
regions – knowledge intensive regions have larger number of collaborations between academy and 
industry for knowledge creation from research to commercialization (McKelvey et al., 2003; 
Moodysson, 2008), while regions with low technological capabilities have little demand for local 
scientific knowledge (Lehmann & Menter, 2016; Rodríguez‐Pose, 2001) –, we attempted to extract 
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sub-samples of regions with high industry employment (25% quantile among the dataset) where 
they are likely to be active in technological development and of regions with low industry 
employment (below 75% quantile among the dataset) where there are likely to be little demand for 
research and development. Scientific research is more likely to be used in more applied sciences or 
engineering fields, and those used in industrial inventions tend to be relatively mature (Cohen et al., 
2002). Finally, we again split our sample into two time dimensions, 2000~2007 and 2008~2017, to 
investigate whether results change over time. 

Summary statistics and correlations of the variables are appended to Appendices B and C. 
According to the statistics, the average ratio of internal scientific knowledge sourcing to external 
sourcing is about 0.3 in the European metro-regions, which can be interpreted as: there are many 
regions that only develop technological knowledge in certain fields instead of nurturing basic 
research capabilities as well and thus should pool scientific references from outside for developing 
respective technological competences. Moreover, we find high correlation values between 
lnKCapAbsr,t & lnKCapPatr,t, lnKCapScir,t & lnKCapInsr,t, and lnUnivPatr,t & lnKCapPatr,t, which is 
expected; however, later in the analysis stage we find that there are no multicollinearity biases 
affecting our regression model. 

 

Results  

Regression results are represented in Table 3. First of all, Model (1) shows that the IntraSharer,t 
variable has positive and significant effect on patent forward citation: regions with higher share of 
internal scientific knowledge have higher citation impact. In other words, the results confirm that 
technological impact and sourcing scientific knowledge developed within the same country are 
positively related. Assuming that citations between patents and research articles are likely to occur 
within the same field, we suppose that regions with high technological capabilities possess high level 
of scientific knowledge in the same domain as well. This finding also indicates that regions that hold 
competitiveness in both science and technology can accomplish higher technological advancements, 
which stresses the importance of scientific foundation for developing technological capabilities. 
Moreover, knowledge capacity variables have positive and significant effects on technological 
impact except for lnKCapInsr,t and lnUnivPatr,t. As we observe significant role of publishing activities, 
lnKCapScir,t and lnKCapSciQr,t – mostly the outcomes from universities and research institutions –, 
on patent impact but no significant effects of the pool of research institutions and university 
patenting, we can assume that research institutions and universities support enhancing 
technological impact in an indirect way.  

To examine the differences in the relationship between technological impact and internal 
sourcing of science capitals depending on the degree of regional knowledge intensity, we divided 
our sample into regions with high and low industrial employment. Models (2) and (3) measure the 
effects of variables in high industrial regions, top 25% regions, and low industrial regions, low 25% 
regions, respectively. To line up the regions according to their level of industrial activities, we used 
industry employment data of regions and calculated the average industry employment level of all 
the regions in our dataset throughout the whole period. We then identified regions that are included 
in the top and low 25% quantiles. According to the results in Models (2) and (3), a clear division 
between the two groups of regions can be found: the IntraSharer,t coefficient is higher in knowledge 
intensive-industrial regions than that of low-industrialized regions. Regions that are more focusing 
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on manufacturing industries which are likely to be more active in patenting inventions show much 
higher effect in the reliance on their scientific resources rather than external sources. This finding 
strongly supports our argument that regions with high technological capabilities rely on their own 
scientific knowledge assets, highlighting that technological advancements cannot be achieved 
without investments in science.  

Lastly, we compared the results by splitting time periods into 2000~2008 and 2009~2017 to seek 
whether the results change over time. The findings suggest that the relevance of local scientific 
sources to technology have significantly increased in the later years. This tendency is also confirmed 
when we tried splitting time dimensions into three periods (2000-2005, 2006-2011, 2012-2017), etc. 
We can presume that as regions continue to specialize in specific knowledge domains, they have 
put effort to strengthen their capabilities in both scientific research and technological 
improvements, which came to be fertile conditions for technological progress. 

 

Table 3. Regression results 

Model 
(DV) 

(1) 
NB 

(FwdCitr,t) 

(2) 
NB 

Industry Emp. 
Top 25% 

(FwdCitr,t) 

(3) 
NB 

Industry Emp. 
Low 25% 
(FwdCitr,t) 

(4) 
NB 

Year 
<=2008 

(FwdCitr,t) 

(5) 
NB 

Year 
>2008 

(FwdCitr,t) 
IntraSharer,t .3910*** 

(.0565) 
.4437*** 
(.1181) 

.3400** 
(.1327) 

.1091 
(.0661) 

.3723*** 
(.0765) 

lnKCapAbsr,t .4139*** 
(.0126) 

.3907*** 
(.0185) 

.4470*** 
(.0342) 

.8995*** 
(.0298) 

.4756*** 
(.0192) 

lnKCapPatr,t .6080*** 
(.0185) 

.6262*** 
(.0276) 

.6726*** 
(.0514) 

.1394*** 
(.0318) 

.5451*** 
(.0272) 

lnKCapScir,t .0812*** 
(.0127) 

.1189*** 
(.0225) 

.1303*** 
(.0262) 

-.0156 
(.0152) 

-.0037 
(.0207) 

lnKCapInsr,t .0017 
(.0126) 

-.0042 
(.0191) 

.0013 
(.0318) 

.0405*** 
(.0133) 

.0683*** 
(.0230) 

lnKCapSciQr,t .0276** 
(.0111) 

.0337 
(.0205) 

-.0076 
(.0232) 

-.0020 
(.0130) 

.0269 
(.0149) 

lnUnivPatr,t -.0193 
(.0116) 

-.0042 
(.0170) 

-.0552 
(.0325) 

-.0158 
(.0134) 

-.0467*** 
(.0153) 

CitLagr,t .0557*** 
(.0048) 

.1023*** 
(.0086) 

.0266** 
(.0104) 

.0200*** 
(.0068) 

.0379*** 
(.0058) 

PopDenr,t .0507*** 
(.0173) 

.0475 
(.0249) 

.0172 
(.0382) 

-.0329 
(.0189) 

.0379*** 
(.0058) 

Constant -2.1783*** 
(.0887) 

-2.9544*** 
(.1732) 

-2.3589*** 
(.2443) 

-.5967*** 
(.1581) 

-1.4228*** 
(.1416) 

N 1,828 598 343 893 935 
R-square .2221 .2086 .2372 .2557 .2296 
***, **, and * indicate significance at 1, 5, and 10%, respectively. 
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Discussion and Concluding Remarks 

To investigate the importance of science and technology linkage in technological innovations, this 
study aimed to analyze the effect of internal scientific knowledge sourcing on technological impact 
of the European metro-regions. We assumed that countries and regions where they focus on 
developing both scientific and technological knowledge spheres are likely to refer to their own 
scientific research outputs rather than external resources due to the inherent nature of spatial 
localization of knowledge (Jaffe et al., 1993; Von Hippel, 1994) and the relatedness between 
scientific base fields and subsequent technological entries (Balland & Boschma, 2022; Catalán et al., 
2020). Based on this assumption, we constructed a dataset of patent citations to science with the 
location information of showing geographical trail of knowledge spillovers from science to 
technology. Then, we compared the degree of internal scientific knowledge sourcing to external 
scientific knowledge sourcing for each region and assessed its impact on patent citations from the 
region. Our results show that regions with higher reliance on their own scientific sources tend to 
have higher technological impact, and the strong connection between science and technology is 
even more effective in advanced industrial regions. These findings suggest that technological 
advancements cannot be achieved without the investment in science. 

Contrary to the conceptions in which scientific progress and technological development operate 
in independent domains, we find significant role of scientific bases in technological progress. Basic 
research activities may be regarded as less important in patented inventions since there is 
substantial uncertainty about potential fields of application from ‘basic’ research (Blankenberg & 
Buenstorf, 2016), however, recent empirical approaches have confirmed that there is an increase in 
patents’ reliance on knowledge developed from scholarly activities and the level of academic 
contribution matters in patents value (Ahmadpoor & Jones, 2017; Jefferson et al., 2018; Poege et 
al., 2019). Our analysis in this paper further investigated direct knowledge flows from science to 
technology empirically, showing how science matters in technological development and how 
regions source and develop their capabilities based on both domains of knowledge. This can provide 
some STI policy implications: it strengthens the rational of regional association that cut across 
science – technology divide or public – private divide. From the perspective of regional STI policy 
makers, our analysis indicates that fostering ties to national universities and research institutes is 
worthwhile activity when fostering industrial progress. That is, countries and regions should invest 
in basic science and promote more closed coupled science and industry linkages to speed up and 
enhance technological progress.    

Overall, this study contributes by providing a large quantitative analysis on regional-level pattern 
of scientific knowledge spillovers to technology and its impact on technological influence based on 
patent – NPL citation analysis. This approach is novel in that it provides further insights into the path 
of knowledge creation and wider perspectives on the elements of regional knowledge which were 
often limited to patent landscape. This paper also emphasizes the interplay across science – 
technology which subsequently magnifies the importance of investment in basic research and 
establishment of science – industry linkages. Consequently, we believe there is a great potential of 
research questions to be answered using the patent citations to science data in diverse themes and 
geographical scales, and our research is just one of the first attempts to understand the dynamics 
of knowledge development. Since there are limits in which this single study can cover, future studies 
can explore further on various patterns and benefits of regions’ knowledge production, diffusion, 
and use of knowledge within the science and technology nexus, e.g., which one, regional 
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specialization or diversification influences regions’ capacities to source from their scientific bases 
and the impact of their patents or whether diversity of scientific knowledge producing actors affects 
patenting outputs. Also, using geographical distances rather than binary border-in/out variable may 
help us to understand better on the trace of knowledge spillovers from science to technology.  

  



14 

References  
Ahmadpoor, M., & Jones, B. F. (2017). The dual frontier: Patented inventions and prior scientific 

advance. Science, 357(6351), 583-587.  
Alhusen, H., Bennat, T., Bizer, K., Cantner, U., Horstmann, E., Kalthaus, M., Proeger, T., Sternberg, 

R., & Töpfer, S. (2021). A new measurement conception for the ‘doing-using-interacting’mode 
of innovation. Research Policy, 50(4), 104214.  

Balland, P.-A., & Boschma, R. (2022). Do scientific capabilities in specific domains matter for 
technological diversification in European regions? Research Policy, 51(10), 104594.  

Belenzon, S., & Schankerman, M. (2013). Spreading the word: Geography, policy, and knowledge 
spillovers. Review of Economics and Statistics, 95(3), 884-903.  

Blankenberg, A.-K., & Buenstorf, G. (2016). Regional co-evolution of firm population, innovation 
and public research? Evidence from the West German laser industry. Research Policy, 45(4), 
857868.  

Catalán, P., Navarrete, C., & Figueroa, F. (2020). The scientific and technological cross-space: is 
technological diversification driven by scientific endogenous capacity? Research Policy, 104016.  

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and 
innovation. Administrative Science Quarterly, 128-152.  

Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2002). Links and impacts: the influence of public 
research on industrial R&D. Management Science, 48(1), 1-23.  

Colombelli, A. (2016). The impact of local knowledge bases on the creation of innovative start-ups 
in Italy. Small Business Economics, 47(2), 383-396.  

Cooke, P., Uranga, M. G., & Etxebarria, G. (1997). Regional innovation systems: Institutional and 
organisational dimensions. Research Policy, 26(4-5), 475-491.  

Fagerberg, J. (2003). Schumpeter and the revival of evolutionary economics: an appraisal of the 
literature. Journal of Evolutionary Economics, 13(2), 125-159.  

Feldman, M. P. (1994). Knowledge complementarity and innovation. Small Business Economics, 
6(5), 363-372.  

Fitjar, R. D., & Rodríguez-Pose, A. (2013). Firm collaboration and modes of innovation in Norway. 
Research Policy, 42(1), 128-138.  

Flink, T., & Kaldewey, D. (2018). The new production of legitimacy: STI policy discourses beyond 
the contract metaphor. Research Policy, 47(1), 14-22.  

Godin, B. (2009). National innovation system: The system approach in historical perspective. 
Science, Technology, & Human Values, 34(4), 476-501.  

Goldstein, A. P., & Narayanamurti, V. (2018). Simultaneous pursuit of discovery and invention in 
the US Department of Energy. Research Policy, 47(8), 1505-1512.  

Grupp, H., & Mogee, M. E. (2004). Indicators for national science and technology policy: how 
robust are composite indicators? Research Policy, 33(9), 1373-1384.  

Hall, B. H., & Jaffe, A. B. (2018). Measuring science, technology, and innovation: A review. Annals 
of Science and Technology Policy, 2(1), 1-74.  

Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of 
patent rights. Research Policy, 32(8), 1343-1363.  

Heinisch, D., Nomaler, Ö., Buenstorf, G., Frenken, K., & Lintsen, H. (2016). Same place, same 
knowledge–same people? The geography of non-patent citations in Dutch polymer patents. 
Economics of Innovation and New Technology, 25(6), 553-572.  



15 

Hoppmann, J. (2021). Hand in hand to Nowhereland? How the resource dependence of research 
institutes influences their co-evolution with industry. Research Policy, 50(2), 104145.  

Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge 
spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577-
598.  

Jefferson, O. A., Jaffe, A., Ashton, D., Warren, B., Koellhofer, D., Dulleck, U., Ballagh, A., Moe, J., 
DiCuccio, M., & Ward, K. (2018). Mapping the global influence of published research on 
industry and innovation. Nature Biotechnology, 36(1), 31-39.  

Jensen, M. B., Johnson, B., Lorenz, E., & Lundvall, B.-Å. (2007). Forms of Knowledge and Modes of 
Innovation. Research Policy, 36(5), 680-693.  

Kaufmann, A., & Tödtling, F. (2001). Science–industry interaction in the process of innovation: the 
importance of boundary-crossing between systems. Research Policy, 30(5), 791-804.  

Kedron, P., Kogler, D. F., & Rocchetta, S. (2020). “Mind the Gap: Advancing Evolutionary 
Approaches to Regional Development with Progressive Empirical Strategies.” Geography 
Compass, (October 2017), 1–15. 

Kim, K., Nonnis, A., Özaygen, A., & Kogler, D. F. (2022). Green-tech firm creation in Germany: the 
role of regional knowledge. International Entrepreneurship and Management Journal, 1-24.  

Lehmann, E. E., & Menter, M. (2016). University–industry collaboration and regional wealth. The 
Journal of Technology Transfer, 41(6), 1284-1307.  

Leten, B., Landoni, P., & Van Looy, B. (2014). Science or graduates: How do firms benefit from the 
proximity of universities? Research Policy, 43(8), 1398-1412.  

Lundvall, B.-A. (1992). National systems of innovation: towards a theory of innovation and 
interactive learning.  

Malerba, F. (1992). Learning by firms and incremental technical change. The Economic Journal, 
102(413), 845-859.  

Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247-
264.  

Marx, M., & Fuegi, A. (2020). Reliance on science: Worldwide front‐page patent citations to 
scientific articles. Strategic Management Journal, 41(9), 1572-1594.  

McKelvey, M., Alm, H., & Riccaboni, M. (2003). Does co-location matter for formal knowledge 
collaboration in the Swedish biotechnology–pharmaceutical sector? Research Policy, 32(3), 483-
501.  

Moodysson, J. (2008). Principles and practices of knowledge creation: On the organization of 
“buzz” and “pipelines” in life science communities. Economic Geography, 84(4), 449-469.  

Murmann, J. P. (2013). The coevolution of industries and important features of their 
environments. Organization Science, 24(1), 58-78.  

Nelson, R. R. (1993). National innovation systems: a comparative analysis. Oxford University Press 
on Demand.  

Poege, F., Harhoff, D., Gaessler, F., & Baruffaldi, S. (2019). Science quality and the value of 
inventions. Science Advances, 5(12), eaay7323.  

Rodríguez‐Pose, A. (2001). Is R&D investment in lagging areas of Europe worthwhile? Theory and 
empirical evidence. Papers in Regional Science, 80(3), 275-295.  

Thompson, P. (2006). Patent citations and the geography of knowledge spillovers: Evidence from 
inventor-and examiner-added citations. The Review of Economics and Statistics, 88(2), 383-388.  



16 

Thompson, P., & Fox-Kean, M. (2005). Patent citations and the geography of knowledge spillovers: 
A reassessment. American Economic Review, 95(1), 450-460.  

Tödtling, F., & Auer, A. (2021). Knowledge bases, innovation and multi-scalar relationships: which 
kind of territorial boundedness of industrial clusters? In The Globalization of Regional Clusters 
(pp. 163-188). Edward Elgar Publishing.  

Van Looy, B., Debackere, K., Callaert, J., Tijssen, R., & van Leeuwen, T. (2006). Scientific capabilities 
and technological performance of national innovation systems: An exploration of emerging 
industrial relevant research domains. Scientometrics, 66(2), 295-310.  

Von Hippel, E. (1994). “Sticky information” and the locus of problem solving: implications for 
innovation. Management Science, 40(4), 429-439.  

Wang, L., & Li, Z. (2018). Knowledge transfer from science to technology—The case of nano 
medical device technologies. Frontiers in Research Metrics and Analytics, 3, 11.  

Wong, C.-Y., & Wang, L. (2015). Trajectories of science and technology and their co-evolution in 
BRICS: Insights from publication and patent analysis. Journal of Informetrics, 9(1), 90-101.  

 



17 

Appendix 

Appendix A. Geographic profile of the dataset 

Country Number of metropolitan regions 
Austria (AT) 5 
Belgium (BE)  5 

Switzerland (CH) 5 
Germany (DE) 65 
Denmark (DK) 4 

Greece (EL) 2 
Spain (ES) 19 

Finland (FI) 3 
France (FR) 33 
Ireland (IE) 2 

Italy (IT) 21 
Luxemburg (LU) 1 

Netherlands (NL) 9 
Norway (NO) 2 
Portugal (PT) 3 
Sweden (SE) 4 

United Kingdom (UK) 35 
Total  218 

Appendix A. Summary statistics  

Variable Obs. Mean Std. Dev. Min Max 
FwdCitr,t 3,395 102.7708 241.1201 0 2,844 

FwdCit3,r,t 3,395 77.4633 186.2926 0 2,474 
IntraSharer,t 3,355 .2920 .2507 0 3 
KCapAbsr,t 3,395 73.5193 171.5863 0 1,868 
KCapPatr,t 3,395 424.7714 838.5168 1 7,290 
KCapScir,t 3,395 2,431.7540 4,927.8570 1 76,135 
KCapInsr,t 3,395 185.2919 480.4829 1 10,057 

KCapSciQr,t 3,359 223.2969 390.5231 0 8,958.2 
UnivPatr,t 3,391 2.5533 9.2488 0 400 
CitLagr,t 3,395 7.3731 3.2039 0 52 

PopDenr,t 3,327 .5885 .8369 .0315 8.9218 

Appendix B. Correlation table  

 Variable  1 2 3 4 5 6 7 8 9 
1 FwdCitr,t          
2 IntraSharer,t .0699         
3 lnKCapAbsr,t .6690 .0684        
4 lnKCapPatr,t .6924 .0774 .8297       
5 lnKCapScir,t .3057 -.0887 .3084 .3957      
6 lnKCapInsr,t .2747 -.0531 .1995 .4057 .7022     
7 lnKCapSciQr,t .1902 .0544 .3475 .3242 .2752 .2017    
8 lnUnivPatr,t -.4285 -.0019 -.5554 -.6210 .0568 -.0463 -.1135   
9 CitLagr,t .0646 -.0455 -.0819 .0203 .0378 .0606 .0045 -.0312  

10 PopDenr,t .0853 -.2339 .0009 .0384 .1347 .1077 .0117 -.0365 .0381 
 


